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New measurements are reported of the damping of two-dimensional plasma 
resonances in circular pools of negative ions trapped below the free surface 
of superfluid 4He at temperatures down to about 15 inK. At the lowest tem- 
peratures the damping is determined by a ripplon-limited ionic mobility. The 
observed dependence of this mobility on temperature and trapping depth is 
shown to be similar to that found in earlier experiments on pools of positive 
ions. A theory of the ripplon-limited mobility is described, based on a calcula- 
tion of the scattering of capillary waves by a single ion. It is shown that the 
theory accounts for the observed temperature and depth dependences, but that 
it yields absolute values that are too large by a factor of about 10 for both 
species of ion. Possible reasons for this discrepancy are discussed, but no 
satisfactory explanation has been found. 

1. INTRODUCTION 

This paper is concerned with the damping of two-dimensional plasma 
modes in circular pools of ions trapped below the free surface of superfluid 
4He. It follows an earlier paper, 1 which contained a detailed description of 
the background to this work and of the experimental techniques. 

Both positive and negative ions can be trapped below the surface of 
superfluid 4He by a combination of an external electric field, Eo, that forces 
the ions towards the surface and the image potentials that force them away 
from it. The ions can be produced conveniently by applying a suitable 
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potential to a field emission or field ionization tip immersed in the helium. 
The positive ion is probably a H e r  ion embedded in a small volume of 
solid helium, formed by electrostriction; it has a radius of about 0.55 nm 
and an effective mass of about 30 m 4 (m 4 being the mass of a helium 
atom); the negative ion is an electron in a bubble; it has a radius of about 
1.9 nm and an effective mass of about 237 m 4. The trapping depth, Zo, is 
given in terms of the holding field E 0 by 

2 A~ A o , - ~ ( e - 1 ) e  2 
z ~  = e E  o ' 3 2 ~ e ~  (1.1) 

where e is the dielectric constant of the helium. We have assumed, as is the 
case, that ( ~ -  1) is small compared with unity. With a set of electrodes that 
provides a suitable fringing field it is possible to trap a circular pool of ions 
with a density, no, that is almost spatially uniform; typically no is in the 
range from 3 • 1011 m -2 to 1 • 1012 m -2. Thermally excited vertical motion 
of the ions in the trapping potential is small compared with the ionic spac- 
ing, so that for many purposes the system is two-dimensional. It can there- 
fore support two-dimensional plasma waves in which the ionic motion is 
horizontal, and in a circular pool of finite extent these waves give rise to 
standing plasma mode resonances. Detailed studies of these plasma mode 
resonances were reported in. 1 

The plasma waves can be damped by two mechanisms: that associated 
with a finite ionic mobility within the helium; and that associated with any 
internal dissipation, due, for example, to viscosity, within the ionic plasma 
itself. The damping gives rise to a finite linewidth in the plasma resonant 
modes. As explained in 1 the two contributions to the damping can be dis- 
tinguished by their different dependences on plasma frequency, and it was 
shown that under the experimental conditions used so far the finite ionic 
mobility is dominant. Measurements of the linewidth can therefore be used 
to deduce values of the mobility. It was also shown in I that at temperatures 
above about 100 mK the mobility is found to be independent of trapping 
depth and to be due to the scattering by the ions of the bulk thermal 
excitations (the phonons and rotons) within the helium. At lower tem- 
peratures, however, the mobility is observed to be strongly dependent on 
trapping depth, which suggests that it becomes limited by the scattering of 
thermally excited capillary waves, or ripplons, on the surface of the helium. 
A detailed experimental study of this ripplon-limited mobility, /~r, for the 
case of the p o s i t i v e  ion was reported in.~ It was shown that the experimen- 
tal results were consistent with the formula 

+ (1.2) 
n 

Z o 
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for the ripplon contribution to the inverse mobility, where T is the tem- 
perature, m = 1, n = 7/2 (more precisely m = 0.99 _+ 0.018; n = 3.53 + 0.17), 
and A + = (6.5 + 0.5) x 10 27 m -3/2 g -1 s-1 K. (If the different scattering 
processes are independent, the contributions to the inverse mobility add.) 

In this paper we report corresponding measurements of the ripplon- 
limited mobility of the negative ion. We find that a formula of the form 
(1.2) is still obeyed, and we report values of the parameters m, n, and A ; 
within experimental error the values of m and n are still 1 and 7/2, but A 
is about 55 x 10 27 m -3/2 V 1 s 1 K. We also describe the first stages of the 
development of a theory of the ripplon-limited mobility. This theory is 
based on a consideration of the scattering of capillary waves by a single 
ion; it yields a formula of the form (1.2) with m = 1 and n =  7/2, but it 
predicts values of the parameters A + and A_ that are too large by factors 
of order 10. More refined versions of the theory will be published in later 
papers. 

2. THE R I P P L O N - L I M I T E D  MOBILITY OF TH E NEGATIVE ION: 
EXPERIMENTAL RESULTS 

Measurements of the mobility of the negative ion at low temperatures 
were obtained from the linewidths of the plasma resonances (or equiv- 
alently from the decay time of the freely oscillating plasma modes) as 
described in.' The experimental results are shown in Figs. 1 and 2, where 
we have plotted the dependence of the mobility on temperature and 
trapping depth. Fitting the results to a formula of the form (1.2), we find 

m = 1.26 + 0.45; n = 3.59 + 0.10; 
(2.1) 

A _ : (55 ~ 5)  x 1027 m -3/2 V -1  s -1  K 

Within the experimental error the values of m and n agree with those found 
for the positive ion. The value of m has been determined with less precision 
for the negative ion than for the positive because the mobility of the 
negative ion is ripplon-dominated only for temperatures below about 
40 inK, compared with about 100 mK for the positive ion. 

3. THEORY OF THE RIPPLON-LIMITED MOBILITY 

In this section we give in outline a theory of the ripplon-limited 
mobility. The theory accounts for the values of rn and n, but it gives values 
of A that are too large by a factor of order ten. The theory is based on a 
simplified model, but, as we shall explain, the obvious simplifications do 
not seem to be responsible for its shortcomings. Apart from the use of a 
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simplified model, our presentation of the theory in this paper will not be 
fully rigorous. A more detailed and rigorous treatment will be presented in 
a later paper. 

3.1. The Model 

The theory relates to the mobility of a single isolated ion, trapped in 
the potential formed from the holding field E0 and the image of the ion. 
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Fig. 1. The inverse mobi l i ty  of negat ive  ions p lo t ted  aga ins t  t empera tu re  for two t r app ing  
depths.  �9  z 0 = 18.3 nm;  l :  z 0 = 16.9 rim. The sol id  l ines are ca lcu la ted  for a r ipp lon- l imi ted  
mobi l i ty  given by (1.2), wi th  m = 1, n = 7/2, and  A _  = 5.5 x 10 28 m -3/2 V - I  s - I ,  combined  
wi th  the k n o w n  phonon- l imi t ed  mobi l i ty  ob ta ined  from exper iment  in. 1 
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Vertical distances, z, are measured from the undisturbed surface of the 
helium. For small vertical displacements from the equilibrium trapping 
depth z =  -Zo (Eq. (1.1)), this potential has the parabolic form 

eEo 
V(z) = const + ( Z + Z o )  2 (3.1.1) 

ZO 

The natural angular frequency of vertical oscillation of the ion in this 
potential is given by 
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Fig. 2. The mobility of negative ions plotted against trapping depth for a temperature of 
19 mK. The solid line is a plot of (1.2) with the values of m, n, and A_ used in the lines in 
Fig. 1. 
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where M is the ionic effective mass. The frequency COo/2rc is typically 
50 MHz. The holding potential, V(z), becomes strongly anharmonic for 
large vertical displacements, but we shall assume that this is not relevant 
to our present discussion. 

We treat the ripplon scattering as the scattering of classical capillary 
waves. We assume that a single capillary wave is incident on the ion, and 
we calculate a scattering cross section. In so doing we assume that the ion 
remains at rest except for such motion as may be induced by the incident 
capillary wave. Using this cross section we obtain a mobility by considering 
the effect of a thermal distribution of ripplons. The ion is assumed to be a 
rigid sphere of radius b and the helium to be a continuous classical inviscid 
incompressible fluid of density p and surface tension o. Capillary waves on 
the surface of this fluid travelling in the x-direction can be described by the 
velocity potential (Ref. 2, p. 237) 

~b = ~b o exp(kz) exp i(kx - cot) (3.1.3) 

where co and k are related by the dispersion relation 

~2 =0" k3 (3.1.4) 
P 

We have assumed that the effect of gravity can be neglected in (3.1.4), 
which is justified if 2folk is small compared with the capillary length 
(a/gp) 1/2. 

Our neglect of the finite compressibility of the helium can be justified 
by two comments. First, at the frequencies concerned the ripplon disper- 
sion relation is essentially unaffected by the compressibility of the helium, s 
And secondly, again at the frequencies concerned, for which the wavelength 
of sound is much larger than the ionic radius, the flow round the ion is also 
to a very good approximation unaffected by this compressibility (Ref. 2, 
p. 280). 

3.2. The Scattering Mechanisms 

Capillary waves are scattered by an ion through a combination of two 
effects, one hydrodynamic and one electrostatic. 

In the presence of a capillary wave there is generally an oscillating 
relative motion between the ion and the fluid in its immediate 
neighbourhood. A boundary condition at the surface of the ion requires 
that there be no normal component of this relative velocity. Provided that, 
as is the case, the relevant capillary waves have wavelengths large corn- 
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pared with the ionic radius, the boundary condition can be satisfied if there 
is generated around the ion an appropriate oscillating dipolar velocity field. 
This oscillating dipolar velocity field generates the hydrodynamic contribu- 
tion to the scattered capillary wave. 

The electrostatic effect arises from the interaction between the charged 
ion and the polarization charge on the free surface of the helium. Motion 
of the surface in the capillary wave gives rise to an oscillating electrostatic 
force on the ion, and the resulting oscillatory motion of the ion gives rise 
to an oscillating force on the surface of the helium and hence to a scattered 
wave. 

3.3. A Simplified Treatment 

A full and rigorous treatment of these effects will be published in a 
separate paper. It will be shown that both effects make important contribu- 
tions to the scattering, but that the mobility is limited almost entirely by 
ripplon scattering at frequencies close to the resonant frequency co 0. In this 
resonant scattering process the velocity of the ion relative to the fluid is due 
almost entirely to the resonant vertical motion of the ion, so that both the 
fluid velocity and the horizontal motion of the ion can be neglected in the 
calculation of the hydrodynamic contribution to the re-radiated capillary 
wave. 

This being the case, we can obtain the scattering cross section in a 
greatly simplified way, which we now describe. 

A capillary wave of the form (3.1.3) is incident on the ion, and we 
assume that the wave is only weakly perturbed by the ion. We calculate the 
induced motion of the ion when co is close to coo (and k = ko). The motion 
of the ion will be damped, by radiation of capillary waves (and possibly by 
other processes), and we assume that this damping can be described by a 
relaxation time zz. The detailed calculations show that the radiation damp- 
ing is small, so that coOZz>> 1. We can then calculate the rate at which 
energy is being extracted from the capillary wave, and hence we obtain an 
effective cross section, aE, relating to this extraction of energy, which is 
given by 

2MkZcoo~z H~(kozo) 1 (3.3.1) 
2 ~ - 3p 1 + 4(o) -- coo) 2 "c~ 

where 

2rcpb3 ~ a  ~ K2(7) Hz(7 ) = ~ exp(--7)  - ;~ (3.3.2) 
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and K2 is the modified Bessel function. 3 The detailed derivation of this 
equation is given in an appendix. 

The ionic mobility can be obtained from a transport cross section a t ,  
with the formula 

e h ~ 3 0nk 
-~-  ~- J k -ff-~m v G a r d k  (3.3.3) 

where v c = doo/dk is the ripplon group velocity, and nk is the ripplon dis- 
tribution function at temperature T, given by 

nk = Iexp ( k ~ T ) -  1] 1 (3.3.4) 

Equation (3.3.3) is the two-dimensional version of an equation derived by 
Baym et aL 4 We assume that the two cross sections, a E and a r  are equal, 
an assumption that is valid if the capillary waves are scattered isotropically, 
which is indeed the case. Substituting from (3.3.1) into (3.3.3), and using 
the fact that the integrand in (3.3.3) is very small unless e )~  co o and k ~ k0, 
we find that 

e MkTo/2k, T H2(kozo) (3.3.5) 
-fi = 12pl/2al/2 " 

the relaxation time rz having disappeared in the integration. The more 
rigorous treatment of this model gives the same result. 

4. DISCUSSION A N D  COMPARISON WITH EXPERIMENT 

We see from Eqs. (1.1), (3.1.2), and (3.1.4) that the product koz o is 
independent of the trapping depth z 0. It follows from Eq. (3.3.5) that # 
should be proportional to z 7/2, in agreement with experiment. Equation 
(3.3.5) leads also to the prediction that the inverse mobility is proportional 
to the temperature, again in agreement with experiment. However, the 
predicted values of A+ and A are 1 2 2 x 1 0 2 7 m - 3 / 2 V - l s - l K  and 
316 x 1027 m -3/2 V-1 s - 1 K respectively; which are larger than the 
experimental values by factors of about 19 and 6 respectively. 

The dependence of mobility on trapping depth arises in the theory in 
a quite subtle way, and it seems unlikely that the agreement here with 
experiment can be an accident. This suggests strongly that the theory incor- 
porates much of the correct basic underlying physics. In particular, the idea 
that the dominant ripplon scattering is at the resonant frequency e)o seems 
sound. Nevertheless, the failure of the theory to account correctly for the 
absolute magnitude of the mobility shows that some error has crept in. 
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The theory is based on a number of simplifying assumptions. We 
examine whether these assumptions are likely to have had a serious effect 
on our final result. 

4.1. The Effect of Ionic Interactions and Ionic Thermal Motion 

The theory deals only with a single isolated ion, which is at rest except 
for the motion induced by the incident capillary wave. In reality there is an 
array of ions, which is usually in a crystalline phase at the temperatures 
concerned, 5 and the ions are undergoing thermal motion. 

The ions are coupled together through Coulomb forces. In the crys- 
talline phase the motions of the ions must therefore be described in terms 
of normal modes. The normal modes for motion in the horizontal plane are 
the longitudinal plasma modes together with transverse shear modes. 6 The 
normal modes for vertical motion depend on the extent to which the hold- 
ing field Eo is uniform. 6 If each ion is exposed to exactly the same holding 
field, there is a band of wave-like modes, with a band width of about 
2 MHz (6 and Ewbank, private communication), the frequency being equal 
to co o only in the limit of zero wavenumber. If the holding field is not 
exactly uniform the situation is more complicated, and the normal modes 
associated with vertical ionic motion may become localized. At a finite tem- 
perature all the normal modes will be thermally excited. A strictly correct 
theory ought therefore to consider the scattering of ripplons by the whole 
array of coupled ions, with the additional complication that the ions are 
moving in a way that corresponds to thermal excitation of the normal 
modes of the system. Believing, as we have explained, that the scattering 
responsible for the ripplon-limited mobility must be closely associated with 
the resonant response of the ions at the frequency ~o0, we shall confine our 
attention to processes that involve the (resonant) absorption or emission of 
the quanta that are associated with the modes of vertical oscillation. We 
shall denote such a quantum by the letter V. We denote a ripplon by the 
letter R, and we denote a plasmon or transverse phonon (with motion in 
the plane of the ion-pool) by the letter P. 

We shall assume that the holding field Eo is uniform, so that the 
modes of vertical oscillation are characterized by a wave vector k v. As we 
have explained, the frequency coo becomes dependent on k v, and we denote 
it by cov(kv), where coy(0) =coo. 

We shall suppose first that the plasmons and transverse phonons are 
not involved, which might well be the case if the crystal is at zero tem- 
perature. The simplest scattering process can then be written 

R ~ V+G--*  R' + G '  (4.1.1) 
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and this will be associated with the intersection of the dispersion curves 
COR(kR) and C O v ( k v + G ) ,  where G is a reciprocal lattice vector. However, 
the effect of this level crossing is simply to modify the shapes of the two dis- 
persion curves through hybridization, in the manner usual at level 
crossings. We note in passing that the ripplon dispersion curve is also 
modified if kR lies on or near a Brillouin zone boundary of the crystal. 
These modifications to the dispersion curves do not lead to any scattering 
that will limit the ionic mobility. 

Higher order scattering processes involving three or more ripplons, 
such as 

R + R'--+ V + G - ~  R"  + G '  (4.1.2) 

do limit the mobility, but they rely on a non-linear ripplon-ripplon coup- 
ling and would lead to an inverse mobility that is not simply proportional 
to the temperature and therefore not in agreement with experiment. 

We turn therefore to processes that involve plasmons and transverse 
phonons. We note in passing that ripplon scattering by an isolated ion that 
is in motion will lead to a Doppler shift in the ripplon frequency (although 
the shift is small compared with COo), so we might expect that scattering 
from a ion crystal in which there is thermal motion of the ions will also 
lead to inelastic scattering, with the emission or absorption of plasmons or 
transverse phonons. Therefore we consider processes of the type 

R + P I + P 2 +  �9 �9 " ~ V + G + P 3 + P 4 "  " " ~ R + G ' + P s + P 6 +  �9 �9 " 

(4.1.3) 

In the scattering of waves (in this case capillary waves) from a crystal the 
extent to which processes of this type take place is determined by the 
Debye-Waller factor exp( -2W);  2W is given by 

2 W =  � 8 9  2)  (4.1.4) 

where K is the magnitude of the scattering vector and (U 2) is the mean 
square atomic displacement. For values of K corresponding to the scatter- 
ing of ripplons of frequency coo through a large angle, and for the tem- 
peratures used in the experiments described in this paper, the Debye- 
Waller factor for the ion crystal turns out to be very small (K is larger by 
a factor of about 5 than the magnitude of the smallest reciprocal lattice 
vector). This means that there is practically no scattering into the Bragg 
peaks; almost all the scattering is inelastic and involves the absorption or 
emission of one or more phonons. It follows that processes of the type 
(4.1.3) must be dominant. 
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The Debye-Waller factor is small because the right hand side of (4.1.4) 
is large. This means that the difference in phase between capillary waves 
scattered from adjacent ions fluctuates more or less randomly over the 
crystal by an amount large compared with unity. It follows that the total 
scattering of the capillary waves through large angles is practically the 
same as one would find for an assembly of ions that are positioned at ran- 
dom: the scattered intensity is that due to a single ion multiplied by the 
number of ions. Strictly speaking the single-ion scattering should take 
account of the fact that the ions are in horizontal motion, which leads, as 
we have noted, to a Doppler shift in the frequency of the scattered capillary 
waves, but it can be shown that the effect on the scattering cross-section is 
small. Thus we conclude that a calculation in which we treat the ions as 
independent scatterers ought to be valid, and that the result (3.3.5) ought 
to be unaffected by the presence of any spatial order in the ionic array or 
of any thermal motion of the ions. 

Experimental evidence that this is indeed the case is provided by the 
experimental observation that the ripplon contribution to the inverse 
mobility remains proportional to the temperature even through the melting 
temperature; there is no anomaly in the ripplon-limited mobility at the 
melting temperature of the crystal. 

4.2. The Effect of Anharmonicity in the Holding Potential 

The vertical holding potential is approximately harmonic only for 
small vertical displacements of the ions, significant departures from the har- 
monic form occurring at displacements that can be thermally excited even 
at the low temperatures relevant to the present problem. However, any 
large effect of such anharmonicity would be expected to increase rapidly 
with increasing temperature and so destroy the predicted proportionality 
between inverse mobility and temperature. 

4.3. The Effect of Finite Ripplon Lifetimes 

The theory takes no account of any finite ripplon lifetime, arising from 
ripplon-ripplon interactions. However, theory indicates that this lifetime is 
strongly temperature dependent, 7 so that any effect of a finite ripplon 
lifetime on the mobility would also be strongly temperature dependent and 
would therefore again destroy the predicted proportionality between 
inverse mobility and temperature. 

We conclude that the simplifications introduced in the theory are 
unlikely to have led in any obvious way to a significant error in the predic- 
ted mobility, without at the same time destroying the agreement with the 
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observed dependences on temperature and trapping depth. It seems likely 
therefore that some subtle effect is at work, but we have failed so far to dis- 
cover what it is. 
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APPENDIX 

We describe the calculations that lead to Eq. (3.3.1). 
We use cylindrical polar coordinates (r, 0, z), in which the positive 

z-axis points vertically upwards, the undisturbed surface of the helium is at 
z = 0, and the ion in equilibrium is at r = x0, 0 = 0, z = - z  0. The incident 
capillary wave travelling in the direction 0 = 0 is described by the velocity 
potential 

Oi = Oo exp(ikr cos 0 - io)t) exp(kz) (A. 1) 

(cf. Eq. (3.1.3)), and the corresponding surface displacement in the z direc- 
tion is given by 

= Go exp(ikr cos 0 - i~ot) (A.2) 

where 

( o = ~ b o  (A.3) 
o) 

Motion of the ion is induced by the two effects described in Sec. 3.2, which 
we call the hydrodynamic and electrostatic effects. The motion is in the 
plane 0 = 0, and we denote the displaced position of the ion by the coor- 
dinates r = xl ,  0 = 0, z =  - z  1. 

A.1. The Hydrodynamic Effect 

Let the velocity field derived from the potential (A.1) be v (i.e., 
v = V~bi). This is the field that exists in the absence of the perturbation due 
to the ion. The equation of motion of the ion is then (Ref. 2, p. 35) 

~v 
Md-~t = 2rtpb3 (-~)ion+ f (A.4) 
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where V is the velocity of the ion, the time derivative of the fluid velocity 
is evaluated at the position of the ion, and f is any external force applied 
to the ion. For  a model of the ion in which the bare ion is a hard sphere, 
the surrounding superfluid is incompressible, and the normal fluid density 
is very small, the effective mass M is the sum of the bare mass and half the 
mass of fluid displaced. In practice a value of M can be obtained from 
experiment. 1 

A.2. The Electrostatic Effect 

In order to obtain the force on the ion due to electrostatic forces we 
first evaluate the force on the liquid due to the electric field of the ion, and 
then use the fact that this must be equal and opposite to the electrostatic 
force on the ion. 

We calculate from first principles the electrostatic force on the helium 
due to an externally applied electric field Eo, and we introduce some clearly 
defined approximations. Using the fact that a polarized dielectric (polariza- 
tion P) is equivalent to a charge density equal to - d i v  P throughout its 
volume together with a charge per unit area over its surface equal to the 
normal component of P, we find that the total force on the helium can be 
written 

F:yEo(P'dS)-f EodivPdz (A.5) 

where the two integrals are over the surface and the volume of the helium 
respectively. With the use of some straightforward vector identities, and the 
fact that curl Eo = 0, this is easily transformed to 

F = f  (P .V)  Eo dT (A.6) 

For a dielectric that is described by a dielectric constant E, P = eo(e - 1 ) E, 
where E is the total electric field in the material, due to both Eo and the 
field produced by the polarization. Hence we have 

V = eo(e - 1) f (E. V) Eo dr (A.7) 

But E differs from E0 by terms proportional to P and hence to the suscep- 
tibility ( e -  1 ). For liquid helium ( e -  1) is equal to 0.0572, so if we are con- 
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tent with results that are accurate to within a few percent we can neglect 
terms of order ( e -  1) z. Equation (A.1.4) then reduces to 

F : �89 1) f V(Eo 2) dv : l~o(~-  1) f E g dS (A.8) 

where we have again used curl Eo = 0. 
Using Eq. (A.8) we find that the change in electrostatic potential 

energy when a charge e is brought from r = 0, z = - o o  to r = 0, z = - z l  in 
the presence of a surface displacement f(r, 0) (A.2) is given by 

e2(~-  l) f - ~ d Z f o d 2  r 1 (A.9) 
U ~-~-~-eo J - ~  [>2 + (Izl + ~)2]2 

Therefore the change in potential energy if f is small is given by 

e 2 ( t - 1 )  =~ ~ 0_~[ 1 ] 
6 U :  32---2-- % f~  dz fo dar (r 2 +z2) i f(r, 0) (A.10) 

e2(r - -  1 ) f o  1 ~ f ~  dZr (r 2 + z~)2 f(r, O) (A.11) 

If ~(r) is given by (A.2) the integral in (A.11) can be easily evaluated in 
terms of Bessel functions. Making the simple generalization required if the 
ion is at r = x~ instead of r = 0, we obtain 

Aok 
6U= - - -  Kl(kzl)  fo exp i(kxl - cot) (A.12) 

ZI 

where K~ is a modified Bessel function? 
It follows that the components of the electrostatic force acting on the 

ion in the presence of the surface displacement (A.2) are given by 

and 

F~- 
OfiU iAo k2 

~X 1 Z 1 
- -  K~(kz~) fo exp i(kx~ - cot) (A.13) 

g6U Ao k2 
F=-  - -  Kz(kzl) fo exp i(kxl - cot) (A.14) 

~Z 1 Z 1 

A.3. The Equation of Motion of the Ion 

The overall equation of motion of the ion is obtained from Eq. (A.4) 
by substituting in place of f the sum of the force given by (A.13) and (A.14) 
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and the force derived from the static holding potential (3.1.1). Writing the 
components of the ionic displacement parallel and perpendicular to the 
surface as X and Z respectively, and assuming that these displacements are 
small, we find 

~ + 1 X =  ko) . Hx( kzo ) ~ o exp i( kx o - cot) (A.15) 
rx 

and 

where 

2+12+co~z= - iko).Hz(kzo).r  ) (A.16) 
Tz 

2rcpb3 exp( , pAo 
Hx(7) = M - 7) - M--~7 K'(~) (a.17) 

and Hz(7) is given by Eq. (3.3.2). The relaxation times r x and rz describe 
the damping of ionic motion in the horizontal and vertical directions 
respectively. We have made use of the fact that co and k are related by the 
dispersion relation (3.1.4). As will be proved in detail in a later paper, ionic 
motion in the horizontal direction contributes little to the ripplon-limited 
inverse mobility, and we need not therefore make further use here of 
Eq. (A.15). 

A.4. Calculation of the Cross Section ~e 

It is easily proved that the total energy per unit area in the capillary 
wave described by Eq. (A.1) is equal to (1/2)pkr (half the energy is 
kinetic and half is due to increased surface area). It follows that the energy 
flux (per unit length) associated with the capillary wave is given by 

W 1 2dco 3 2 
= -~ Pkr --~ = -~ PcoOo (A.18) 

&o/dk being the group velocity of the wave. At the same time the rate at 
which energy is being absorbed by the ion is given by 

dE M 
d--/= 2z z �9 1212 (A.19) 

Using Eq. (A.16), we find that 

dE k2o)4M 1 
~ -  2 z ~ "  H~(kz~ ~ (A.20) 

(D 2 

(COo 2 _ co2)2 + 
T z 
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I t  fo l lows  tha t  the  c ros s - sec t ion  o- e is g iven  by 

2Mk2co 3 1 
�9 g ~ ( k z o ) .  (1 .21)  

aE = 3prz ( co2_  co2)2 + co2/z ~ 

E q u a t i o n  (3.3.1) fo l lows  i m m e d i a t e l y  if cooz >> 1 a n d  c o . c o  o. 
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