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Abstract 

Spherically symmetric perfect fluid distributions in general relativity have been investigated 
under the assumptions of (i) uniform expansion or contraction and (ii) the validity of an 
equation of state of the form p = P(P) with nonuniform density. An exact solution which 
is equivalent to a solution found earlier by Wyman is obtained and it is shown that the 
solution is unique. The boundary conditions at the interface of fluid distribution and the 
exterior vacuum are discussed and as a consequence the following theorem is established: 
Uniform expansion or contraction of a perfect fluid sphere obeying an equation of state 
with nonuniform density is not admitted by the field equations. It is further shown that 
the Wyman metric is not suitable on physical grounds to represent a cosmological solution. 

w Introduction 

Perfect fluid configurations in general relativity have been studied by  several 
investigators due to possible applications to problems of  gravitational collapse. 
Of particular interest are the fluid distributions with spherical symmetry which 
serve as models for the phenomenon of  gravitational implosion or explosion of  

a massive star [ 1-7] .  On account of  the high symmetry involved in this case, the 
complicated nonlinear gravitational field equations become, with some addi- 
tional assumptions, mathematical ly manageable. In this context  uniform con- 
traction or expansion is one of  the frequent simplifying assumptions chosen by  
various authors [2-5, 8] .  In this note we also investigate perfect fluid distribu- 
tions under the following assumptions: (1) the hypersurface orthogonal to the 
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t axis is spatially isotropic and (2) the fluid obeys an equation of state. In par- 
ticular, we prove the following theorem: 

"Uniform contraction or expansion of a perfect fluid sphere embedded in 
an empty space and obeying an equation of state of the form p = p ( p )  with 
nonuniform density is not admitted by the field equations of general relativity." 
Mashhoon and Partovi [1] and Mansouri [4] have claimed to establish this 
theorem but their arguments and the proofs are not convincing. 

In Section 2 we present the field equations and their first integrals obtained 
independently by Taub [3] and by Wyman [8]. The paper of Wyman may be 
considered pioneering in the sense that it contains many of the results claimed 
to have been derived by subsequent authors, e.g., Taub [3]. In Section 3 we 
establish the uniqueness of Wyman's solution. In Section 4 the problem of 
matching this solution with vacuum Schwarzschild space-time is discussed and 
the necessary boundary conditions have been obtained. It is further shown that 
the matching is not possible. In the last section we discuss the Wyman metric 
as a cosmological solution and establish that the Wyman metric is not suitable 
to represent a cosmological distribution. 

w T h e  F i e l d  E q u a t i o n s  a n d  The i r  F i r s t  In tegrals  

We choose the spherically symmetric metric in comoving coordinates (r, 0, 
q0, t) as follows: 

ds 2 = e v d t  2 - e x dr  2 - e u d~2 2 

d~2 2 = dO 2 + sin 2 0 dq0 2 (1) 

where the metric coefficients are functions of r and t only. The energy-momentum 
tensor for the perfect fluid distribution is given by 

Ti/  = (P  + P )  V i V i  - Pgi] 

where p and O denote the pressure and density of the fluid. The Einstein field 
equations for this problem have been set up by several workers and, therefore, 
we do not detail them here. The field equations in a convenient form are [2, 3] 

2p' = - (p  + o) v' (2) 

= - (p  + p) (/J + X/2) (3) 

m '  = 2noe3Ul2g  ' (4) 

rh = - 2rrpeaUl21J (5) 

Here and in what follows an overhead dot and a prime denote, respectively, 
partial derivatives with respect to t and r. The function m ( r ,  t )  introduced by 
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Misner and Sharp [6] is defined as 

8 m  = tJ2 e 3 ~ / 2 - v  -Id'2 e 3# /2-h  + 4 e  a / z  (6) 

and is interpreted as the mass enclosed within the spherical volume of  radius r 
at a given instant t. It is remarked that the set o f  equations (2)- (6)  is equivalent 
to the Einstein field equations only when/J r 0. I f t i  = 0, the solution becomes 
static, a case not of  our interest. 

Owing to the nonlinearity of  the field equations it is very difficult to obtain 
a solution in its generality and, therefore, one has to make some simplifying 
assumptions to derive useful results. The assumptions are motivated either by 
physical considerations or by mathematical convenience. One such assumption 
used extensively is 

X = ~i (7) 

Under this assumption the shear o f  the 4-velocity vector vanishes and the expan- 
sion is uniform 2 [2, 9].  Further the three-dimensional space orthogonal to the 
t axis is spatially isotropic. In this note we also assume this condition and take 

X = P (8) 

the constant o f  integration being absorbed into the r scale. The metric (1) now 
becomes 

ds  2 = e v d t  2 - e u (dr  2 + dr2 2 ) (9) 

Equation (2) in view of  the integrability condition for the function m and 
equations (3)- (5)  leads to 

2ti' - ~v' = 0 (10) 

It is easily integrated to obtain 

e-V/21J = L ( t )  (11) 

where L is an arbitrary function o f  its argument. Further from equation (3) 
and using equations (2) and (10) one gets 

This equation on integration yields 

p ' e  3 u/2 = - A  (r) '  / 4rr (12) 

~The converse result has been obtained by Nariai [9] assuming the solution to be regular at 
the center (see also Misra and Srivastava [1] ). We will also consider the regularity condi- 
tions and hence the assumption (7) would be equivalent to the assumption of uniform 
expansion or contraction of perfect fluid distribution. 
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We have chosen the arbitrary function of integration as -A(r)741r for later 
convenience. Now equation (4) in view of the above result is integrated to yield 

3rn = 4ripe 3u/2 + A(r)  + N( t )  (13) 

where N is again an arbitrary function of time. We require the solution to be 
regular at the center of the symmetry. This condition determines N(t).  The 
regularity conditions in the neighborhood of the origin require 

e W2 > 0 ) 

eX/2 ~ea/2/,/2 ~ a s r > O = = ~ m ( O , t ) = O  

Hence N(t )  is a constant. We absorb this constant into the function A(r)  such 
that 

A(0) = 0 (14) 

Thus equation (13) becomes 

3m = 4~rpe 3u/2 + A (15) 

It is to be noted that if one assumes p = O(t) in addition to (7) equation (12) is 
satisfied identically and one obtains A = 0. Spherical distributions satisfying 
these conditions have been considered in detail by Thompson and Whitrow [2] 
and by Bondi [5]. We are interested in fluid distributions with 0 ~ p(t)  and 
hence we must have 

A(r) 4= const (16) 

In this case equation (5)with the help of equations (12) and (15) becomes 

~'(p + p) = ~p' (17) 

This is an equation relating p and p and further integration can be made only 
if one assumes a suitable equation of state. We assume that 

1 1 do 
P=P(O)  such that - - -  

p + p  a dp 

o = o(p) (18) 

Perfect fluid distributions with the above equation of state have also been dis- 
cussed by Taub [3], Mansouri [4], and Faulkes [10] in connection with the 
collapse of spherical balls, and by Wyman [8] for cosmological distributions. 
The results established in this section are due to Wyman [8] and Taub [3] and 
are presented for the sake of continuity and clarity. Integrating equation (17) 
we obtain 

:COx = a (19) 

p = p(x), x = B(r)/P(t) (20) 
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where B and P are arbitrary functions of their arguments. Here and in what 
follows a subscript denotes the partial derivative. Making use of this result in 
equation (12)we obtain 

X e  ~/2 = C(r) (21) 

where X and C are given by 

X = 01/3 , C = - ( A ' B / 4 r B ' )  1/3 (22) 

Equation (18) in view of equations (19) and (22) leads to 

p + p = X 4 / 3 x X  x (23) 

For a physical system we must have p ~> 0 and O ~> 0. Hence 

x X  x >~ 0 (24) 

Using equations (20) and (21) one obtains 

xX~ P 

Therefore PIP > 0 or < 0 according as the system is expanding or contracting. 
For definiteness we consider the system to be contracting, and without any loss 
of generality choose the function P( t )  as 

P = exp (-t)  (25) 

It is remarked that the results obtained hereafter also apply for an expanding 
system by the interchange of t to - t .  Now equation (11) yields 

e v/2 = _ 2 X X x / L X  

We now derive an equation for e u, namely, 

(e -u/2 )'' = e -u/2 - A e  - u  (26) 

in the following manner. Eliminate v from equation (6) with the help of equa- 
tion (11) and obtain 

e-1~/2p ' = +(4e-U - 8 m e - 3 ~ / 2  +L2)l/2 

Differentiate this equation with respect to r and eliminate m '  using equations 
(4) and (15) and the result follows. Thus using equations (20) and (21) one 
obtains 

x2Xxx + xXx B + X \ C2 = x -  x 2 

This equation is really remarkable in the sense that A, B, and C are functions of 
r and the other terms are functions ofx .  Hence because of the independence of 
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variables x and r, the equation can be satisfied only if 

= a - -  ( 2 7 )  
C 

B" B'  C' A 
T - 2 B - - T = / 3 C  (28) 

C" ( ~ ) 2  A 
T - 2 + 1 =-3'  ~ (29) 

where a,/3, and 3' are constants. Thus one obtains 

~x2X~x + [3XXx + 3'X + X 2 -- 0 (30) 

It may be noted that a = 0 makes B(r) a constant and vice versa. This result in 
view of equation (20) gives p = p(t). Hence we must have 

a :~ 0 and B v~ const (31) 

Now equation (28) can be integrated with the help of equation (27) to yield 

B'/B c = dC 2 , e = (J/a (32) 

where d is an arbitrary constant not equal to Zero. Thus equation (27) becomes 

A = r /d  2 CSB 2e-2, ~1 = l /a  (33) 

It may be noted that in view of equations (14) and (16) one must have 

7/~e 0 (34) 

Thus the metric is determined in terms of functions B, C, and X satisfying 
equations (32), (29), and (30), respectively. These equations contain several 
constants and it is difficult to find a general solution. Wyman, in the quest for 
solutions of these equations, could achieve his objective by choosing the con- 
stants conveniently and obtained only particular solutions. However, in the next 
section we show that the constants are determined uniquely from the field 
equations and the equation of state. Thus we will prove that the Wyman solu- 
tion is unique and the general solution for the given equation of state. 

w The Wyman Solution and lts  Uniqueness 

As remarked in the previous section the metric is obtained explicitly pro- 
vided the functions B, C, and X are determined. We note that the functions A, 
B, and C are not independent but are related via equation (22) as 

47rC a = -A 'B /B '  
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This equation, in view of  equations (32) and (33), gives 

5C'  
-~--=(2dfC2B-a-~BS),  ~=47r/drT, 8 = l - e  (35) 

Further equations (28) and (29) with the help o f  equations (27), (32), and 
(35) yield 

- -  + (6 - 5) + 2~B 8 -1B' = 0 (36) 
B 

~2B28 + 5~8B ~ -1B' + (682 - 257~7)B-2B '2 = 25 (37) 

respectively. Now it is easy to integrate equation (36) and one obtains 

B'B (a/s)-I =-~B66/s /38 + k,  8 ~ 0  

B'/B = -(2~ In B)/5 + k, 8 = 0 (38) 

where k is an arbitrary constant. Let us consider the case 8 =~ 0. Equation (37) 
now yields 

~kB4815(8 + 507r~/38) - 25"),r/~2B -2~/982 + k2B -2~15 (682 - 257r/) = 25 

This turns out to be an algebraic equation for B(r) leading to the conclusion that 
B(r) is a constant. But we have shown earlier that constant B leads to p = O(t). 
Alternatively, the above equation may be satisfied identically only with 8 = 0. 
Thus with this value of  8 equation (37) reduces to 

~2 _ 7~(2~ lnB - 5k) 2 = 25 

Hence in view o f  above discussion we must have 

3'7/= 0 and ~ = 5u, u = +1 (39) 

Since ~1 =~ 0 [equation (34)] we obtain 7 = 0. Collecting our results together we 
thus get 

7 = 0 = 8 and ~ = 5u (40) 

Now equations (29), (30), and (32) can easily be integrated. From equation (29) 
and (35) we obtain 

C = e -ur+l 

where l is an arbitrary constant. Without any loss of  generality one may absorb 
this constant into the origin of  r scale and hence 

C = e-Ur 

Equation (33) now yields 

A = (c) 2 e-SUr/~, c = - - -  

(41) 

4/rot 
5 (42) 
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It may be noted that A so determined does not satisfy the regularity condition 
at the center viz., equation (14). Hence we rescale the r coordinate as 

e -ur , 7  (43) 

The functions A and C are now obtained as 

A =c2-Fs/~, C = 7  (44) 

Further from equation (32) we get 

lnB = �89 + f  (45) 

where f is an arbitrary constant of integration. Also equation (30) is integrated 
to yield 

xXx = (4 - 2•X a [3) 1/2 (46) 

~b is again an arbitrary constant. Thus X is the Weierstrass elliptic function. The 
variable x in view of equations (20), (24) and (45) is given by 

l n x =  �89 --2 + f + t  

Here again one may absorb f i n to  the origin of the t scale and thus 

In x = 1 c ~  + t (47) 

The metric (9) is thus obtained as 

1 
ds 2 = 4(xXx/LX) 2 at 2 - - ~  (dr 2 + -r 2 d~22) (48) 

The density of the fluid distribution is obtained by integrating equation (19) 
and one gets 

p = (3/47r) (c[X(qJ - 2rlX3/3) 1/2 - ~ lnx]  +h} (49) 

Here h is an arbitrary constant. The pressure of the distribution is now deter- 
mined from equation (23). It is to be noted that the arbitrary function L(t)  
may be determined using equations (6), (11), (15), and (49) and one gets 

L = [8 (h -  ~ct)] 1/2 (50) 

Equation (48) is the solution obtained by Wyman by assuming the condi- 
tion (40). But we have shown that equation (40) follows from the field equa- 
tions themselves and need not be taken as a separate assumption. Hence we 
establish the following: 

The uniformly expanding or contracting perfect fluid distributions having 
spherical symmetry and obeying an equation o f  state with nonuniform density 
are described uniquely by the Wyman metric. 
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It is to be pointed out that recently Mashhoon and Partovi [ 1 ] have estab- 
lished a similar theorem, namely, "The only solution for the spherically sym- 
metric, shear-free motion of an uncharged perfect fluid obeying an equation of 
state is the Friedmann solution." In view of our result it is clear that this theo- 
rem is valid only when the density is independent of r. 

It is interesting to remark that the two solutions reported by Wyman and 
related via the transformation of r scale follow according to our formalism in a 
natural way with u = -2-_1. 

w The Boundary  Condit ions 

The solution given by (48) will describe the interior gravitational field of a 
spherical ball of perfect fluid provided it is matched smoothly at the boundary 
with the exterior field, namely, the Schwarzschild solution given in curvature 
coordinates (R, 0, ~, T) as follows: 

ds 2 = (1 - 2 M / R ) d r  2 - (1 - 2 M / R )  -1 dR 2 - R  2 d~2 2 (51) 

Here M is the mass of the sphere. This requires the metric coefficients and their 
first derivatives to be continuous. The matching problem has been dealt with in 
depth by several workers, e.g., Misner and Sharp [6] and Robson [7]. Accord- 
ingly, the following conditions must hold: 

and 

p(-io,  t )  = po = o (52 )  

rn(Fo, t)  = mo = M (53) 

where ~o is a constant defining the boundary of the sphere. Here and in what 
follows a subscript o represents the boundary value of the quantity under 
consideration. Equation (23) in view of the boundary condition (52) leads to 

Po = ( X  4 ]3xXx )o  (54) 

Further from equation (15) and using equations (21), (44) and (54) we get 

3m0 = 4 n ( X / 3 x X x ) o  -7~ + c 2 -~So/~ (55) 

Now combining this equation with the condition (53) one obtains 

(4rr/3) ( X / X X x  ) o -r~ = 3 M - c 2 -i~ /a (56) 

Thus at the boundary ( X / x X x )  is a constant. Therefore, in view of equation 
(46) Xo is a constant. Further equation (54) leads to 

Po = const 
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Now equation (50) becomes 

- $ c  (In x)0 + h = const (57) 

This equation must be satisfied identically otherwise it would lead to an alge- 
braic equation for t. Hence we must have 

@=0 

and this in view of equations (49) and (50) leads to 

8nO = 6cxXx X + 6h 

8~rX 4 
8frp - 6h (58) 

15xXx 

X 4 +p)- 
3xXx 

Now one must have p > 0, P > 0 throughout the distribution so that equation 
(58) requires h < 0. But we must also have goo > 0 and hence in view of equa- 
tions (48) and (50) h > 0, contrary to our previous conclusion. Thus h = 0 
leading to/J = 0 makes the distribution static. The above discussion shows that 
the gravitational field of a perfect fluid distributioncharacterized by equation 
(48) does not match smoothly with a spherically symmetric exterior vacuum. 
Hence we conclude the following: 

Uniform expansion or contraction o f  a perfect fluid sphere obeying an 
equation o f  state o f  the form p = P(P)and embedded in an empty space is not 
admitted by the field equations o f  general relativity. 

Recently Mansoufi [4] has claimed to have established this theorem. He 
considers the first integrals of the field equations obtained by Taub, presented 
here in Section 2, and argues that the functional dependence p = p(x) = 
p [B(7)/P(t)] and the boundary condition Po = 0 would imply 

x0 =0  

Also, making use of the boundary condition m o =  M one obtains 

"/rl + e = 0 and 2e + 3 = 0 (59) 

which is not the same as equation (40) obtained here. Further we have derived 
the explicit functional dependence o f p  on x and have demonstrated that x :/: 0 
at the boundary. His derivation, therefore, seems to be incorrect although the 
final conclusions are correct. 
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w Wyman Metric as a Cosmological Solution 

75 

In this section we discuss the nature of  contraction of  a cosmological dis- 
tribution represented by the Wyman metric. The pressure and the density of  the 
distribution are given by equations (23) and (49), which in view of  equations 
(46), (47), and (50) are expressed as follows: 

3 c X (  ~ 0 1/2 3 c 2 y 2 ~ §  (60) 
p = x - 

_ (3c~[47r)X+(X4/15) 3 2-2 3L2 
p = [g/_ (2rl/3)X3]~/2 + - ~ c  r t~- 327r 

In order that  p(0, t) ~> 0 one must have cff < 0. We can have now two cases: 
c > 0, ff < 0 and c < 0, ~ > 0. The first case is unphysical because in view of  
equations (12), (44), and (48) it leads to the situation p '  > 0. Thus we obtain 

c < O  and ~ k > 0  (61) 

Equations (60) in view of  equations (46), (47), and (50) lead to 

dp = 3c~ + 87rX3/5 

dp cd/-  4rrX3/15 

For a physical system we must also demand dp/dp ~> 1 and this will require 
X 3 <~- 15c~J/14n. But from equations (46) and (48) one obtains 

/_ 15c~ / 1/3 
0 < x <  \ 

Table I. Physical Parameters of the Distribution c = -8~r/15, ~ = 1 

t = 0  ~=r  o 
X p p pip 7/70 t 

0.000 0.000 0.000 3.00 1.000 0.000 
0.100 0.000 0.000 3.00 0.949 0.100 
0.200 0.000 0.000 2.98 0.894 0.200 
0.300 0.000 0.000 2.93 0.836 0.301 
0.400 0.007 0.002 2.84 0.772 0.403 
0.500 0.016 0.006 2.68 0.701 0.508 
0.600 0.035 0.014 2.45 0.618 0.618 
0.700 0.067 0.031 2.14 0.514 0.736 
0.800 0.124 0.072 1.72 0.364 0.868 
0.850 0.166 0.114 1.46 0.238 0.943 
0.900 0.225 0.195 1.15 - 1.031 
0.950 0.313 0.406 0.77 - 1.142 
1.000 0.561 ~ 0.00 - 1.402 
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Fig. 1. Variation of various physical parameters with X for a model t'or typical  values of 
c = - 8 h i  15 and @ = 1. o ,  Variation of  density of  the fluid distribution; X, variation of  
pressure of  the fluid distribution; O, variatioia of  (p /p)  of the fluid distribution; z~, varia- 
tion of  t forF= to; ~ ,  variation o f r  in the units o f t0  at t = 0. 
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Thus during the contract ion we find that  in the interval - 15ct~/8zr >1 X a > 

- 15c if/147r the system becomes unphysical. 3 The behavior of  the model  is illlus- 

trated in Table I and Figure 1 for a typical  value of  the parameters c = -87r/15 
and ff = I. It  is assumed that  initially the pressure and density vanish at some 

finite value of?-, say, r = r0. One finds that  initially the density is greater than 
the pressure throughout  the distr ibution but  as the contraction proceeds there 
develops a region surrounding the center where pressure overtakes density. 
At  X = 1 the pressure diverges off  but  the density remains finite. Thus we 
conclude that  the Wyman metric is not  suitable to represent a cosmological 
distribution. 
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Note  Added In Proof  

Wyman in a private communicat ion has informed us that he was aware 
of  the uniqueness of  his solution in 1946 but  he did not  provide the proof.  
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