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Abstract  

The scalar and electromagnetic radiation emitted by relativistic particles moving along the 
stable nongeodesic trajectories in the Kerr gravitational field are described. Two particular 
models of the nongeodesic motion are developed involving a slightly charged rotating black 
hole and a rotating black hole immersed in an external magnetic field. 

w (1): Introduction 

Considerable attention has been given lately to the theoretical description of 
the radiation from test bodies moving in the vicinity of black holes [ 1-4]. It was 
shown that the radiation from the relativistic particles performing an unstable 
circular motion in the Schwarzschild and Kerr fields called "geodesic synchro- 
tron radiation" (GSR) [3-4] does not share the properties of usual synchrotron 
radiation (SR) in fiat space [5]. In particular, the gravitational GSR has no maxi- 
mum in the region of high frequencies. This distinction is due to the fact that 
the gravitational field acts both on the radiating particle and the emitted pho- 
tons, while the electromagnetic field acts on the charged particle only. The 
transition from the SR regime to the GSR one for charged particles moving 
along circular trajectories in the Schwarzschild space-time in the presence of an 
external magnetic field was studied in [4, 6]. 
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In the present paper a similar theory is developed for the Kerr space-time. 
We consider two models in which both the nongeodesic and geodesic motion of 
charged particles along ultrarelativistic circular trajectories can occur: (1) a rotat- 
ing black hole carrying small electric charge; (2) a rotating black hole in an ex- 
ternal magnetic field [6-8]. Though the motion of particles in the Kerr-Newman 
field was considered in various aspects previously [9-13], the domains of exis- 
tence, stability, and binding of the circular orbits for a =~ 0, Q =~ 0 have not been 
given explicitly. Here this problem is studied both analytically and numerically 
(Section 2). In Section 3 an equatorial motion of a test particle in the field of a 
rotating black hole immersed in the uniform magnetic field is considered. The 
scalar radiation from the relativistic particles in nongeodesic motion in the Kerr 
metric is briefly discussed in Section 4; the case of electromagnetic radiation is 
considered in Section 5. Throughout the paper the unit system G = c = 1 and 
metric (+ - - - )  are used. 

w (2): Existence and Stability Bounds for the Orcular Nongeodesic 
Equatorial Orbits in the Kerr-Newman Field 

In the Boyer-Lindquist coordinates the space-time associated with a charged 
rotating black hole is described by 

( 2 M r - Q 2 )  dt2 ~ d r 2 _ ~ d O  2 aS 2= 1- ~ - 

( 2Mr-Q2 ) 
- sin20 r 2 +a 2 ~ ~ a2 sin20 d~o ~ 

+ 2 (2Mr-~ Q2a sin20)d~odt (1) 

where Z = r 2 + a 2 cos 2 O, & = r 2 - 2Mr + a 2 + Q2, M, Q, a are the mass, charge, 
and angular momentum of the tiole, respectively. Consider the equations of 
motion of a particle with the mass ta and charge e 

d2 X u . dX a dX # _ e Fuv dX v Ut t = dX tt 
as----- 5 -  + r~r -~s d~- # ds ' ds (2) 

where F u is the electromagnetic field tensor, the nonvanishing components of 
which are 

&Q 
F l o -  ~ ( Z - 2 r 2 ) ,  

F13 = - ~  " a(Z - 2r2), 

Qr a2 
F20 = - ~ -  sin 20 

= Qr _dr2 + a2 ) sin 20 F23 X3 ut 

(3) 
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For the circular orbits in the equatorial plane 0 = rr/2 equations (2) with/* = 0, 
2, 3 become trivial. The remaining equation (/* -- 1) leads to the following ex- 
pression for the angular velocity of rotation: 

r T 4rp ] j l l 2 - a \ 2 S - 2 r p ] J  (4) 

Here 

Mrp - Q2 _ eQ 
co=s- r ~ ' co Q /* U~ r 2p 

The upper sign holds for prograde, the lower for retrograde orbits. Using the 
normalization condition guy UUUV = 1 and equation (2) with/* = 1, we get the 
relation between the particle energy and the frequencies cop, coQ 

E =/*7 =/* 1 r~ (1 - acop) 1 - cop 

2Mrp - Q2 }-1/2 
Mrp - 0 2 [cogr2p +coQrp(1 - a w p ) ] ~  (5) 

Introduce a dimensionless ratio of the Coulomb force to the Newtonian one 
rl = eQ/pM. It is known that the ratio Q/M for the black hole of a solar mass 
cannot be greater than ~10 -s, otherwise the electron-positron pair creation 
takes place near the event horizon [ 14]. However, even in this case the param- 
eter r/can be nonsmall for particles with large charge-to-mass ratio (for the 
electron e//* ~ 10 21 ). When the gravitational force is dominating, [r/I <<  1, we 
get from (4) and (5) 

COP~COK ( 1 r/ [1 2 2 ) - - -  - 2rpcos(1 - acoK)] 
2% 

+COs 1 -v- 2rZp coscoK 
COK (1 -+acos)' 3'0 [1 - ('OK2 (3rp2 +a2)]1/2 (6) 

r/ co~: [1 - 2r~ cos2(1 - acoK)] 7 2 7 0  - -~ 

2 2_ T. 2 
-~ _ - - ~ =  (7) 

L1- coK + 2r.coKcosJ 

In the opposite limit I r~ I >> 1 the circular orbits can exist only for eQ < 0. Com- 
paring (4) and (5) one can conclude that the point r = rpa at which the denom- 
inator in 3'o is zero, does not correspond to the singularity of energy (5) pro- 
vided eQ > 0. It means that the circular orbits exist also for r < rph. For r/v~ 0 
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from equation (2) with/a = 1 we obtain 
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1 

7 = rl ~ (1 - acov) 
P 

2Mrp _ Q2 
r~, (1 - acop) 

co~(1 - acop) ~ - co~ 
(8) 

It is seen that the ultrarelativistic circular orbits with the radius r not close to 
rph are possible if Ir/I >> 1. 

Consider now small perturbations of the circular equatorial orbits described 
above. Substituting ~U(s) = XU(s) - Z~(s)  into equation (2), where ZU(s) = 
U ~ �9 s(1, 0, 0, cop) and separating out all terms linear in ~u one gets 

~ + 2 ~ 2 ~  + ~ ~2~2~  ~ _ e a, ~ (flu.G" + FU.,x~x2 ~) =NU(~) (9) 

where the dots mean the derivatives to the proper time: F and ff are the values 
of the Christoffel symbols and field components at the unperturbed trajectory 
z~' (s). 

For small ~u the solution of (9) can be obtained by successive approxima- 
tions. In linear approximation the equation with/a = 2 decouples: 

d2~ ~ 
dt  - - 5 -  + cog~o = O, dt  = ds dZ~ (10) 

and the corresponding frequency is given by 

cog = col(1 - acop) 2 1 +2~(r~ +4Mrp - 2Q 2) 
rp  

- 3 (1- co )ql 
[ a '  2acop ] (11) coQr (1 - acop) 1 + ~p (3r~ +4Mrp - 2Q 2) - 1 - acopA 

The equations with/.t = 0, 1,3 can be put into the following form: 

d~ A 
+ 2(r A, +coprA3)---e(2~ U 0, A---t,~o (12) 

dt 

d2~ r 
at--- i -  + c o ~  = 0 (13)  

The corresponding solution 

~r = const �9 sincort , ~A = const �9 [ 2 ( r ~  + copF~3) 

_ e (zO)_aFA [ coScort, (14) 
/I j co~ 
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describes the radial-phase oscillations with the frequency 

Wr= cozs(1-aWP)ZIff@Lrp 1 - ~ r p /  § r2p + l - a c o p j  

5Q 2 - 3a 2 - 6Mrp 4acop ~ ] 1/2 
w0 [1-acopl  1+ + . - w b l  (15) 
rp r2p 1 - awp ] 

We note that cor is neither equal to the axial frequency coo nor to the orbital 
angular velocity COp. That accounts for the effects of periastron rotation and the 
Lense-Thirring precession. The stability regions of circular orbits are defined by 
the conditions cot ~ > 0, co~ > 0. The analysis of (11) in the case of neutral 
particles (e = 0) shows that co~ is always positive, i.e., the circular motion of 
neutral particles in the linear approximation is axially stable. The numerical 
results for the existence, radial stability, and binding of the circular neutral 
particle trajectories in the Kerr-Newman field are given in Figure 1. Note that 
the existence and stability domains are enlarged with the increasing Q both for 
prograde and retrograde trajectories. 

Taking into account the nonlinear terms on the right-hand side of (9) we 
observe the appearance of coupling between the orbital motion and oscillations. 
If the frequencies cor and coo are in the rational relation Krco r = Kocoo, 
K = [Kr[ + [K o 1, where K r and K o are integers, the resonances take place. The 
positions of low-order resonances for different charge values are shown in 
Figure 2. 

w (3): Motion o f  the Charged Particles in the Vicinity o f  a Rotating 
Black Hole Immersed in a Homogeneous Magnetic FieM 

The exact solution of the Einstein-Maxwell equations describing a slowly 
rotating uncharged black hole in an external asymptotically uniform magnetic 
field has been obtained in our paper [8] within the framework of the Ernst 
method [15]. If the magnetic field strength is relatively small, B <<5. BM = 
2.4 • 1019 gs M U M  , there is the region Br << 1 outside the black hole where 
the space-time is described by the Kerr metric and the nonvanishing components 
of the electromagnetic field tensor are 

aMB (1 ~ -~)  - Mr 2 Foa = T - (1 + cos 2 0), Fo2 - -aB - ~  ( r  - a 2) sin20 

{ r2+a2  2Mra2 [ a 2 )]} 
F32 =B sin 20 2 E cos20 + ~--~sin2 0 (1 + cos20 (16) 

_ 1 F31 ; B  sin20 1 - - E - ] ( 1  + cos20) 
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Fig. 1. The bounds  of existence ( - - ) ,  binding ( -  - - )  and stability (. �9 .) for circular orbits 
of  neutral  particles as a funct ion of  Q/M for the given aiM (a), (e) and as a funct ion of aiM 
for the  given Q/M (b), (d) are shown. Notice tha t  with the growth of  the charge value Q the 
bounds  are displaced toward the  event horizon. The symbols (+), (-)  correspond to prograde 
and retrograde orbits. 
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Fig. 1. Continued. 

For the circular orbits m the plane 0 = n/2 we obtain from equation (2) with 
t2=1 

oo~ = ~ ( 1  - a ~ )  -~ -+ 1 + co~ ~ - I , 

a=~-(a +.~w~)+~w~ (17) 



906 ALIEV AND GALTSOV 

t5 

13 

o oo�9149 
(9_=0 ....'" (-)  ...." 

o~176176176176 
~ ~ ~ 

~  

�9 ~176 ~ ~ 

�9 " (_~ t  / "o�9176 
~149 / ~ ( . _ ) -  ~ ~ / 

/ t "  
~176176176176 . 

~ ~ 
�9176 

�9 �9176 

~cz//H 

Fig. 2. The curves which characterize the position of  low-order resonances for different 
values of  Q are given. ( -  - - )  for k = 3; ( - - )  for k = 4; (. �9 .) for k = 5. 

Here ~B = eB/~ U~ is the cyclotron frequency in the gravitational field; co s = 
M 112/r~/2 is the Kepler frequency; and the plus and minus signs correspond to 
the prograde and retrogade trajectories, respectively. In each case the "Larmor"  
motion (Lorentz force is directed towards the black hole) and the "anti-Larmor" 
motion (Lorentz force is in the opposite direction) is possible on the condition 
that the expression in the square brackets in (17) is positive�9 

The energy of  a particle can be expressed through the orbital frequency as 
follows: 

�9 It [ 2M ]~p(X+a2co2)-aeoZ s 
E=~le 1 - - - ( l rp  - atop) --~s(i~S acop-----ff S-~p (18) 

Where the dimensionless parameter e = eB/I.tBM characterize the relative influ- 
ence on the particle motion of  a magnetic field. For sufficiently large values of  
e the circular mot ion with the ultrarelativistic velocity 3' >>  1 far from the null 
circular geodesic is possible. In analogy with the results o f  the previous section 
one can show that the small axial and radial-phase oscillations around the cir- 
cular orbits have the frequencies 
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Fig. 2. Continued. 

~,2: ~p ~ ( 1 6 ~  ~ 3,  , , ~ )  + ~p~  (1 ,~ o~ ~ 3 , )  ,~ 2 

rp rp 
(19) 
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= 2 +'-S/v+4a2cos2 +COPCOB 1 r p ]  + +.--52- - 2aco](2cop con) CO~ COP rp  

(20) 

As it is seen from (19), the radial stability regions for the anti-Larmor orbits are 
enhanced with the increasing magnetic field strength up to the event horizon. 
The analysis of the expression (20) shows that co~ > 0 so in the linear approx- 
imation the circular motion is always axially stable. 

w (4): Scalar Radiation in Nongeodesic Motion 

Three different radiation regimes for the circularly moving particles in the 
Kerr field are to be distinguished: (a) the emission of the fundamental mode 
in the nonrelativistic motion, (b) the emission of the harmonics of the order of 
3, 2 with respect to the basic frequency for the ultrarelativistic geodesic motion 
(GSR), (c) the generation of 3 '3 harmonics in the case of relativistic motion 
along the essentially nongeodesic trajectory lying far from the null geodesic 
(SR). We consider the radiation of the scalar and electromagnetic waves for 
the cases B << BM or Q/M << 1. As is known [ 16], the scalar wave equation 
in the Kerr metric admits the solution in the separate variables form 

r  t) = ~ ~.  Rem(r)Zme(O,r -iwt, co =mcop (21) 
e rn 

where Z~n(O, ~) are the spheroidal harmonics. 
For the nonrelativistic motion Mco << 1 the mode I = Iml = 1 dominates�9 

Using the quasistatic solutions of the homogeneous radial equation [ 17] we ob- 
tain the intensity of radiation at infmity and at the event horizon, respectively: 

e u? co (M  a2)1- - -  r +a2+ 
= 3 Ap rp / rp / 

�9 [ ( l + 2 X )  2 +402]  
(22) 

3(fU)= cop (1 - 2M/rp) 2 (r2p +a 2 + 2Ma2/rp) 

- R ApMr+ 1 + 4Q 2 

�9 [(1 + 2X) sir~o + 2Q cos~o] 2 

r - r+ Mr+ �9 k 
X = 2 ( r + ~ ,  Q -  r + - M '  k =co-m~2 H, 

a 
r+ = M + ( M  2 - a 2 )1/2 ( 2 3 )  

�9 CZg - 2Mr§ 
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The expression ,(23) contains an oscillating factor due to the interference between 
the incident and scattered waves. Since in the nonrelativistic case Mco <<  1, we 
see that the basic part  of  ingoing radiation from the particles moving near the 
event horizon is absorbed (if  cop > ~2H) or is amplified (if COp < ~H) .  

Consider now the scalar radiation from the ultrarelativistic particle in the cir- 
cular nongeodesic motion under the condition ~ ( r  - rph ) > >  1. In this case the 
high harmonics of  orbital frequency dominate and one can use the WKB approx- 
imation for Rlm that leads to 

p o u t =  Z 8--~m~~pp (fI'1~2 1 + ~  2 

l,m>O 372 \ U  ~ a~(3r~ +a 2 ) -  1 

�9 lZ~n(rr/2, 0)12 KI /3 ( z ) ,P~  ~ 0 (24) 

where KV3 (z) is the McDonald function, 

23' 2 /.mira I (1 _ a~a~),/~, 
l~---- 2 :2 r p~~p I ] 

21ml 2,-,3 @/z(1 + ~2)3/2 
Z : ~ r p ~ p  a~(3r~ +a~)  - 1' 

2Ma T- V ~ p  �9 rp 
. f2p = rv3 + a2rp + 2Ma 2 (25) 

Since the function K1/a falls exponentially for large values of  the argument, 
it is clear that the main contribution comes from the harmonics 

3, 3 [YZg(3r~ + a  2) - 1] 
m ~< m m a  x = 2r~ 0. 3 M/2 (26) 

- - p  ~ p  

The cutoff  frequency is proportional to the cubic function of  energy as in the 
case o f  flat space-time;however,  when the radius of  the orbit approaches that o f  
the circular null geodesic, the dependence of  the cutoff  on 7 becomes quadratic. 
In fact, for the case Ir/I < <  1 one can see that for r--> rph the quanti ty 

2M rph - M 
3' [(3r~, +a 2) a ~  - 11 = r / - - .  (2r~h - 3Mrph +a 2) (27) 

rph (rph + 3M) 2 

is finite as 3' -+ ~o. In the region of  high harmonics l >>  1, Im I >>  1 the spher- 
oidal function Z~ n (n/2, 0) can be approximated by the expression 

[z~nOr/2,0)12=l +(-1)  l-re. 1 "y 1 (1 - aZ~2~)l/2 (28) 
2 n 2 t~ ~prp 

Pass from the sum over l and m in (24) to the integral over ff and 

4 l m l  2 3 A~/2 (29) 
y = 373 rpC2p 2 2 ~2p (3rp + a 2) - 1 
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we get 

d2P ~ 9 ( f ~ 7 2 y  2 2 + a 2 ) - 1 ]  2 [ ~ p ( 3 r p  
..2 ^ 3 / 2  r'~S dyd~  16n 2 \ rp ] rp~p ~t,p 

1 - ~ (1 - aap y2(.1 + ~2) K~/~ (~) (30) 

Integrating over qJ in (30) we obtain the following spectral distribution: 

dpout 3 X/-3 I f"?2 2 2 + a = ) - 1 ]  
dy - 167r t rp [~2p(3rp 

1 - - - ( 1  - aap) Y g gva(x)clx (31) 
r 2 A3/2 S rp _ p ~p ~p 

For small y the radiation intensity grows as y S/3, for the large y it falls exponen- 
tially. Integrating (31) over y we fred the total radiation intensity 

1 l==ffta~/2 ~2p(3rp+a2)- l[2  2 2M )]}2 pout 
= 1 5 [  r~ " A a/4os/2 1 -  (1-ag2p - p  "'p -~p (32) 

Note that (32) is 3, 2 times greater than the intensity of scalar GSR [2, 3]. 

w (5): Electromagnetic Radiation 

In the Teukolsky formalism [16] the electromagnetic field is determined by 
the Newman-Penrose scalar 4~2 which has a separate variables form. 

For the case of nonrelativistic motion one can use the quasistatic solutions 
[17] that lead to the following expressions for the wave flux at the horizon, for 
rp >> M: 

pH ... _~e 2 Cap (cap - s Mr+ (33) 

The flux at infinity in this approximation is given by the flat-space formula 
pout _~ _~ e 2 caprv.4 2 For the case of ultrarelativistic motion, for the two indepen- 
dent polarization states we get 

e 2 ~2)2 
p o u t  = y "  8 ._~m~2SpAprp (1 + [Z~(n/2, 0)1 x K~/3(z) 
- *  -5 a~  (3 4 + a 2) - 1 ,,m>o 

8 e 2 g2apAp. 1 + 4, 2 [dZr~(rr/2, 0)12 p~ut 
l,m>o ~ 3 72 mrp f~ (3 r~  +a2) - 1[ ~ K~la(Z) 

(34) 

Using the asymptotic formula 
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i dZ~n(rr/2,0) 2 _ 1 - (-1)/-m 1 
rp ~2p m2 (1 a2 ~~)1/2 

dO 2 7r2 7 

in analogy with the results of  the previous section, we obtain 

dpout 9e 2 2 2 2 ,0 _ T4y 2 [~2p(3rp +a ) -  1] 2 I (1  + r ) 
d y d r  327r 2 -A-i-f2 ~-~ r-4- (1 + ~2)" --p - -p-  p [ l~2 K~Ia(Z) 

After the integration over ~O in (36) the spectral distribution takes the form 

dp~oout 3v / - f f  2 2 ,o _ _ _  e2 74 [g2p (3rp + a 2) - 1 ] = 
dy 327r M/Z.o3 _4 ~p . .p rp 
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(35) 

(36) 

[;7 t Y K S l a ( X ) d x + K 2 D ( Y  

(37) 

These expressions generalize the well-known formulas for the synchrotron radia- 
tion in flat space-time [5] to the case of  the Kerr metric. Integrating (37) over y 
we find the total radiation intensity 

e 2 ,),4 2 2 [~2p (3rp + a 2) - 1 ] 2 
Ptot-  7 -  3 , (38) ~2p r p 

The total electromagnetic radiation power in the SR regime is 72 times greater 
than that in the GSR regime [1-3].  Note that the degree of  polarization 

I I P ~  - P o  _ 3 

Ptot 4 

does not depend on the gravitational field parameters. 
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