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We present a microscopic model of the scattering of quasiparticles in super- 
fluid 3He-B by a moving solid surface. This is used to calculate the thermal 
damping of  a wire resonator in the low temperature regime. The calculated 
damping force is in good agreement with experimental results when the 
quasiparticles are assumed to be scattered diffusely by the wire. 

1. INTRODUCTION 

Superfluid 3He-B can now be cooled to a temperature regime in which 
the quasiparticle excitations are so few in number that interactions between 
them may be neglected. In this ballistic quasiparticle regime the interaction 
of excitations with the superfluid ground state can be studied in great 
detail. 

Vibrating wire resonators are often used as sensitive probes of the 
excitations. At wire velocities below the pair-breaking critical velocity, l the 
dominant drag force exerted by the superfluid is thought to arise from 
the scattering of quasiparticle excitations at the wire surface. If the effect of 
superflow on the excitation spectrum were neglected, there would be an 
equal flux of quasiparticles and quasiholes incident on a given surface 
element of the wire. Quasiparticles and quasiholes travelling in the same 
direction have almost opposite momenta and so only a very small drag 
force would be exerted, in disagreement with experiment. 2 However, the 
excitation spectrum is in fact changed by the presence of superflow. Some 
of the excitations moving into the superfluid back-flow around the wire are 
unable to continue in propagating states. These excitations change their 
particle/hole character and move backwards along their original trajec- 
tories, a process known as Andreev reflection. This effect gives rise to an 
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Fig. 1. Flow contours around a wire cross-section. Contours  of flow speed are shown in a 
frame of reference in which the wire is stationary and the 3He-B is moving to the right. The 
inset is a sketch of the experimental wire resonator geometry. 
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imbalance in the particle/hole flux incident on each surface element of the 
wire and results in a much larger drag force. 

We have calculated the drag force on a wire in a previous paper. 3 In 
that paper it was assumed that excitations hitting the wire surface were 
scattered specularly. Electron micrographs of real wires show that they 
have rough surfaces so a diffuse scattering model is likely to be more 
realistic. Therefore in this paper we describe calculations of the thermal 
damping force in the ballistic regime, when the excitations are scattered 
diffusely by the wire surface. A brief report on this work is published in 
Ref. 4. 

The calculation is done in a frame of reference in which a chosen 
cross-section of the wire is stationary. The superfluid velocity Vs round the 
wire is a linear combination of the uniform flow V at large distances and 
a dipolar flow centred on the wire axis as shown in Fig. 1. The inset to 
Fig. 1 shows the approximate geometry of the vibrating wire resonator 
used for the measurements described in Ref. 2. The active part of the 
resonator is a 4.5 #m diameter NbTi filament forming an approximately 
semicircular loop of radius 1.5 ram. 

2. M O D E L  OF THE S U P E R F L U I D  

As in Ref. 3 we model the B-phase of superfluid 3He in low magnetic 
fields by an isotropic Fermi superfluid described by a scalar order parameter 
A. The excitation spectrum is calculated by solving the Bogoliubov equa- 
tions. 5 Since v s varies on a scale long compared with the coherence length, 
the derivative terms in the equations can be neglected. The quasiparticle 
energy is 

where p is the momentum of the excitation and ~ = vF(FPl- PF). We define 
to be the unit vector in the direction of p. In Eq. (1) we can replace p by 

PFP with quasiclassical accuracy because [Vsl < (A/EF) V F .  The excitations 
can be distinguished as quasiparticles if ~ > 0 and quasiholes if ~. < 0. In 
either case the group velocity is given by 

vG=vs  2 (2) 

At a point on the surface of the wire where the outward normal is fi, Vs is 
tangential. As a result vG. fi has the same sign as ~- fi for quasiparticles, and 
the opposite sign for holes. Quasiparticles incident on the surface have 
~. fi < 0 and quasiholes have ~. fi > 0. 
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3. INCOMING EXCITATIONS 

Incoming excitations, which come from the bulk of the superfluid and 
hit the wire, are assumed to be in thermal equilibrium in the frame of 
reference of the container. In our frame of reference the container is moving 
with velocity V. We label incoming excitations with momenta p' and out- 
going excitations with momenta p. At low temperature the incoming excita- 
tions have a Boltzmann-like distribution function, but their energies in the 
container frame of reference are E - p ' .  V. Their distribution function is 

f(p ' )  = e x p [ ( E -  p '-V)/kT] (3) 

in a volume d3p'/(2Tch) 3 of momentum space. 
The flux of incoming excitations hitting a surface element fi dS of the 

wire is 

d3p ' 
]j-fi[ = 2  f ~  tv G-fi[ f (p')  (4) 

By using Eqs. (1) and (2) this can be written as 

]J "ill =4VFN(O) f d~, f fv s+a  IP' "ill f (P ' )dE  
O.a<o 4~ 

(5) 

In this expression the two spin states and the states for quasiparticles and 
quasiholes have been combined. 

In calculating the total drag force on the wire, it is convenient to 
separate the force into contributions from the incoming and outgoing 
excitations. This separation may be visualised by imagining that an incom- 
ing excitation is absorbed by the wire and then re-emitted. In the case of 
specular scattering the incoming and outgoing excitation momenta are 
related uniquely by the identity 

2(~'. fi) fi = ~ ' -  ~ (6) 

The expression for the total force on the wire given in Ref. 3 can be 
separated into incoming and outgoing contributions by means of this 
identity. The incoming contribution to the force is exactly the same in the 
diffuse scattering model as in the specular scattering model of Ref. 3. In our 
present notation the incoming force is 

F < pevraN(O)~+~dEexp( E) f f  ~ j ~ -- ~-~ d0 K~(E, 0) (7) 
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where 

K p = - f o . . < o  2~(P' "9)(~ "fi) exp (Pk@)  d~o' 
p ' -vs<E--A 
p ' . V < E - - A  

(8) 

These expressions are obtained from the incident flux given by Eq. (4). The 
integrand in Eq. (4) is simply multiplied by pF[}" 9, which is the compo- 
nent of momentum in the V-direction carried by the incident excitation. 

4. OUTGOING EXCITATIONS 

In order to have a tractable model of diffuse scattering we assume that 
the outgoing excitation momentum has a random direction. The only 
restrictions are that the excitation is moving away from the surface, so that 
vc. fi > 0, and that it is in a propagating state. This condition means that, 
given the momentum direction 0 and the energy E (which is conserved in 
the scattering by the wire), the dispersion relation (1) determines a real 
value of ~_ for the outgoing excitation. This point is considered further in 
the next section on Andreev reflection. 

Each outgoing excitation removes a momentum component p . 9  in 
the superflow direction. The total contribution to the drag force from out- 
going quasiparticles which have been scattered directly into propagating 
states is 

Fqp - ~2  f dE exp -- dO I/E, O) J/E, O) (9) 
-o(3 

where 

p .vs<E--A 

p' .vs<E--A 
p ' -V<E--A 

0'-fi exp ( ' P - ~ )  df~ ~, 

(lo) 

The conditions on O-fi and O'.fi ensure that the integrals Ip and Je are 
taken over outgoing and incoming quasiparticles respectively. The 
integrand of Ip resolves the momentum carried away by the scattered 
excitations in the V-direction. The restriction p-v s < E - A  on the integral 
/t, ensures that the outgoing excitations are in propagating states. 
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The factors in the integrand of J~, are derived from the flux of incident 
quasiparticles. The limits of integration indicate that the incoming 
quasiparticles are moving towards the surface, and that they are in 
propagating states when they hit it. There is an additional restriction on Je  
that the incoming quasiparticles were in propagating states when they were 
thermally excited in the container frame of reference, in which the super- 
fluid velocity is u 

5. ANDREEV R E F L E C T I O N  

Physically the restriction of the excitations to propagating states is 
enforced by Andreev reflection. For  example, a quasiparticle must satisfy the 
condition p ' -V  < E - A  at large distances from the wire. If it approaches a 
region where the superfluid velocity is such that p' .v  s > E - A  it will be 
Andreev-reflected, because its excitation energy ~ is imaginary, and its 
wave function is evanescent. This gives rise to a difference between the 
currents of quasiparticles and quasiholes hitting a particular surface ele- 
ment fi dS of the wire, because quasiparticles moving towards the surface 
have ~- fi < 0 but quasiholes have ~. fi > 0. 

In reality, the order parameter components are depressed from their 
bulk values within about one coherence length from the wire surface. In 
this paper we neglect alterations to quasiparticle trajectories on this length 
scale, and explain the drag force as the effect of the variation of the super- 
fluid velocity on a scale comparable with the diameter of the wire. 

In the specular case an excitation incident on the wire surface is 
always scattered into a propagating state. However, in our model of diffuse 
scattering the excitation loses all memory of its original state and is scat- 
tered at a random angle. Some of the incident excitations will be scattered 
into non-propagating states. To account for this we assume that a quasi- 
particle scattered into a non-propagating state is Andreev reflected close to 
the wire surface. It returns to the wire as a quasihole where it is again 
scattered through a random angle. If the quasihole is scattered into another 
non-propagating state, it is Andreev-reflected again and returns to the wire 
as a quasiparticle. This continues until the excitation is finally scattered 
into a propagating state. 

Figure 2 shows a simple picture of the condition PFP" Vs < E- -  A that 
the excitation state labelled with p is a propagating one. If E <  A -  PF Ivsl 
there are no directions ~ for propagating states, and if E >  A + PF Ivsl all 
directions give propagating states. If A - PF ]Vs[ < E < A + pF [vsl we draw 
a cone with semivertical angle ~o = a r c c o s [ ( E -  A)/pF Ivs[ ] in momentum 
space about Vs as axis. The state p is propagating if and only if p lies 



Diffuse Scattering Model of the Thermal Damping of a Wire 87 

Fig. 2. Andreev reflection of scattered quasiparticles. Arrows show the normal fi 
and superfluid velocity v s at the surface of the wire. A scattered quasiparticle could 
escape in the direction ~ because it makes a greater angle than ~'0 with Vs (see text). 

outside the cone. The other  condi t ion ~ - f i > 0  (for an outgoing quasi- 
part icle)  slices the cone in half  th rough  its axis. 

With  our  assumpt ion  of r andom-ang le  scattering by the wire surface, 
the probabi l i ty  of  a scat tered quasipart icle escaping is A = �89 + c o s  ~90). 
With  probabi l i ty  1 -  A it will be Andreev-reflected as a quasihole if it was 
originally a quasiparticle.  After Andreev reflection the quasihole is moving  
towards  the surface but  its value of p is unchanged.  The surface scatters it 
at  r a n d o m  into a state with a new value of p such that  ~ . f i  < 0. With  
probabi l i ty  A this value of p lies outside the cone and the quasihole escapes, 
and with probabi l i ty  1 - A  it is Andreev-reflected a second time into a 
quasipart icle and it is scattered again by the surface. The process can be 
indefinitely repeated. The result is that  if the quasipart icle escapes into the 
bulk after an odd n u m b e r  of scatterings by the surface it is a quasiparticle,  
and if after an even n u m b e r  of  scatterings it is a quasihole. The  total  
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contribution to the drag force F~p from outgoing excitations resulting from 
incoming quasiparticles can be calculated from Eq. (9) by replacing the 
factor Ip with the factor 

where 

Ip (1 -A)In  
I = - -  (11) 

A(2-A) A(2-A) 

IH= f~.,<o ~ . 9  d f ~  (12) 
p . v s < E - - A  

An identical contribution results from excitations scattered from incoming 
> holes. Thus the total force is F =  F < + 2Fqp for a given cross section of the 

wire moving with velocity V. 

6. COMPARISON WITH E X P E R I M E N T  

To compare this with the experimental data obtained on a vibrating 
wire loop by Fisher et al., 2 the damping force is integrated over a time 
period of oscillation and around the length of the loop which is assumed 
to be simicircular. The force is then normalised by the initial damping force 

 emperatoro, /" -- 

~ 7 w z  I-~187 /. f//~ll~ Specularmodel model ==~llvl 

VB I 0 1 2 3 4 
Reduced velocity, pf v/kT 

Fig. 3. The normalised thermal damping force as a function of 
reduced wire velocity pFV/kT. The solid curves are our theoretical 
predictions for specular and diffuse scattering of quasiparticles. These 
are normalised at low velocity to the slope of the experimental points, 
shown by symbols. 
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per unit (PF V/kT) and is shown in Fig. 3 along with the experimental data. 
The result of the specular model is also shown for comparison. When 
plotted in this way the experimental data is seen to be temperature inde- 
pendent as predicted. Also the dependence o n  ( p F V / k T )  is very close to 
that obtained from the diffuse model whereas the specular model is less 
satisfactory. It is more difficult to comment on the absolute magnitude of 
the damping force owing to the exponential temperature dependence and 
the difficulties of thermometry at these very low temperatures. However, 
using a quasiparticle black body radiator, Fisher et al. 6 have deduced the 
damping of a vibrating wire resonator as a function of the quasiparticle 
number density. Their results are in good agreement with the calculation 
given above, with an estimated uncertainty of 20 % arising from the non- 
ideal geometry of a real vibrating wire loop. 
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