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Type-N, Shear-Free, Perfect-Fluid Spacetimes 
with a Barotropic Equation of State 

J. Carminati  1 

Received March 15, 1988 

We present the class of Petrov-type N, shear-free, perfect-fluid solutions of 
Einstein's field equations in which the fluid satisfies a barotropic equation of 
state p = p(w) and w + p ~ 0. All solutions are stationary and possess a three- 
parameter, abelian group of local isometrics which act simply transitively on 
timelike hypersurfaces. Furthermore, there exists one Killing vector parallel to 
the vorticity vector and another parallel to the four-velocity. This class of 
solutions is identified as part of a larger class present in the literature. 

1. I N T R O D U C T I O N  

Recently we proved [1 ] the following: For  any Petrov- type N, shear-free, 
perfect-fluid solution of Einsteins' field equat ions in which the fluid satisfies 
a barot ropic  equat ion of state p = p(w)  with w + p ~ 0 (w is the energy 
density and p is the fluid pressure), the volume expansion is zero but the 
vorticity is necessarily nonzero.  

This theorem is part  of  a growing body  of results [ 1 - 4 ]  which suggest 
that  any shear-free perfect fluid in general relativity with p = p(w)  and 
w + p ~ 0 has either vanishing vorticity or vanishing expansion. In this 
paper  we prove, by directly integrating the field equations, the following: 

Theorem. Any Petrov- type  N, shear-free, perfect-fluid spacetime, in 
which the fluid satisfies a barot ropic  equat ion of state with w + p ~ O, is 
s tat ionary and possesses a three-parameter,  abelian group of  local 
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isometries, acting simply transitively on timelike hypersurfaces. Further- 
more, there exists one Killing vector parallel to the vorticity vector and 
another parallel to the four-velocity. 

Thus the class of solutions presented is a subclass of those found 
by Krasinski [5] ,  although expressed in a different coordinate system, 
who considered flow-stationary, cylindrically ,symmetric, perfect fluids 
[p=p(w)]  with rigid rotation, under the restriction that there exists a 
Killing vector parallel to the vorticity vector. 

This paper presupposes a knowledge of the Newman-Penrose [6] 
formalism (abbreviated NP). All considerations will be local. The units and 
conventions are as in [-1 ]. 

2. C O N S T R U C T I O N  OF COORDINATES AND 
I N T E G R A T I O N  OF FIELD EQUATIONS 

In [-1] we showed that, subject to the assumptions indicated above, 
there exists a tetrad in which the NP Weyl and trace-free Ricci tensor com- 
ponents, together with 
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where 

the spin coefficients, satisfy 

: ~ 1 :  ~ / /2 :~ ' /3 :0 ,  ~4 =~0 (1) 

= 4 1 2 = 4 o 2 = 0 ,  4 o o = 4 2 2 = 2 4 1 1 = 1 ( w W p )  (2) 

= 2 = p = / ~ = e = y = z + n = O  (3a) 

= (~ + fl)(3 + 9p -- S) (3b) 

= (~ + / 3 ) ( s -  1 - 3p) (3c)  

= (~ +/3)(1 - 9p + S) (3d) 

= ~(w + p) = x(~ - /3 )  (3e) 

A = ~4(w - 3p) = z(/3 - ~) (3f) 

(c~ + fl) G(w) + 8(c~ - /3 )  = 0 (3g) 

~F-] 4 = 4(cr +/3)(c~ --/3) (3h) 

6w = 3(w + p)(~ +/3) (3i) 

9(w + p)(w + 3p)p = (1 + 3/~)(9bw - 9pp - w - 3p) 

G = 41-3p -- 1 + 9p(w + p)/(1 + 3/~)3 

S -  2 - 3G(w + p)/G 

(3j) 

(3k) 

(31) 
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and where ~c, v, r, c~, 3 are real and D and A derivatives of all quantities are 
zero. (We have chosen K = 0 . )  In addition, p = p ( w )  must satisfy the 
conditions 2 

fi(w) r 0 (4) 

and 

6 w ~ ( w ) r  (5) 

In view of (3a), Cartan's first structure equations become 

d O l = [ ( ~ + f l + z )  ol--yO 2] A [03+04] (6a) 

d O 2 = [ ~ O l - ( ~ + f l - z )  0 2] A [03+04]  (6b) 

d03=(~--fl) 03 A 04 (6c) 

where 

01 = ni dx i, 02 = li dx i, 03 = --rhi dxi= 04 (6d) 

It follows from the Frobenius theorem [7] that there exist coordinates u, v, 
z, and 5, where u and v are real and z complex, and five functions A~, A2, 
BI,  92, and E of these coordinates such that 

O1-- -A ldu+A2dv  

02 = B I du + B 2 dv 

03 = E d z  

(7a) 

(7b) 

(7c) 

A1, A2, B1, and B2 are real-valued functions, while E is complex-valued. 
With the tetrad 0 i given in (7), we have 

OA 1 63A 2 
~v ~u (8a) 

1 B -- 
-~z  ~z J (8b) 

1 (A ~A2 ~AI~ 
V =~-~ 1 --~-z --A2 r ] (8c) 

OB1 0B2 
3---~- = ~--~- (8d) 

2 The second condition was omitted in [ 1 ]. 
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where we require 

1 (Blg3B2 B2(~BI~ 
~ = ~ \  ~z- --~S/ 

1 (A 1 (~B2 OBI' ~ 
a + fl-- T =~--~\ 0z A2-~-z / 

(8e) 

(8f) 

OE aE 
O---~= ~--~-=0 (88) 

1 ~E /~-~=-- - -  (8h) 
EE ~ 

J -A1B2- -AzB  1 ~ 0 (8i) 

in order that the metric be nondegenerate. Equations (3b), (3d), (8c), and 
(8e) imply 

( A 1 - B 1 ) ~ z ( A 2 - B z ) - ( A z - B 2 )  ( A 1 - B 1 ) = 0  (9) 

We must now distinguish two separate cases: 

I. A 1 ~ B 1 and A 2 ~ B 2 

II. A1 -= B1 and A 2 ~ B2 

The case when A z - B  2 and A1 ~ BI is essentially equivalent to II. 

Case I. A1 ~ B1 and A 2 ~ B 2. 

Integrating (9) yields 

3 2 - -  0 2 -~- Q(u, v)[A1 - B1] (10) 

where Q ~ 0 is a real arbitrary function of u and v. Next, using the trans- 
formation 

u = f ( 5 ,  ~), v =  g(5, fi), z = ~  (11) 

where f and g are real arbitrary functions, which preserves the form of the 
0 i given in (7), it is possible to achieve Q = 1 so that 

A1 --B1 = A 2 -  B2 (12) 
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Combining (12) with (Sa) and (Sd) yields 

A~ = B~ + ~(u + v, z, f), A2 = B2 + ~(u + v, z, ~) (13) 

where ~ is some real function of the indicated variables. 
In this coordinate system, we have 

I ( A  1 8 (14) 

Since w and all spin coefficients are real and have vanishing D and A 
derivatives, it follows by a straightforward calculation that A~, A2, B~, and 
B2 must be of the form 

8~(u, v) 
A 1 =X(x)  ?-- - - -~+~(u+v)  T(x)  (15a) 

8 ~ ( u ,  v) 
A z = X(x )  ~ + ~(u + v) T(x)  (15b) 

8~(u, v) B~=X(x) a----d--+~(u+v)[T(x)- 1] (15c) 

8g~(u, v) B2=X(x) 8----~+~(u+v)[T(x)-l] (15d) 

E = E ( x )  (15e) 

where z = x + iy and where use has been made of (8). X, ~ ,  4, T, and E are 
all real arbitrary functions of the indicated variables. 

It can be shown readily that the (nonsingular) transformation 

u + v = R ( a  + ~) 

v = Q(~, ~7) 

z = ~  

(16) 

preserves the form of 0 i, given in (7), and A 1, A2, B~, B 2 as given in (15). 
This remaining coordinate freedom can be used to set 

=- 8 ~ / # u  = - # ~ / 8 v  = 1 (17) 

Consequently 

A t = T + X  (18a) 

A2---- T - X  (18b) 
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B 1 = T + X -  1 (18c) 

B 2 = T - X -  1 (18d) 

We now show that there are no solutions to Einstein's field equations with 
this metric structure and subject to the indicated assumptions. In this coor- 
dinate system, the nonzero spin coefficients are given by 

K = ( 1 / 2 E - 1 X - ~ ) [ X ' T ' X T  ' -  X ' ]  (19a) 

v = ( 1 / 2 E - 1 X - ~ ) [ X ' T - X T  '] (19b) 

z = - X ' E - I X - 1 / 4  (19c) 

+ fl = ( 1 / 4 E - ~ X - 1 ) [ 2 X ' T  - 2 X T ' -  X ' ]  (19d) 

f l - c ~ =  E ' E - 2 / 2  (19e) 

where (( '))  denotes differentiation with respect to x. Equations (19a), 
(19c), and (19d) imply 

x - z = ~ + / ~  

whereas (3b) and (3c) yield 

(20) 

~c+z = (~+fl)(1 +3/~) (21) 

From (20) and (21), it follows that 

x/z = (2 + 3p)/(3/~) (22) 

since �9 ~ 0 is required. However, from (3e) and (3f), we have 

Oll 3 ( w + p )  
. . . .  (23) 
z A w - 3 p  

Comparing (22) with (23) immediately yields 

b = p/(Zw) - ~ (24) 

A simple check shows that the differential equation (24) is incompatible 
with (3j), and thus we conclude that no solutions are possible for this case. 

Case II. A1 ~ B1 and A2 ~ B2. 
For this case, (9) plus the fact that w and all spin coefficients are real 

and have vanishing D and A derivatives, implies the following functional 
forms 
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A1 = B1 = X(x)[O~(u,  v)/~3u] 

A z = R(x)  Q(v) + X(x)[O~(u,  v)/•v] 

B 2 = f '(x) Q(v )+ X(x)[O~(u,  v)/~?v] 

E = E(x) 

where use has been made of (8). X, ~,  R, i?, Q, and E are all real arbitrary 
functions of the indicated variables. Next, using the coordinate freedom 
expressed by the form-preserving transformation 

u = u ( ~ ,  ~) 

v = v(z3) (25) 

z = 2  

we may achieve 

A 1 = B1 = X(x )  (26a) 

A 2 = R(x)  + X(x )  - R (x )  (26b) 

B2 = f~(x) + X(x)  = T(x) (26c) 

E = E(x)  (26d) 

In this coordinate system the metric has the form 

ds2= 2OlO2- 20304= 2(X  du + R dv)(X du + T d v ) -  2EZ dz d~ (27) 

and the Einstein field equations (together with the assumptions of the 
theorem) yield 

t = exp 5 f (w + 3p)(w + p) dw (28b) 

t E = exp (w + 3p)(w + p) dw (28c) 

2X f t p) dW (28d) 
r=--g- X(w+ 

r [(1 + 3b)(w + 3 p -  6/~w)] m 
3mko x dw (28e) J E(w + 3p)(w + p) 
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together with 

9(w + p)(w + 3p)# = (1 + 3#) (9#w-  9p# - w - 3p) (3j) 

where 

2r =- T + R, 2t =- T - R ,  k0= ___1 (28f) 

and 

(1 + 3/~)(w + 3p - 6pw) > 0 (28g) 

Using (3), (8), (26), and (28), the nonzero N P  spin coefficients and Weyl 
tensor component may be expressed as 

31/2 k~  (w + 9p -- 9[~w - 9pp) 
tr = ~ o  (w + p) L 2 v - 4 .  31/2 

ko (29) ko (w+ 3p) Lx ~ - 3 = 2 . 3 m L 2  ~+f l - -2 .31 /2  

w +  3p 
r - -  -~z = (3p - -  W) Z 2 ~'r -~- 3 ( 1  + 3/}---~ 

where 

L1 ~ [(1 + 3p)(w + 3p -- 6#w)] -1/2, 
( 1 + 315 ~ 1/2 

L2 = kw + 3p - @ w /  

The velocity, acceleration, and vorticity vectors may be written as, respec- 
tively, 

1 
u = 2 m  X Ou (30) 

31/Zk o ., , c,= ~-f ptw~-3p)Ll~ (31) 

and 

k~ (w + 3p) L1 - -  ~ (32) 
o) = 2.31/2E @ 

Thus once a solution for p, p = p(w), is determined from (3j), the remaining 
field equations are essentially reduced to quadrature. It is possible to 
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reduce the order of the differential equation (3j) by considering the 
following change of variables 

q = 1 + 3pe  -h ,  e h = w (33) 

If we let 

tl = t l(q) - (dq /dh  ) + q (34) 

then (3j) becomes 

q(2 + q ) ( q  - t l ) (dq /dq)  = 4q + rl2(q - 4) (35) 

which is an Abel equation of the second kind. Thus far we have found only 
the singular solutions t / - 0  and t/= 1 + (q/2), to (35), which are both 
unacceptable since, interestingly enough, they correspond to fi = 0 and 
6w/~ = w + 3p, respectively. 

3. PROPERTIES OF THE SOLUTIONS 

The metric (27) admits only the Killing vectors O/•u, ?/c?v, and a/~?y, 

and hence the spacetime possesses a maximal three-parameter, abelian 
(Bianchi type I) group of local isometries, acting simply transitively on 
timelike hypersurfaces T 3 (temporally homogeneous [8]). Since ~/Ou is 
timelike and not hypersurface-orthogonal, the spacetime is stationary. The 
solutions (27), (28) constitute the type-N subclass of the class of solutions 
obtained by Krasinski [5], although expressed in a different coordinate 
system, who determined all flow-stationary (there exists a timelike Killing 
vector, which is not hypersurface-orthogonal, collinear with the fluid four- 
velocity), cylindrically symmetric solutions to Einstein's field equations for 
a rigidly rotating, isentropic perfect fluid in which there exists a Killing 
vector collinear with the vorticity vector. In fact, his solutions appear to be 
the only ones known in which the spacetime is stationary and cylindrically 
symmetric and the perfect fluid is rigidly rotating with nonconstant 
pressure [4, 8]. 
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