
Journal of Low Temperature Physics, VoL 95, Nos. 5/6, 1994 

4He on Weakly Attractive Substrates: 
Structure, Stability, and Wetting Behavior 

B. E. Clements 

Institute Laue Langevin, 38042 Grenoble Cedex, France 

H. Forbert and E. Krotscheck 

Department of Physics, Texas A & M University, College Station, TX 77843, USA 

and 

M. Saarela 

Department of Theoretical Physics, University of Oulu, SF-90570 Oulu, Finland 

(Received October 7, 1993; revised January 30, 1994) 

Using a microscopic variational approach we examine the structure and the 
excitation spectrum of layered 4He liquids absorbed to alkali metal and 
graphite substrates. We f ind that the alkali metal substrates produce a less 
pronounced layering structure than the shorter-range graphite/solid helium 
potential. For the excitations, three features are in common to the substrates: 
First, for coverages of  a monolayer or more, a surface mode is present. 
Second, a bulk mode which gains strength as the coverage is increased, is 
identifiable for films with sufficiently high coverage. Finally, a two-dimen- 
sional mode that propagates within the first layer is.observed for the more 
attractive substrates. We also present results that we obtain by using the non- 
local density functional theory. We document the reliability and shortcomings 
o f  this approach by making a detailed comparison o f  experimental, Monte 
Carlo, and variational theory results for the structure, energetics, and excita- 
tions. We also give a brief discussion on the wetting properties of  helium on 
alkali metal and graphite/solid helium substrates. 

1. I N T R O D U C T I O N  

The structure, excitations, and growth of liquid 4He films adsorbed 
to weakly attractive substrates is a matter of considerable experimental and 
theoretical research. It is an intriguing goal to uncover the underlying 
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mechanisms that drive an outwardly simple-appearing system to display 
a complicated growth scenario, 1'2 highly-complex neutron scattering 
spectra, 3'4 a multitude of thermodynamic phases, 5 transient superfluid 
behavior, 6 and so forth. From the point of view of the many-body theorist, 
this is an ideal system because each of above characteristics is a direct 
consequence of many-body correlations inherent to a hard-core boson 
liquid in a confined geometry. 

In this work we extend our previous investigation of boson quantum 
film structures 7 and dynamics, 8'9 based on variational hypernetted chain/ 
Euler-Lagrange (HNC/EL) theory and generalized linear-response theory, 
to address three important issues: 

First, we have broadened our set of substrate potentials to include the 
alkali metals: magnesium, lithium, and sodium. These substrates differ from 
the solid helium on graphite potential, studied by us earlier, because they 
tend to be longer range and, with the exception of Mg, they have substan- 
tially shallower well depths. An intriguing reason for studying such long- 
range, shallow potentials is the prospect of using the HNC/EL theory to 
observe behavior that differs qualitatively from the solid helium/graphite 
potential. For example, for Na, the weakest substrate potential studied 
here, we do not find a solution to our HNC/EL equations which corre- 
sponds to a uniform monolayer covering. This behavior is unlike that of 
the other substrates where we always observe a stable monolayer structure 
when the coverage exceeds the spinodal point coverage for the formation 
of two-dimensional clusters. This observation implies that, in the early 
stages of the growth of the helium film on a Na substrate, the helium atoms 
form bulk-like clusters, several atoms thick in the dimension perpendicular 
to the substrate. A certain coverage (near that of a double layer) must be 
reached before the helium clusters fully connect to uniformly cover the 
surface. 

Our second purpose for this work is to carry out a detailed comparison 
of experimental, Monte Carlo, and HNC/EL results, with those obtained 
from currently-used forms of density functional theory. In practice the form 
of density functional theory most commonly employed to investigate quan- 
tum film structures is the nonlocal density functional theory (NLDFT) 
developed mainly by Treiner and collaborators. 1~ To make our com- 
parison complete, we have generated the structure and energetics produced 
by NLDFT for the two- and three-dimensional limits, and for the case of 
the quantum films. We also give a brief discussion on the wetting proper- 
ties of helium on the graphite and alkali metal substrates; we argue that the 
wetting phenomenon is not a stringent test for a many-body theory. 

While NLDFT is perhaps the most successful form of density func- 
tional theories used for quantum films, our analysis shows that it has 
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several severe shortcomings. We defer a more complete discussion until 
Sec. 4, but it is worthwhile to point out from the start the root problem 
with NLDFT (and similar theories) which causes these theories often to 
miss very fundamental physics. A descriptive discussion suffices to illustrate 
the point. 

A thoroughly studied criterion, that good many-body theories must 
satisfy, is that long- and short-range correlations must be treated in a sym- 
metric way. The basic premise, which is conventionally stated in standard 
perturbation theories, such as parquet theory, is that to insure the proper 
long- and short-range screening, long-range interactions must drive the 
integral equations that generate the short-range interactions and vice versa. 
This statement stems from the important work of Baym and Kadanoff ~2 
and Parquet theory.13 We note that HNC/EL theories fit into that category; 
the work by Jackson, Lande and Smith ~4 shows that HNC/EL theories 
consistently sum ladder (short-range) and ring (long-range) diagrams, for 
a given local approximation to the total scattering amplitude. In contrast, 
it is obvious that theories such as NLDFT which derive a one-body Euler 
equation from the energy functional but drive it with an effective Hartree 
potential that is fitted from uniform-bulk data can no longer ensure this 
consistency. This shortcoming can most noticeably lead to incorrect predic- 
tions when the short-range structure or the stability of the system is in 
question. 

Our final goal is to examine the low-lying excitations that could be 
observed in future neutron scattering experiments. This goal is achieved in 
Sec. 6 where, at the level of the Feynman theory of excitations, we calculate 
the dynamic structure function and the transition densities. We extend our 
comparison of HNC/EL theory and NLDFT to include the excitations by 
calculating the particle-hole interaction consistent with the NLDFT density 
functional and from that the dynamic structure function within that theory. 

2. MICROSCOPIC THEORY 

,Quantitatively the most successful microscopic theories for strongly- 
interacting quantum liquids are based on a variational a n s a t z  for the ground- 
state wave function of the many-body system of the Jastrow-Feenberg form 

~IJo(r i . . . . .  FN) 

i < j  i < j < k  
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The only phenomenological input to the theory is the microscopic 
Hamiltonian which we assume to be of the form 

h 2 

H=~I--~mV~+Usub(ri)]+i~jV(Iri--rjl) (2.2) 

where V(lri-rjl) is the liquid 4He-4He interaction, and Usub(r) is the sub- 
strate-adsorbate potential. The only other approximations occur because of 
the choice to restrict the wave function (2.1) to triplet correlations and 
because of the effort one is willing to spend in the computation of the 
relevant "elementary" diagrams. An important part for the approach is the 
optimization of the many-body correlations by solving the Euler equations 

6E 
~u~(r  1 . . . .  , r . )  

=0 (2.3) 

where E is the energy expectation value of the Hamiltonian (2.2) with 
respect to the wave function (2.1). 

In order to describe our procedure and results, we must briefly review 
the basic ingredients of the theory. We keep this description to the bare 
essentials. The derivation of the basic formalism may be found in Ref. 15; 
the most recent implementation of the formalism and details on our treat- 
ment of triplet correlations are found in Ref. 7. The theory is the generaliza- 
tion of the homogeneous-phase theory which reproduces the equation of 
state, pair distribution functions, and structure functions in both two and 
three dimensions with excellent accuracy. 16 In the computationally more 
demanding case of non-uniform liquids, a few numerical compromises are 
necessary which cause a somewhat reduced accuracy. We discuss this 
below. It is important to point out that the identical equations can be 
derived, within the parquet-diagram theory, without ever mentioning the 
Jastrow-Feenberg wave function. However, the formulation in terms of 
such a variational problem is useful because direct contact to Monte Carlo 
calculations is then possible. 

As a first step of the theory, the energy expectation value is rewritten 
as a functional of the physically observable one-body density pl(r) and the 
pair distribution function g(r, r'). This task is accomplished by using the 
Born-Green-Yvon equation for the one-body density, and the hypernetted 
chain equation for the pair distribution function. A natural representation 
of the resulting energy expectation value is 

E=Id3r TmlV p~-~12+p,(r)Usub(r) +Ec[g(r,r'),P,(r)] (2.4) 
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where E, is the "correlation energy." It's precise functional form is irrele- 
vant for the purpose of our present discussion, the only important feature 
of this "correlation energy functional" is that variational derivatives with 
respect to the one-body density and the pair distribution function are well 
defined and can be calculated within reasonable computational effort. 

The energy functional is then minimized with respect to the one-body 
density, which leads to a generalized Hartree-equation 

where Vn(r)--6Ec/6p(r),  and # is the chemical potential. 
The minimization of the energy with respect to the pair distribution 

function g(r, r') gives rise to a second, two-body Euler equation, 

fiEc 
- 0  (2.6) 

6g(r, r') 

and the combined set of equations, i.e., the energy expression (2.4), the 
one- and two-body equations (2.5) and (2.6), and a corresponding equa- 
tion for the triplet correlation function u3, 7 are referred to as hypernetted 
chain/Euler-Lagrange (HNC/EL)  equations. A useful formulation of the 
two-body equation is the form of a generalized eigenvalue problem 

f d3r'[6(r - r') Hi(r)  + 2~'p_h(r, r ' ) ]  Hl(r ' )  r = (hr z r (2.7) 

where 

h 2 1 1 
H,(r)  =- 2m ~ V p ~ ( r )  . V ~  

h 2 
- V 2 + U~,b(r) + Vn(r) - # 

2m 
(2.8) 

(2.9) 

and defining the adjoint states 

1 
~ ( r )  = ~ Hi ~, (r)  (2.10) 

is an effective one-body Hamiltonian, and ~'v h( r, r') is the so-called "par- 
ticle-hole interaction" which can, in turn, be expressed in closed form as a 
functional of the bare two-body interaction, the one-body density, and the 
pair distribution function. Normalizing the eigen-states of Eq. (2.7) as 
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allows the pair distribution function to be represented in a normal-mode 
decomposition 

g(r, r') - 1 = ~ ~9~(r) ~o~(r') - 6(r - r'). (2.11) 
c o  

The pair distribution function obtained in this manner can then be 
used to re-calculate the one-body effective potential V/~(r) and the particle- 
hole interaction Vp_h(r , r'). The eigenvalue problem (2.7) is then solved 
again with these updated functions, and the process is repeated until con- 
vergence is reached. A necessary condition for the existence of solutions of 
the two-body Euler equation is that all eigenvalues h2~ 2 are positive. In 
fact, the two-body Euler equation (2.7) is nothing but a reformulation of 
the random phase approximation (RPA) for the density-density response 
function, 17 and the eigenvalues of Eq. (2.7) are identical to the poles of the 
density-density response function. The condition that all eigenvalues of 
Eq. (2.7) must be positive is, in the language of linear response theory, 
nothing else but the condition that the physical system should be stable 
against infinitesimal density fluctuations. 

An important alternative definition of ~'p_h(r, r') is 

~2E" px/~l(r'). (2.12) ~'p_h(r, r ' )=  p ~  8pl(r) 6pt(r') 

However, the particle-hole interaction obtained from thefirst variation with 
respect to the pair correlation function, and the one obtained from the 
second variation with respect to the one-body density will agree only in an 
exact evaluation and optimization of all ground-state quantities. 

3. DENSITY FUNCTIONAL THEORY 

When the energy is written in the form (2.4) and supplemented by the 
two-body Euler equation determining the pair-distribution function g(r, r'), 
one can think of the variational theory as a version of density functional 
theory with a very specific, non-local energy functional. However, conven- 
tionally density functional theory bypasses the step of deriving the energy 
from two-body (and higher) correlation functions, or by the summation of 
Feynman diagrams and resorts to using phenomenological or heuristic 
input to formulate an energy functional that can be varied with respect to 
density to yield a Hartree-equation (2.5). The significant technical simpli- 
fication of such a step is that it eliminates the need to solve a two-body 
equation. Moreover, one has the freedom to use known information on the 
features of the macroscopic many-particle system. An important drawback 
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of tlhis simplification is that the theory can, and will normally have, 
unphysical solutions which are unstable against infinitesimal density fluc- 
tuations. 

The most popular density functional theory is the local density approx- 
imation which assumes that the correlation energy of the system can 
be approximated as the integral over the local energy density of the 
homogeneous system, i.e. 

Ec = [ d3r ~,.[p(r)] (3.1 ) 
d 

where ec(p) is the energy density of the bulk system at the density p. Local 
density functional theory has been applied by Ji and Wortis 18 to examine 
the properties of adsorbed helium films. 

One problem of a local density functional is that, when such a func- 
tional is fitted to the bulk equation of state in the experimentally accessible 
regime, the experimental surface energy is not well reproduced. A second 
problem occurs when one studies atomic monolayers: If one compresses 
the liquid such that it becomes "almost" two-dimensional, the density 
approaches the form 

p(r) ~ p2D6(z). (3.2) 

In that limit, any energy functional of the local density which contains 
terms of the form p~(r) with e > 1 diverges. While it is not a priori clear 
that the density distribution of an atomic monolayer is "close enough" to 
a 6-function for this divergence to be relevant, it is the matter of a very 
simple numerical calculation to verify that the energetics of a realistic atomic 
monolayer would, in the LDA, indeed be dominated by the spurious 
divergence of the energy functional. One of the problems of the LDA, i.e. 
the poor prediction of the surface energy, can be corrected by adding a 
gradient correction term, for example by using an energy functional of the 
form 

~c[p, v p ]  = ~c(p) + d IVpl 2. (3.3) 

This generalization introduces an additional free parameter, d, which can 
be adjusted such that the surface energy is reproduced. However, more 
than what is gained in one aspect is lost in others: The divergence of the 
energy functional in the two-dimensional limit discussed above is made 
worse. Moreover, the gradient-corrections induce a large anomalous dis- 
persion of the zero-sound spectrum in the homogeneous, three-dimensional 
liquid. Consequently, even for low energies, the zero-sound spectrum has 
little resemblance to reality. 
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A further problem with both density functionals discussed above is 
that they lack any hard-core structure. As a consequence, none of the layer 
structure that is well established for adsorbed liquids,19 and quantum liquid 
clusters, 2~ is predicted by these theories. We conclude that local density 
functional theories (or non-local with gradient corrections) miss much of 
the important physics of non-uniform quantum liquids; we shall therefore, 
not discuss such theories any further. 

In an attempt to overcome the hard-core problem, Pavloff and Treiner lo 
introduced a non-local energy functional of the form 

1 , C3D Ec=~ f d3rl d3rzp(r1) pl(rz) V,(lr,-r21)+--~ f d3r p(r) fi~+7(r) (3.4) 

where Vt(r) is a "screened" potential, which is derived from the Lennard- 
Jones interaction: 

f4e ~(~']12 - (~ for r>~h 
Lkrl \ r /  3 

Vt(h) -s for r < h  

(3.5) 

with the de Boer-Michel parameters e =- 10.22 K and a = 2.556 ~, and 

t~(r) = f d3r ' n3D(r-- r') p(r') (3.6) 

where 

3 
n3D(r)----- ~--g O(h-Ir-r']) (3.7) 

is a normalized 3-D sphere. We will refer to the above form of the energy 
as to the Orsay-Paris energy functional. 

The energy functional (3.4) removes the most imminent problems of 
local density functional theories: The core-repulsion of the screened inter- 
action, Vl(r), is still strong enough to generate a layer structure of adsorbed 
films, 21 the two-dimensional limit of the correlation energy is finite, the 
surface energy is in reasonable agreement with experiments, and the zero- 
sound dispersion relation is also within reasonable bounds of what one 
would expect. With the worst qualitative shortcomings of the local density 
functional theory removed, the remaining open question is to what extent 
the theory is capable of making quantitative predictions for properties that 
have not been used to determine the parameters h, c3D, and 7 of the energy 
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functional. Since we are interested in the behavior of liquid films in the full 
regime between an (almost two-dimensional) liquid sub-monolayer and the 
three-dimensional limit, comparisons must be made for both the two- and 
the three-dimensional homogeneous liquids for which experimental 22 and 
Monte Carlo 23'a4 results are available, and for the layered-film structures in 
the intermediate regime. 

4. ENERGETICS AND STRUCTURE IN TWO AND 
THREE DIMENSIONS 

We expand in this chapter upon a recent analysis of the energetics of 
the two- and three-dimensional homogeneous 4He phases 7 by presenting 
also results for the chemical potentials and structure functions obtained 
from the nonlocal density functional theory (NLDFT). Comparison of these 
results with experimental and/or Monte Carlo data provide the clearest 
assessment of predictive power of the density functional approach. 

In the limit of a homogeneous, three-dimensional liquid, the energy 
functional (3.4) assumes the form 

E~ D b3D C3D l+y (4.1) 
N 2 P3D-t---2 -p3D 

where N is the particle number, and b3D =S d3r Vl(r)" The parameters c3D 
and ~/ are identical to those used in the density functional of Ref. 25, and 
the cutoff parameter h is chosen such that the coefficient b3D also matches 
the corresponding value of Ref. 25. By construction, the energy per particle 
given by this parameterization agrees with the experimental equation of 
state. 

The two-dimensional limit of the theory is obtained by assuming a 
density of the form (3.2). One then obtains again an equation of state of 
the form 

E~~ b2o ' C2D "1+~ (4.2) 
N: .... - -P2D 

with bed = S d2r Vt(r) and C2D = C3D(3/4h) 1 +~. 
In the three-dimensional case, the equations of state obtained from 

experiments, = calculated by Monte Carlo 23 or variational theory, ~6'7 or 
fitted by the parameterization of the density functional (4.1)25 are practically 
indistinguishable. This is no longer true in the two-dimensional limit, where 
the results of our variational theory still agree very well with Monte Carlo 
data, but the non-local density functional predicts an energy per particle 
(4.2) that is significantly too high, c.f. Fig. 1. 
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Fig. 1. The energy per particle (solid lines) and.the chemical potential (dashed lines) of two- 
dimensional 4He are shown as obtained within the HNC/EL theory (Ref. 7 lowest two lines) 
and density-functional theory (Ref. 10, upper two lines). Also shown are the Green's functions 
Monte Carlo data (Ref, 24, diamonds with error bars). 

Even though the "correlation energy" E~. is, in the realistic situation of 
an atomic monolayer  adsorbed to a substrate, normally small compared 
with the binding energy of a single particle to the substrate, the difference 
between the equations of state has significant consequences on the phase- 
diagram of a liquid monolayer of 4He atoms on a substrate: Both Monte 
Carlo and variational calculations predict that the two-dimensional phase 
is a liquid at low temperatures. The energy per particle has a minimum at 
a surface coverage of about  0.04 atoms//~ 2. Below that surface coverage, 
the surface would be covered (at finite temperatures) by a liquid-gas 
coexistence phase, and at zero temperature by two-dimensional liquid 
clusters. 

This conclusion is consistent with Greywall 's phase diagram of 4l-Ie 
adsorbed to graphite. 5 The Orsay-Paris energy functional can lead to a 
qualitatively different scenario: The 2D system is only insignificantly 
bound, with a maximum binding energy of about  - 0 .06  K at a very low 
density pmi~ ~0.02 atoms//~ 2. Therefore one would conclude that above 

2 D  

the temperature of about  0.06 K the two-dimensional system is a gas, and 
would spread out uniformly over the surface of the substrate, The same 
holds true for atomic mono[ayers in a sufficiently strong external holding 
potential. 



4He on Weakly Attractive Substrates 859 

The calculation of the excitation spectrum and the static structure 
function is an integral part of the HNC/EL theory. To calculate the same 
quantities within the density functional method, ll one starts from the 
definition (2.12) of the particle-hole interaction. Carrying out the second 
variation, one obtains 

C3D( 1 q- 7) 
Vp h(r, r ' ) =  V t ( l r - r ' l )  4 2 [r + tSr(r')] n3o( t r - r ' [ )  

+ c3Dy(l+7)fd3r, ,p(r , , )f i~;-l(r , , )n3D(lr_r, , l)n3D(]r,  r,,i) 
2 

(4.3) 

In both cases of the uniform liquid, the particle-hole interaction is 
translationally invariant. The Fourier transform in n = 2 or n = 3 dimen- 
sions gives 

- and f d >  vp h(r) e ' " r  

= C n D P n  o (4.4) 

where 

f 3 j l ( x )  for n = 3  

l n ( x ) = t 2 j , ( x  ) for n = 2  
(4.5) 

With these particle-hole interactions, one can solve Eq. (2.7) in 
momentum space for the excitation spectrum 

4mV h(q)q _ h2q2 ~ ~nD t/2 
h~o(q)- ~ L_I + hPq2 J (4.6) 

and obtain the static structure function in two and three dimensions by the 
usual Bogoliubov theory, 

I 4m ~'~_~ (q) ] -1/2 
S(q) = 1 + h2q2 j (4.7) 
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Of course, it is noted that the excitation spectrum is, in this 
approximation, the Feynman spectrum with its well-known shortcomings. 
However, the Feynman theory of excitations is the necessary first step in 
any attempt to improve upon the description of the excitations, either by 
correlated-basis-functions theory 26 or by allowing for time-dependent pair- 
correlations. 27,2~ 

Figures 2 and 3 show a comparison between HNC/EL, density func- 
tional and experimental/Monte Carlo results for a sequence of densities. 
The comparison between HNC/EL and experimental/Monte Carlo data 
has been discussed in Ref. 7, it is sufficient here to concentrate on the dis- 
cussion of the density functional results. In three dimensions, the height 
of the peaks of S(q) in the NLDFT and the HNC/EL results agree quite 
well with the data by Svensson, 29 whereas those of Robkoff and Hallock 3~ 
are slightly higher. The wavelength of the oscillations of S(q) for larger 
momenta is, however, somewhat longer than experimentally found; this 
indicates that the density functional theory does not correctly describe the 
hard core structure of the pair distribution function. Such a feature, which 
relies heavily on a self-consistent description of both short- and long-range 
correlations, is certainly also not expected from a simple RPA like theory 
with an effective interaction. 

r,~ 

1.5 

1.0 

0.5 

3D 

0.0  
0.0 1.0 2.0 3.0 4.0 

q (X-b 

Fig. 2. The static structure function of the three-dimensional homo- 
geneous liquid is compared for densities p3o=0.020, 0.022, and 
~=024~, -3, between HNC/EL (solid lines) and NLDFT (dashed 
fines). Also shown are experimental data by Svertsson et  al. (Ref. 29, 
diamonds) and Robkoff et  aL (Ref. 30, boxes I at the saturation vapor 
pressure. The functions with the highest peak correspond to those 
with the highest density. 
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Fig. 3. The static structure function of the two-dimensional homo- 
geneous liquid is compared, for densities P2D = 0.035, 0.045, 0.055, and 
0.065 A, -z, between HNC/EL (solid lines) and NLDFT (dashed lines). 
The functions with the highest peak correspond to those with the highest 
density. Also shown are Monte Carlo results, 24 for p2D=0.0421 A. -2 
which is near equilibrium (+-symbols) and pzr,=0.0658/~ z (x-sym- 
bols) which is a density just before freezing. 

The situation changes rather dramatically when we turn to the two- 
dimensional case (Fig. 3): There the Monte Carlo and the HNC/EL struc- 
ture functions agree quite well, except for a small shift of the peak at very 
high densities�9 The structure functions obtained by the density functional 
theory, on the other hand, display consistently a peak that is too high, and 
oscillations that are too long. The structure functions resemble those of a 
much denser system. This is consistent with the observation that the 
pressure determined by N L D F T  for densities in the range 0.035/~-2 to 
0,065 t~ -2 (Fig. 1) would indicate that the system is at a considerably 
higher pressure than that which is predicted by Monte Carlo or the varia- 
tional theory�9 

5. Q U A N T U M  LIQUID FILM ENERGETICS 

In HNC/EL theory, one always solves the two-body equation 
simultaneously with the one-body equation, but in the NLDFT,  there is 
no a priori need to introduce two-body quantities. In both methods, the 
properties of excited states can be examined by solving Eq. (2.7); the 
N L D F T  using the definition (2.12) for the particle-hole interaction. 
Examining the long-wavelength properties of the excitation functions, one 
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can then also determine whether a given background solution is locally 
stable or not. In particular, the long-wavelength limit of the excitation 
energy can be calculated in closed form from the eigenvalue problem (2.7). 
The eigenvalue Eq. (2.7) can be decoupled in momentum space as a func- 
tion of the momentum qll parallel to the surface. The long-wavelength limit 
of the lowest-lying mode, which we identify with the third sound, can be 
calculated and is found to be 

with 
hco3(qll) = hc3qll (5.1) 

h 2 /7 

mc~ - 2m (,,fp I [-Hi(0) + 2"Vp h(0)] -11 x/P) (5.2) 

where n=Sdzpl(z ) is surface coverage, and Hi(0 ) and ~'p h(0) are the 
long-wavelength limits of the corresponding quantities defined above. The 
relationship (5.2) may also be derived from Eq. (2.5); one finds the well- 
known hydrodynamic relationship 

a~ (5.3) - -  n 

In the NLDFT, the definitions (5.3) and (5.2) are rigorously identical. 
In the HNC/EL theory, the same precautions as mentioned above apply: 
The speed of third sound calculated by the hydrodynamic derivative (5.3) 
and the long-wavelength limit of the collective excitations, Eq. (5.2) will 
normally agree only for an exact theory. In general, one expects that the 
expression (5.2) is less accurate than the hydrodynamic derivative (5.3) 
since the diagrams included in Eq. (5.2) are a proper subset of those 
included in Eq. (5.3). In particular for thick films, where the third sound 
velocity goes to zero, one must expect large-scale numerical cancellation in 
the evaluation of expression (5.2). 

For comparison between the predictions of density functional theory 
and the HNC/EL theory, we have chosen four different substrate poten- 
tials. One of these potentials, which we have studied at some length 
earlier, 7 is a simple model of two layers of solid helium on graphite. The 
substrate potential consists of three terms, 

2 

u~ub(z) = Uo(Z + Zo) + Y~ UiIz + zi) (5.4) 
i = l  

with 

(5.5) 
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where the strength e is chosen to match the asymptotic strength of the 
graphite-helium interaction, 31 ea2/2 = 186 meV. The two solid helium planes 
are modeled by averaging Lennard-Jones potentials over a plane, 

1o 1 gi(z)=47zc~niff2I~(~ ) -- ~ ( z ~ ) 4 ;  (5.6) 

with 5= 10.22 K and a =  2.556 ~. The surface densities ni ( i=  1, 2) were 
taken to be the experimental values 3 n1=0 .115~  -2 and n2=0.093 ~ 2 
The offsets zi are such that the distance between individual solid layers and 
between the first solid layer and the substrate is about 3.3 ~. The model 
is undoubtedly somewhat crude; it leaves out, along with any surface 
corrugation, a number of important many-body effects. A somewhat more 
extensive discussion, and an examination of the dependence of our quan- 
tum film structures on the strength of the substrate potential is found in 
Ref. 7. 

A second, somewhat simpler family of substrate potentials has been 
used in density functional calculations in an attempt to explain the wetting 
behavior of 4He on alkali metal substrates. 21 These potentials are 3-9 
potentials characterized by their range C3 and their well depth D. They 
have the analytic form 

F 4 C 3 q  1 C3 
gsub(Z) = L2--~J Z 9 - 73. (5.7) 

Fig. 4 provides a comparison of these four different potentials. It is seen 
that they span a somewhat broader set than those we studied in our pre- 
vious work. In particular, the "solid helium" potential is of considerably 
shorter range, whereas the magnesium substrate has the deepest potential 
well. 

The structure and energetics predicted for liquid films by the micro- 
scopic HNC/EL theory has been discussed at length in Ref. 7, it is sufficient 
here to review our results. It was already pointed out that the HNC/EL 
equations have no solution if the system is unstable against infinitesimal 
density fluctuations. This is particularly relevant for the energetics of the 
growth of helium films on the solid helium substrate. At very low densities 
the first liquid layer of atoms (we will refer to this layer as to the "first" 
layer, independently of whether the substrate itself consists of solid 4He 
layers) will form a low-density two-dimensional liquid. The saturation 
density of this liquid, P2D, is known 24 to be approximately 0.043 ~-2.  As 
long as the substrate potential is sufficiently deep and narrow such that the 
degree of freedom to move in the z direction is, for all practical purposes, 
"frozen out," this coverage should be essentially independent of the strength 
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Fig. 4. A comparison of the substrate potentials defining the graphite/solid 
helium model (solid line), and the Mg (long-dashed line), Li (short-dashed 
line) and Na (dotted line) substrates. The parametrization of the alkali metal 
potentials is taken from Ref. 21. 

of the substrate potential. In fact, Greywall 5 finds that even the first 
monolayer on graphite is in a liquid/gas (or, at T = 0 ,  liquid-vacuum) 
coexistence regime below a coverage of n = 0.04 ~-2 .  This is in excellent 
agreement with what one would expect, from Monte Carlo calculations 
and our HNC/EL results, for the stable coverage of a two-dimensional 
system. Below a certain minimum density of about p2D~~ the 
compressibility vanishes and the two-dimensional system becomes unstable 
against infinitesimal density fluctuations. It is important to note that P2D is 
considerably below the saturation density, P3o, of three-dimensional 4He, 
which would translate into a surface density ,~r ,,2/3 ~ 0.077 ~ - 2  Therefore, 

v ~  P 3 D  

by adding further atoms to the liquid, the two-dimensional system must 
become highly compressed in order to approach the bulk equilibrium 
density. While a weakly attractive adsorbate-substrate interaction would 
naturally favor a compressed layer, a density will inevitably be reached at 
which point it becomes energetically favorable to elevate particles to a 
second (or even a third) layer, before the first layer can be further com- 
pressed. To what extent such a behavior is repeated depends on both the 
strength and the range of the substrate potential. In Ref. 7, we have 
found at least two more such layering transitions. These transitions could 
provide an interpretation of the "re-entrant superfluidity" found recently in 
torsional oscillator experiments. 6 

The scenario described above is most easily discussed by considering 
the coverage dependence of the chemical potential and the long-wavelength 
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limit of the (third) sound velocity, which is conveniently expressed as mc 2. 
As a unique feature of the HNC/EL theory, we have found in Ref. 7 that 
the chemical potential of a 4He atom on the graphite/solid helium substrate 
is not a monotonic function, and that the sound velocity of the 
homogeneous phase can become imaginary. In that situation, the HNC/EL 
equations have no solutions unless one projects out the very long-range 
excitations. A further prediction of our analysis is that, for low coverages, 
the chemical potential should be essentially equal to the binding energy e0 
of a single particle to the substrate, plus the chemical potential of the two- 
dimensional liquid, #2D(n), 

#(n) ~ e 0 + #2o(n) (5.8) 

Fig. 5 shows the coverage dependence of the chemical potential obtained 
from both the HNC/EL calculation and the NLDFT.  Indeed, for the 
monolayer, the chemical potential follows quite closely the estimate from 
(5.8); the fact that the chemical potential of the films is somewhat lower is 
because of the additional degree of freedom of moving in the z direction. 
The comparison with the N L D F T  shows basically the same picture. Of 
course, there the chemical potential has been calculated consistently in 
NLDFT.  The behavior of the film deviates much earlier from the two- 
dimensional behavior, which is also plausible since in N L D F T  that 
geometry appears to be energetically unfavorable to the particles. 
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Fig. 5. The chemical potential of 4He films adsorbed to the graphite/solid 
helium substrate is shown as obtained from the HNC/EL theory (lower 
fragmented solid lines) and NLDFT (upper solid line). Also shown are 
the estimates of Eq. (5.8) in HNC/EL (lower dashed line) and NLDFT 
(upper dashed line) for the monolayer. 
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Fig. 6. The (square of) the speed of sound, mc~ (left scale) and c 3 (right 
scale) of 4He films adsorbed to the graphite/solid helium substrate is shown 
as obtained from the HNC/EL theory (solid line) and NLDFT (dashed 
line). 

The  compar i son  of the sound  velocities as a funct ion of coverage in 
Fig. 6, and  the densi ty  profiles in Fig. 7 show basical ly  the same picture. 
In  the N L D F T ,  two-d imens iona l  layers a p p e a r  to be energet ical ly less 
favorable,  Par t ic les  are pushed  out  of the layers  at  a lower  coverage,  and  
the coverage dependence  of the sound  veloci ty becomes  smoother .  Whi le  
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Fig. 7. The density profiles of 4He films adsorbed to the graphite/solid 
helium substrate is shown as obtained from the HNC/EL theory (solid 
lines) and NLDFT (dashed line). The three curves correspond to 
coverages ofn=O.05~ 2, n=0.12/~-2 and n=O.18/k -2. 
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the layering transitions appear to be intrinsic properties of the comparably 
short-ranged substrate potential, and are shown to be stable against 
variations of the potential strength, we hesitate to attribute too much 
significance to the magnitude of the sound velocity. We have shown in 
Ref. 7 that the sound velocity is a sensitive function of the potential strength, 
and a change of the attractive portion by 10 percent can change the sound 
velocity by almost a factor of two. 

Helium films on alkali metal substrates have recently received much 
attention because of the discovery of non-wetting of 4He in cesium. 32 34 The 
possibility of "non-wetting" or "pre-wetting" of 4He on weakly attractive 
substrates has been implicit to theoretical calculations for quite some time, 
c.f. Ref. 35, Table III, Ref. 36, and more recently in Ref. 37. As pointed 
out in Ref. 21, the generic phenomenon has actually little to do with the 
many-body aspects of helium films. An argument similar to the qualitative 
discussions of Refs. 21 and 38 illustrates the situation: The simplest 
criterion whether a low-coverage 4He fihn would wet, at T= 0, a substrate 
or not is whether it is energetically more favorable for a single atom to be 
adsorbed to the substrate, or to a droplet of liquid helium. Thus, roughly, 
when the binding energy of the single particle to the substrate is greater 
than the chemical potential of an atom in the bulk liquid, the film would 
wet, otherwise it will not. This picture assumes, of course, that the chemical 
potential is a reasonably smooth function of the surface coverage. While 
it is not guaranteed that the chemical potential is rigorously monotonic, 
especially for thin films (see our discussion above and also the results 
of Ref. 21) this picture describes the overall features quite well. In other 
words, any theory that reduces to the one-body Schr6dinger equation for 
the single particle in the limit of infinitesimal particle number, and 
reproduces (or fits) the bulk chemical potential should make reasonable 
predictions of the wetting behavior of the liquid. Many-particle effects 
become relevant only when one studies the deviation from these two limits. 
In this aspect, the HNC/EL theory and the NLDFT make rather different 
predictions. 

The alkali metal substrate potentials are interesting since the layering 
transitions are less pronounced than on the graphite/solid helium potential. 
We have calculated the structure of 4He films on alkali metal substrates 
starting from the lowest stable coverage up to a coverage of n = 0.24 ~-2, 
which corresponds, for a magnesium substrate, to slightly more than three 
layers. Figs. 8 show, for the purpose of further discussion, the correspond- 
ing density profiles. Fig. 9 shows the chemical potential, as a function of 
coverage, for the three substrate potentials corresponding to Mg, Li, and 
Na, and a comparison with the results of the NLDFT. In all cases, the 
HNC/EL calculations predict the expected oscillations and a minimum 
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Fig. 8. The density profiles of 4He films adsorbed to the alkali 
metal substrates as obtained from the HNC/EL theory. The 
curves correspond to coverages of n=0 .04~  -2 ,-.0.24 ~, -2 for 
Mg and Li, and to n = 0,09 A 2...0.24 ~. 2 for Na. 
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Fig. 9. The chemical potentials of 4He films adsorbed to the substrates 
Mg (lowest solid line), Li (middle solid line) and Na (highest solid line) 
as obtained from the HNC/EL theory and from the NLDFT (dashed 
lines, same sequence). Also shown are the binding energies of a single 
helium atom to the substrate (diamonds at the left margin) and the 
chemical potential for a 4He monolayer on a sodium substrate calculated 
by Carraro and Cole 38 (short-dashed line)�9 

stable coverage. The fact that most of the instabilities found for the alkali 
metal substrates are so weak (mc~ is of the order of -0 .1  to - 0 . 5  K at the 
minimum) means that one should not take these results as being com- 
pletely conclusive. 

Both the magnesium and the lithium substrates support a monolayer 
of sufficient coverage, but in both systems this monolayer is already rather 
"soft" in the sense that the chemical potential deviates, as a function of 
coverage, significantly from the two-dimensional estimate (5.8). This 
finding is consistent with our estimate that the single helium atom must be 
bound stronger to the substrate than to the bulk helium to have wetting. 
These binding energies are 19.35 K for Mg and 9.01 K for Li. 

In Na, we do not find monolayer solutions, the lowest stable coverage 
is 0.1 ~ -2 ,  or about two layers; only by projecting out the very long- 
wave, lengths excitations we were able to extend the calculations to a 
coverage of 0.09 A-2. This observation implies that, in the early stages of 
the growth of helium films on Na, the helium atoms form bulk-like clusters, 
at least two atoms thick in the third dimension. Above a coverage of about 
0.09 ~ -2 ,  the clusters are fully connected such that the helium uniformly 
covers the surface. These results are similar to those of Cheng et aL 2~ 
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obtained in NLDFT,  whose minimum stable coverage is, being derived 
from a more repulsive equation of state, slightly larger than ours. The 
similarity of the results of Ref. 21 and ours is yet another confirmation of 
our assessment that the global adsorption scenario has very little to do 
with many body physics, but only the detailed structure of the adsorbate. 

This is consistent with the fact that the binding energy of the single 
atom to the substrate is, with -4 .83  K significantly less than the chemical 
potential of the bulk liquid. Indeed, Na is a borderline case where the 
chemical potential is almost flat as a function of coverage n; in the coverage 
regime considered here it increases only by about 0.1 K. While the oscilla- 
tions of the chemical potential and the speed of sound are still systematic 
as a function of coverage, they are so small that we cannot make a reliable 
estimate for their amplitude. 

Globally, our theoretical results are in agreement with the observation 
by Nacher and Dupont-Roc 33 who found that 4He wets a Na surface. On 
the microscopic scale, one would, however, conclude that the minimum 
stable coverage is a double layer and not, as on stronger substrates, a 
monolayer. Such an effect might be detectable in torsion-oscillator experi- 
ments of the kind reported by Crowell and Reppy 6 since one would be lead 
to the conclusion that the minimum coverage where superfluidity appears 
is more than a monolayer. 

The asymptotic value of the chemical potential also gives some 
estimate for the numerical accuracy of our calculations. The largest uncer- 
tainty arises because in the evaluation of the "elementary diagrams," which 
involve, when done exactly, the calculation of a function of three variables 
(z~, z2, and rll), where each function value is a six-dimensional integral. 
To simplify this calculation, we have used a "spherically averaged" pair 
distribution funtion and evaluated the integrals at an average density. This 
causes apparently a small overestimate of the chemical potential of about 
0.5 0.6 K in the asymptotic bulk limit. Since the behavior of our films is 
basically dominated by the difference between the structure at neighboring 
coverages, this inaccuracy will not in any way seriously affect our conclu- 
sions. Of course, with Na being a borderline case, these results should be 
taken with some caution and must await confirmation by a more accurate 
theory. For  that reason, we have not attempted to carry out calculations 
for the even weaker substrate potentials for K, Rb, and Cs. 

On a somewhat more technical level, our studies allow for an interesting 
comparison with a calculation of the energetics of a 4He monolayer on a 
Na substrate by Carraro and Cole. 38 These authors have carried out varia- 
tional Monte Carlo calculation, using a Schiff-Verlet type parametrized 
correlation function of the form u2(r~, r j )=  - (b / I r i - - r j [ ) " .  For  the given 
correlation function, the calculation is exact. Our energy evaluation is, 
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on the other hand, approximate, but the correlation function has the most 
general form permitted by the symmetry of the problem. The difference 
between our results and those by Carraro and Cole is striking: our calcula- 
tions indicate that the minimum stable coverage of 4He on sodium would 
be two layers, or n~0.1  ~-2.  Carraro and Cole report that an atomic 
monolayer can be stable at a saturation surface coverage of n ~ 0.062 ~ - 2  
The dramatic qualitative difference between the predictions of the varia- 
tional Monte Carlo calculation and our optimized HNC calculation is, 
to our knowledge, unprecedented in the history of quantum Monte Carlo 
calculations for the helium liquids. 

Our interpretation of the discrepancy of the results is that the Schiff- 
Verlet wave function does not adequately describe the degree of freedom of 
particles moving in the direction perpendicular to the symmetry plane. In 
our earlier calculations of Ref. 7, (and also in the calculations on the 
magnesium substrate) we found that the correlations and the nature of the 
excitation modes changes abruptly and radically shortly before a layer 
becomes unstable against the promotion of particles to the next higher 
layer. The effect is particularly pronounced for a high-coverage monolayer. 
The analytic properties of the optimal pair correlation function become in 
this case quite different, 39 and it would not be surprising if the Schiff-Verlet 
functions do not well represent this effect. 

If our interpretation is correct, one is led to suspect that an "educated 
guess" for a variational wave function, to be used in Monte Carlo calcula- 
tions, can be quite misleading. Of course, a definite answer can be obtained 
only by a calculation that supercedes both the Carraro-Cole calculation 
and ours in quality, i.e., a Green's function Monte Carlo (GFMC) 4~ or a 
diffusion Monte Carlo (DMC) 41 calculation. 

6. DYNAMIC STRUCTURE FUNCTION 

We have shown in previous work 8'2~ how the solutions of Eq. (2.7) 
can be used to construct the dynamic structure function in an approxima- 
tion equivalent to the Feynman theory for the collective excitation energies. 
The Feynman theory can be interpreted in terms of a linear response 
theory with a local particle-hole interaction. The density-density response 
function is given in the random-phase approximation (RPA) by the 
relation 

t" 
x(rl ,  r2; co) = Xo(rl, r2; 09) + J d3r3 d3r4 ~o(rl, r3 ; co) 

X Vp h(r3, r4) )~(r4, r 2 ; co) (6.1) 
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where x0(rl, r2; co) is the response function of a "non-interacting" system 
defined by the one-body Hamiltonian Hi: 

Z o ( r l , r z ; c o ) = 2 ~ H ~ [ ( h c o ) 2 - H ~ + i q ] - ~ ~  (6.2) 

and Vp h(r, r ') is the "particle-hole interaction". The HNC theory provides 
a specific expression for this effective interaction, but, as pointed out above, 
the NLDFT can alternatively be used in Eq. (2.12) to obtain a static 
effective interaction for the linear response Eq. (6.1). 

Using the representation (6.2) of Zo(r, r'; co), one can formally solve for 
the full response function z(r, r'; co): 

z(r, r'; co) = 2 ~ { [(hco) 2 - H~ -- 2H1 l~rph "]- i~/] -~ H~ ) x / - ~ r ' )  

1 
= 2 Z x/Pl(r)  ~b,o,(r) (hco)2 _ (hco,) 2 + iq ~bo;(r') ~ (6.3) 

oY 

where ~b~,(r) and the he)' are the eigenfunctions and eigenvalues of 

f d3r H l ( r ) [ f ( r -  r') H l ( r ' ) +  2~'p h(r, r ' )]  ~b~(r')= (hco) 2 ~bo~(r ). (6.4) 

Eq. (6.4) is the adjoint of the Euler Eq. (2.7). This analysis justifies identify- 
ing the eigenvalues of Eq. (2.7) with the collective modes of the system and, 
the (adjoint) eigenfunctions with the transition densities corresponding to 
the individual excitation modes, 

6p,.(r) = ~ ~o(r). (6.5) 

From the density-density response function (6.3) one obtains finally the 
dynamic structure function 

S(r, r'; co)= _ 1  Im ~(r, r'; co)= ~ r r 

= 6po~(r) 6po~(r'). (6.6) 

In our geometry, the dynamic structure function is diagonal in the 
momentum qll parallel to the surface. The spectrum of excitation energies 
he) is discrete for energies smaller than the separation energy, i.e. for 

hco +It < h2q~l/2m, (6.7) 

otherwise it is continuous. Most scattering experiments have been per- 
formed at grazing angles and we therefore consider only momenta parallel 
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to the surface. Thus, we define the diagonal dynamic structure function in 
momentum space 

S(qll ;09)= f dz dz' d2ri, e iqH "rl[ p ~  S(r, r'; o))N~t(r ')  

= [6p,o(qH)l ~ (6.8) 

where 

apo,(qll)=f dzap~,(z, qlt)=f d z ~ ( b ~ ( z ,  qlt) (6.9) 

are the transition densities corresponding to the excitation of frequency 09 
and parallel momentum qrl. 

The Feynman theory has it's well-known deficiencies but within the 
HNC/EL theory, a systematic path for improvement is to allow for a time- 
dependence of the pair correlation functions appearing in the variational 
wave function (2.1) and to solve a linearized set of equations of motion 
for the time-dependent component. 27"28 We have recently implemented 
this strategy 42"9'43'44 and shown that, within certain approximations, 
the equations of motion method leads to the same Brillouin-Wigner type 
perturbation formula as the correlated-basis-functions theory of Chang 
and Campbell. 26 An important result of these studies is that the improved 
theory produces a significant shift of the excitation spectrum to lower 
energies, but has little effect on the overall physical picture. The generalized 
Brillouin-Wigner theory in the non-uniform geometry is numerically quite 
demanding and no neutron scattering data are available for alkali metal 
substrates which are the main focus of this paper. We therefore restrict our- 
selves here to the Feynman approximation which is sufficient to highlight 
the difference between excitation spectra on weakly and strongly attractive 
substrates and between the two different theories discussed here. 

When the eigenvalue Eq. (2.7) is discretized on a finite mesh, only the 
discrete subset of the continuum states is obtained that corresponds to 
excitation functions which vanish at the boundary of the discretization box. 
In such an approximation, the resulting S(qLi;09 ) is a series of g-functions, 

S(qll ; 09) ~ Z 16P~,(qll)[ z 6(09 -- 09,,) (6.10) 
I1 

However, all functions appearing in the kernel of Eq. (2.7) can be 
easily extrapolated to their asymptotic values for large distances from the 
surface. One can therefore extend the mesh to large distances to obtain a 
very dense spectrum from which reliable information on the density of 
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states can be extracted. We have typically discretized the eigenvalue 
problem (2.7) in a box of 50 ~ as compared to our  film thickness of abou t  
10-15 

Maps  of dynamic  structure functions for a sequence of coverages on 

Mg and  N a  substrates are shown in Figs. 10 and  11. These two sets of 

figures cover a reasonably wide range of coverages and  potent ial  strengths. 

Fig. 10. The dynamic structure function S(qtl ; ~o), obtained from the HNC/EL theory, is 
shown, in Feynman approximation, for a representative sample of films on a magnesium 
substrate. The grayscale indicates the strength of S(qll;co). The dotted parabolic line in 
the middle of the frames is the boundary of continuum states, the solid line is the Feynman 
spectrum of the three-dimensional bulk liquid at p = 0.022 ~, 3, and the dashed line the 
Feynman spectrum of the two-dimensional bulk liquid at n = 0.065/~, 2. 
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The figures show also, for reference, the continuum boundary he)+ # < 
h2q~l/2m. All modes below this continuum boundary are discrete in 
Feynman approximation; in order to display their relative strength we 
have artificially broadened these g-function states by replacing them with 
Gaussians of approximately 0.5 K width: 

S(qll;~o)~ ~ [6po~(qli)] 2 exp - (6.11) 
n 

Fig. 11. Same as Fig. 10 for helium films on a Na substrate. The Feynman spectrum of the 
two-dimensional bulk liquid has been omitted. 
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The figures also show the Feynman dispersion relations of the three- 
dimensional liquid and, for the Mg films with coverage n 1> 0.080/~ 2, the 
dispersion relation of the two-dimensional liquid corresponding to an areal 
density of n = 0.065/~-2. This coverage is near the solidification density of 
the two-dimensional superfluid. For the lowest coverage monolayer film 
with n = 0.040/~ 2, the dispersion relation of the film and the one of 
the two-dimensional liquid with the same areal density are practically 
indistinguishable. 

The number of excitation modes increases with coverage, and the 
S(qll;co) gains strength (as indicated by the grayscale) along a path, 
through several individual "modes," in the (q11; co) plane, which resembles 
the three-dimensional bulk phonon-roton spectrum. A second rather clear 
strength distribution pattern is found in Mg films with n >~ 0.080/~-2 in the 
"maxon-roton" region along the dispersion relation of the two-dimensional 
fluid. This strength distribution agrees best with a two-dimensional 
phonon-roton spectrum corresponding to an areal density of n = 0.065 ~-2.  
This areal density is somewhat less than the amount of material contained 
in the first layer, which corresponds to a coverage of approximately 
n =0.075/~ 2. This mode corresponds, as we will show more explicitly 
below, to the propagation of the excitation within the first liquid layer. 
A strong third mode is found well below those two phonon branches. We 
identify this mode with the ripplon. The two weaker modes parallel to the 
ripplon mode are remnants of two bound excited states of the Mg substrate 
potential perpendicular to the surface. In the infinitesimal coverage limit 
their binding energies are 6.02 K and 1.42 K. Starting with a coverage of 
n = 0.080/~ 2, the maps of S(qll ;~) show clearly the phenomenon of at 
least two level crossings where the two-dimensional phonon crosses the 
ripplon modes. The number of crossings is doubled when the second layer 
becomes filled at n = 0.160 ~ - 2  and the three-dimensional bulk-like mode 
begins to gain strength at the expense of the two-dimensional mode. 

A clear identification of the nature of the individual excitations is 
obtained by considering the transition densities 6p~(z, q I I)" These are shown, 
for the energetically lowest excitations in the Mg film with n---0.240/~ 2, 
in Fig. 12. Indeed, up to a wave number qll.,~ 1.6/~ -1, the lowest-lying 
excitation qualifies as a surface mode. The nature of the excitation changes 
abruptly, for a small momentum regime 1.6 A-~ <qll < 1.8/~-~ there 
appears to be a resonance between the two first layers. But at wave 
numbers qli > 1.8 A- l ,  the wave propagates mainly in the first layer. 

The situation is not so clear in the Na films in the sense that there is 
no mode that can be identified unambiguously as the one propagating in 
the first liquid layer. This is plausible since the layer structure is much less 
pronounced (c.f. Fig. 8), in particular there exists no stable monolayer. We 
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see, of course, still the expected surface mode and a weaker parallel mode 
due to one bound excited state of the Na substrate potential. In the limit 
of one helium atom on the surface the excited state is bound only by 
0.77 K. As the coverage is increased, the film approaches the bulk limit 
somewhat more slowly, but still quite visibly. Hence, the bulk maxon-roton 
spectrum is somewhat less pronounced at the coverages under considera- 
tion here. 

We have also used the effective interation as derived via Eq. (2.12) 
from the NLDFT.  Two representative maps of S(qll;co) are shown in 
Fig. 13. After the discussions of the energetics and the structure functions 
in the bulk two- and three-dimensional cases, the results are hardly sur- 

Fig. 12. Transition densities of the lowest excited state of a multilayer 4He films with areal 
densities of n = 0.24 ~.-2 on a Mg substrate. The shaded area in the background is the ground 
state profile, the individual lines are the transition densities 6pl(z, q!l) in steps AqE, ' = 0.1 /~-1. 
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Fig. 13. Same as Figs. 10 and 11 as calculated from the NLDFT. Note that the Feynman 
spectra of both the three- and the two-dimensional bulk liquid have also been calculated using 
the NLDFT. Note that the two-dimensional phonon corresponds to an areal density of 
n=0.07/~ -2, whereas the first layer has, within that theory, an areal density between 
0.08/~-2 and 0.085/~-2. 

prising: Consistent with our findings for the H N C / E L  case, we find in both 
films a maxon-roton excitation which follows quite closely the maxon- 
roton branch of the bulk three-dimensional calculation within the same 
theory. Consistent with the lacking structure of the three-dimensional 
N L D F T  S(q), the maxon comes out to be somewhat too flat. We also find, 
for the Mg substrate, a "two-dimensional" maxon-roton branch which is 
roughly consistent with the predictions of that theory in two dimensions. 
As suggested by the shape of the structure functions shown in Fig. 3, the 
"roton minimum" predicted by the N L D F T  is much too low for a Feyn- 
man theory. Note  that the two-dimensional dispersion relation shown in 
Fig. 13 corresponds to a surface coverage of n = 0.07 A-2,  whereas the first 
layer on the Mg substrate corresponds to a surface coverage of roughly 
n = 0 . 0 8 / ~ - 2 .  At that areal density, the bulk N L D F T  predicts, in two 
dimensions, an instability at finite wave numbers, i.e. the energy spectrum 
he) of Eq. (4.6) becomes imaginary. In summary, the theory leads to 
qualitatively similar conclusions on the nature of the film excitations as the 
microscopic H N C / E L  theory, but it has quantitative deficiencies. 

7. S U M M A R Y  

We have in this paper extended our calculations of Ref. 7 to the case of 
alkali metal substrates, and have carried out a comparison with the predic- 
tions of the non-local density-functional theory proposed in Refs. 10, 21. We 
have tried to be conservative with our predictions and have compared, 
wherever available, with independent Monte Carlo calculations and/or 
experiments. All of our tests have turned out to be quite satisfactory. It 
would nevertheless be extremely useful to have a few benchmark calcula- 
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tions to verify the energetics of adsorbed films, in particular in the region of 
our predicted layering phase transitions. 

Our calculations have been spawned by the experimental discovery of 
non-wetting of 4He on some alkali metal substrates. 32 34 We have argued 
above that a first estimate of the wetting behavior at T =  0 can be obtained 
by comparing the binding energy of a single atom to the substrate to the 
chemical potential of that atom in the liquid. In other words, the wetting 
behavior is, to first approximation, not a many-body phenomenon. Our 
results have confirmed this, as well as the fact that the details of the wetting 
scenario (e.g. the minimum number of stable layers) are determined by 
very subtle many-body effects. Only at that level, many-body effects are 
relevant, and the predictions of the microscopic HNC/EL theory and the 
NLDFT are very different. 

As pointed out above, the HNC/EL equations have no solutions if the 
assumed geometry is unstable under infinitesimal density fluctuations. This 
is a desirable feature of the theory, and evidently of particular relevance in 
the wetting problem. Of course, this feature makes the theory considerably 
harder to use than, for example, a mean-field theory since the convergence 
of the calculations becomes very delicate in the vicinity of an instability. 
We have therefore not tried to weaken the strength of our substrate poten- 
tial below the strength of Na and use alkali metal substates like Cs and Rb. 
The chemical potential of Na for the stable coverages of more than two 
layers is already essentially flat and we believe that the results with weaker 
substrate potentials would be beyond the predictive power of the HNC/EL 
theory (or, for that matter any other theory available now.) 

As a general feature, we found that the sound velocity is an extremely 
ensitive function of the substrate potential. In keeping with our cautious 

assessment of present-days theoretical models, we feel that we are presently 
perhaps capable of predicting energies and chemical potentials within an 
accuracy of a few percent. But the calculation of sound velocities is more 
difficult and also plagued by intrinsic difficulties of microscopic theories as 
mentioned below Eq. (5.3). The reader interested in these technical details 
is referred to Ref. 16 for a discussion of this subtle point. We feel that there 
are sufficiently large uncertainties in the substrate potentials to allow for an 
assessment whether or not a theory predicts the "correct" sound velocity. 

We have also carried out a comparison between the results of the 
HNC/EL theory and the NLDFT recently used extensively by Pavloff and 
Treiner 1~ and by Cheng et aL 2~ The important points have been made in 
the body of this paper, we only need to summarize our findings. The main 
problem of the NLDFT is that it does not reproduce well the two-dimen- 
sional equation of state. While it was not a priori  clear that this is a rele- 
vant concern, we have shown here and elsewhere 7 that a low to  medium 
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coverage atomic monolayer is indeed reasonably well approximated by a 
two-dimensional system. The essential difference is that the H N C / E L  
theory (as well as exact Monte Carlo integrations) predict that the two- 
dimensional system is bound, whereas the N L D F T  predicts an insignificant 
binding. In this respect, the N L D F T  is plagued by the same problem as 
our earlier H N C  calculations 35 which omitted triplet correlations and 
therefore also missed much of the binding of the two-dimensional system, 
leading to less pronounced layer structures and weaker oscillations in the 
sound velocity. 

N O T E  A D D E D  IN P R O O F  

Our chemical potential in the two-dimensional limit of the N L D F T  
shown in Fig. 1 deviates somewhat from the value / ~ = - 0 . 1 8  K at 
P2D =0.026 /k -2 given in Ref. 21. This discrepancy has in the meantime 
be clarified (M. W. Cole, private communication).  After this paper was 
submitted, a path integral monte carlo simulation of 4He on a solid 
hydrogen substrate was published (M. Wagner and D. Ceperley, J. L o w  

Temp.  Phys .  94, 185 (1994)). This work comes to conclusions similar to 
ours on a layering transition of 4He on sufficiently strong substrates. 
The discussion at the end of Section 5 has to be seen in view of this new 
evidence supporting our scenario. 
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