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A Critical Density Cosmological Model with Varying 
Gravitational and Cosmological "Constants" 
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A cosmological model in which the universe has its critical density and the 
gravitational and cosmological "constants" G and A are time-dependent 
is presented. The model may possibly solve the horizon and monopole 
problems. It predicts a perpetually expanding tmiverse in which G in- 
creases and A decreases with time in a manner consistent with con- 
servation of the energy-momentum tensor. The model also allows the 
calc~ation of various cosmological parameters. 

1. I N T R O D U C T I O N  

In an at tempt to solve long-standing cosmological problems (~zer and Taha 
[1] have recently proposed a new singularity-free cosmological model. In 
their work the universe has the critical density of the Einstein-de Sitter 
model and a time-dependent cosmological constant A, interpreted as a 
vacuum energy density, is present. Conservation of the matter energy- 
momentum tensor is replaced by conservation of the sum of this tensor 
and a "vacuum energy-momentum tensor." The latter arises from the A- 
term in the field equations. The model predicts an initially cold universe 
in which the entropy, horizon and monopole problems are resolved. It  also 
gives sensible estimates of various cosmological parameters. 
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The interpretation of the cosmological constant as a vacuum energy 
density is common but other interpretations also exist [2]. Of relevance 
is a recent work by Wilkins [3]. Investigating the distance dependence 
of gravity under very general conditions, Wilkins finds that the gravity 
field at a distance r from a point mass has two components: one going as 
r -2, the other as r (Hookian field). The latter component is identifiable 
with the weak field limit of the A-term in Einstein's equations with a 
cosmological constant. Like G the constant A is a gravity coupling and 
both should therefore be treated on an equal footing. In particular there 
can be no reason for keeping either of them constant when the other is 
allowed to vary. This point of view was also stressed by Beesham [4]. We 
adopt it here and assume that both constants do in fact vary with time, 
but in a manner that conserves the energy-momentum tensor [4]. 

Another important assumption that we make is the critical density 
assumption of Ozer and Taha [1]. With the present ttubble constant Hp = 
5 x 10-11yr -1, the present critical energy density p~p = 3H~/8rGp 
2 • 10-47(GeV) 4. The current energy density p of the universe, on the 
other hand, is between 10-46(GeV) 4 and 10-4S(GeV) 4. Since p and p~ 
are time-dependent but apparently independent cosmic parameters the 
closeness in their present values is difficult to understand. For unless the 
universe actually does have the critical density, it is expected to diverge 
very rapidly from it. As there is no justification for conferring a special 
status upon the present epoch, one is inescapably led to surmise that p = pC 
for all times. We will assume that this is so. 

With the foregoing assumptions we show that there are models in 
which G increases in a continuously expanding initially hot Robertson- 
Walker universe that has evolved from a finite minimum volume. The 
cosmological constant, on the other hand, decreases with time. The initial 
singularity in this scenario may be avoided and the horizon and monopole 
(but not the entropy) problems may possibly be solved. Other predictions 
include estimates of the present values of the scale factor, the cosmological 
constant, the deacceleration parameter and estimates of the matter density 
and age of the universe. 

This paper is organised as follows. In Section 2 we present the model. 
Its implications for the early and matter and radiation universes are ex- 
plored in Sections 3 and 4 respectively. We wind up the article in Section 
5 with some concluding remarks. 
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2. T H E  M O D E L  

In a Robertson-Walker  universe 

(d~) ~ = (~t) ~ - n~(t)[ ~ ] [ 1 -- kr 2 + r2( (6•)2 + sin~ 8(dr ' (1) 

Einstein field equations with time-dependent cosmological and gravita- 
tionM "constants" [5] 1 

R,w 1 ~ 8rG(t)Tv~ - "~g.vR~ = + A(t)gl, v (2) 

and the perfect-fluid energy-momentum tensor 

T.,. = -pg~., + (p + p)V,,U,. (3) 

yield the two independent equations 

3R = -4~rGR(3p + p - 4 - ~  ) , (4) 

3R 2 = S~rGR 2 p + ~  - 3 k .  (5) 

Elimination of R between (4) and the differentiated form of eq. (5) gives 

3 (p+p) /~=  ( G  A ) 
- ~ p + b + s -  ~ n. (6) 

On the other hand, the vanishing of the covariant divergence of the 
Einstein tensor in eq. (2) and the usual energy-momentum conservation 
relation T;~ ~ = 0, lead to [4] 

pO= h 8~r (7) 

so that eq. (6) becomes 

dp 3(p + p) = -R~-~. 

1 Our inertial coordinate system metric r/.~ has diagonal elements 1, - 1 ,  -1 ,  -1 .  

(s) 
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As mentioned and justified in the introduction we follow [1] in setting 

3//2 
P = pc - 8 r G R  2 (9) 

for all cosmic time t. Consequently eq. (5) gives 

3k 
A = - -  (10) R2 

and eq. (7) reduces to 
d G  3k  

P d R  - 4~rR 3" (11) 

Thus depending on whether h is positive, negative or vanishing one has 
k - 1, - 1  or zero, corresponding respectively to an increasing, decreasing 
or a constant G in an expanding universe. For A < 0 eq. (4) implies that  

< 0 as long as (3p + p) is positive. Hence for k = - 1  or zero, R must 
pass through zero at some finite time in the past (t = 0, say). 

Equations (S) and (11), together  with some equation of state p = p(p) ,  

determine p and G in terms of R. Equation (9) will then produce the 
explicit dependence of R on t. These aspects are treated in the next two 
sections. 

3. THE EARLY UNIVERSE 

Substitution of the equation of state for the radiation-dominated early 
universe 

1 
p = ~p (12) 

in eq. (8) leads to 
p / ~  = constant. (13) 

As noted before if A < 0 the scale factor R must pass through zero at 
some finite time in the past. The  density, according to eq. (13), was then 
infinite. But  if A > 0 the existence of this singularity is not compelling. 
We will in fact make the physical assumption that  the initial density was 
maximum but finite so that  the universe has expanded from a finite min- 
imum volume with a minimum scale factor at some initial instant t = 0. 
The necessary conditions for the existence of this minimum in an expand- 
ing universe are R = 0 at t = 0 and /~  > 0 for t > 0. With this assumption 
A > 0, k = 1 and eq. (10) is 

A = 3 / R  2. (14) 
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Equation (11) can now be immediately integrated and yields (the subscript 
o indicates values of the parameters at t = 0) 

G = c~(R 2 - Ro ~) (15) 

where a = 3/8rpoRo 4. Combining (15) with eqs. (9) and (13) we find 

R 2 = Ro 2 + t 2, (16) 

and hence 
G = a t  2. (17) 

Thus at t = 0, G = 0, R2/G = 1/o~Ro 2 and R = 1/Ro. One possible 
interpretation is that  the universe came into being just  prior to the onset 
of gravity at t = 0 as a result of a vacuum fluctuation propelled by the 
repulsive effect of the positive cosmological constant [see eq. (4)]. Universes 
in which the initial vacuum was in a state of tension under the action 
of a stretching or antigravity force have recently been discussed [6] in 
association with inflationary universe models. 

Equation (t6) coincides with the result obtained by Ozer and Taha 
[t] although essential differences between our model and theirs occur. As 
shown by them the time-dependence (16) solves the horizon and monopole 
problems. In particular global causality is established at t = 2.3Ro. How- 
ever we cannot mimic [1] in relating Ro to the Planck length, because 
in our case the Planck length is not a fundamental constant but rather 
evolves with time. 

It follows from the preceding equations that 

3t 2 
P = 87~G(Ro 2 + t2)2" (18) 

Hence assuming that the radiation temperature T is related to p by 2 

~2 

p = ~ T 4, (19) 

we have ( 45 \}.I.14~ t2 }114 
T = k S - ; ~ ]  t, (no ~ + ~)~ (20) 

2 We u s e  uni t s  such tha t  h = c = kB = 1. 
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with T maximum at t = 0 (initially hot universe): 

(, 45 ~ 114 (21) 
Tmax = To -- ~81r3aRo4  ] 

The expressions (18) and (20) are of the same form as eqs. (3.3) and 
(3.5) of [1] except that  G here is time-dependent. As in the standard 
model, T c( 1 / R  throughout the pure radiation era. On the other hand 
[1] predicts T = 0 at t = 0 (cold beginning scenario), T = Tmax at t = Ro 
and R T  ( x  t 1/2. 

For t >> Ro eqs. (18) and (20) become 

3 
p = 87rGt2 (22) 

and 
45 / 1/4 

T-- 8-~ t-I/2, (23) 

to be compared to the standard model results 

3 
PsM = 81rG(2t) 2 , (24) 

and 

t' 

Since G = a t  2 
thermal histories of the two models differ. 

45 ) 114 
(25) 

in our case but is constant in the standard model the 

4. THE MATTER AND RADIATION ERA 

For the matter  and radiation era that  follows in the wake of the pure 
radiation epoch, p = P m  + ,~ where Pm and P7 are the matter  and elec- 
tromagnetic radiation densities respectively. Assuming that  matter does 
not contribute to pressure and that  its conversion to radiation may be 
neglected, one has the equation of state 

1 z 
p : -~ (p - E m p R -  ) (26) 

where Emp = pmpRp a is the present total rest-mass energy of the universe 
(the subscript p indicates present-day parameters). Then eq. (8) integrates 
to 

p = E m p R  -3  -t- R p E T p R  -4 (27) 
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where E-fp = p.rpP~ 3 is the present radiation energy. 
Next substi tute eq. (27) into eq. (11) (with k = 1) to get 

ln,fe 1), a=aP+4,~,z~p @-~ I .~+l j  (28) 

where z = R/P~  and ~ = E, rp/E,= P = P'rp/Pmp. From this equation and 
eqs. (27) and (9) we deduce that  R --* V~ as t -+ cx~. Clearly the model 
predicts a closed perpetually expanding universe. 

An expression for the age of the universe tp may be obtained upon 
inserting eqs. (27) and (28) in eq. (9) and integrating the result. The 
expression is 

jO0 
1 

t. = v / ~ R . ~ / ~  d~ ~[r + (a + 3R~r + 3R~x ~ 

- 3/~r +r  ln(z + ~)]-1/2, (29) 

where 
)t = 4rrEmpGp + 3Rp5 ln(~ + 1) - 3R v. (30) 

Letting p = pC and using eq. (27) and its time derivative one deduces 
the relations 

Emp - 27rGp(1 + ~ )  ' (31) 

and 

~-(1 +~)-1 = 1 - qp 2~p' (32) 

where Hp and qp are the present values of ttubble's parameter H = Fg/R 
and the deacceleration parameter q = - R R / f g  ~ respectively, and 

For the values Hp = 5 x 10-~lyr -1 and gp = 10-11yr -1 [7] eq. (33) 
gives 

np = 3 x 1042 (GeV)- ' ,  (34) 

leading to 
Ap = 3 x i0 -s~ (GeV) 2, (35) 
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which is well within the upper limit of 10 -s2 (GeV) 2 placed on [hpl from 
verifications of Hubble's law for distant galaxies [8]. Assuming that the 
density of the present microwave background radiation is less than one- 
hundredth the density of galactic matter [5] we deduce from eq. (32) that 

0.4 _< qp < 0.405 (36) 

where qp = 0.4 when ~ = 0 (matter universe) and qp = 0.405 when ~ = 
0.01. Insertion of the preceding values of the relevant parameters together 
with ~ = 0.01 and Gp = 3 x 10-1~ 2 in eq. (31) yields the estimate 

Prop "- 2 x 10 - 4 7  (GeV) 4. (37) 

The quoted and derived values of the various parameters permit a 
numerical calculation of the integral (29) for the age of the universe. With 

= 0.01 we obtain 
tp = 13.8 x 109yr. (38) 

Variations in ~ induce little changes in tp; e.g. for ~ = 0, tp = 13.9 x 109yr. 
The value given for tp in eq. (38) is consistent with recent estimates of 
the age of the oldest starts [9]. Dirac's variable G theory [10] gives tp  = 

6.7 x 109yr only. 
Finally, in the limit R --* co eq. (28) reduces to 

G M  = R (39) 

where M = 41r- Da  This equation was recently invoked [11] in support 
of an argument for an increasing G. 

5. CONCLUDING REMARKS 

We have investigated a cosmological model in which the cosmological 
and gravitational constants vary with time and the density is equal to the 
critical density. When the universe is required to have expanded from a 
finite minimum volume, the critical density assumption and conservation 
of the energy-momentum tensor dictate that G increases in a perpetually 
expanding universe. In most variable G cosmologies [5,12] G is a decreasing 
function of time. But the possibility of an increasing G has also been 
suggested [11]. The cosmological constant, on the other hand, is depleted 
as the universe expands. 

For the early universe, the model indicates that the horizon and 
monopole problems may be resolved without abandoning conservation of 
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the energy-momentum tensor. For the radiation and matter era the model 
makes several predictions. With mild assumptions and frequently quoted 
values for the ttubble and the rate of change of G parameters we estimated 
the present values of the scale factor, the cosmological constant and the 
deacceleration parameter. Estimates of the matter density and age of the 
universe are also obtained. The results fall within current theoretical and 
experimental bounds. 
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