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Much empirical data indicate the existenece of deviations from Vegard's law 
(from a linear dependence of the cell parameters or the interatomic distance 
on the composition of a solid solution). Usually these deviations are posi- 
tive and are described by a simple parabolic function of the composition. 
The model we propose considers explicitly displacements about the impurity 
defect of both the nearest neighbors and the next-nearest neighbors, and in 
some cases the third-nearest neighbors. We show that displacements of near- 
est neighbors completely compensate each other, while second-order shifts 
(of next-nearest neighbors) lead to a positive deviation (parabolic in shape) 
of the cell parameters vs. composition. The magnitude of the deviations de- 
pends on the structure of the solid solution (the coordination number) and 
the difference between the cell parameters of the pure components. The cal- 
culation for solid solutions with structures of the NaCI, CsCI, and ZnS 
types is compared with available experimental data. 

In the seventy years since the observation by Vegard [i] of a linear dependence of the 
cell parameters of a solid solution on composition 

a = x la  1 + x2a~, (1) 

many confirmations of this rule have been found, as well as a large number of deviations 
from it. Generally with an increase in the accuracy of the experimental determinations, 
the number of observed deviations from Vegard's law increases. 

Many attempts have been made to explain and predict deviations from Vegard's law [2- 
5]. Most of these attempts have been based on first-order and second-order elasticity theory 
[2-4] and have been used to explain deviations from Vegard's law in binary metallic alloys. 
As shown by analysis of these models in [6], the fraction of correct predictions is not great 
(about 40% on the average). However, in [7] a model based on elasticity theory was used 
successfully to explain the observed deviations from Vegard's law for the system rutile TiO 2- 
cassiterite SnO 2. Somewhat earlier [8], the reasons for the deviations from Vegard's law 
for essentially ionic solid solutions (halides, oxides, etc.) were separated into geometric 
and chemical factors. 

If substitution of atoms occurs at several nonequivalent sites of the structure, then 
deviations from Vegard's law (including negative and variable-sign deviations) often can 
be explained by preferred filling of one or several sites [9]. The conditions for satisfac- 
tion of Vegard's law for multiple-sublattice solid solutions of the perovskite type [i0, 
ii] or spinel type [12-14] were found using the quasielastic bond model. 

Small positive deviations from Vegard's law can also be described using the volume addi- 
tivity law (Retgers's law) [15], which in the case of a cubic crystal has the form: 

a ~ = xla~ § x2a~. ( 2 )  

the observed deviations from Vegard's law display a parabolic dependence In most cases, 
on composition: 

a = x~a~ § x~a2 § Aa  = z~al ~- x~a2 § xlx26. (3) 

The goal of this report is to analyze the possible geometric reasons for the deviations 
from Vegard's law for single-site substitutional solid solutions (insulators and semicon- 
ductors). 
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Fig. i. Schematic variation of the bond lengths of components AC and BC as a 
function of composition: VCA) virtual crystal approximation, no relaxation, 

= 0, Vegard's law is satisfied; RP) total relaxation, E = i, individual bond 
lengths are equal to their values for the pure components; Rexp) possible real 
change in the individual bond lengths as a function of composition. 
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Fig. 2. Variation of the interatomic distances in the solid solution (Ga x- 
In1_x)As according to EXAFS data [19]: a) distances between nearest neighbors 
In-As and Ga-As. The average distance R = xiRin_As + x2RGa_As closely corre- 
sponds to Vegard's law; b) distances between next-nearest neighbors As-As; c) 
distances between next-nearest neighbors In-In, Ga-Ga, and Ga-In. 

LOCAL DISPLACEMENTS OF ATOMS IN THE STRUCTURE OF 
A SOLID SOLUTION 

If the solid solution follows Vegard's law (I), then the average bond lengths in its 
structure can be determined from the analogous additivity rule: 

R(x) = R1(x) = R~(~) = x~B1 § z2R~ = R2 -- xiAB = R~ + x~R, (4) 

where R z and R 2 are the interatomic distances in the pure components; &R = R 2 - Rz. The 
assumption that all the individual bond lengths in the mixed crystal are equal to their aver- 
age values according to rule (4), i.e., relaxation is completely absent, corresponds to the 
idea of the so-called virtual crystal (Fig. i). 

For the other assumption, that all the atoms in the solid solution retain their own ini- 
tial dimensions, i.e., for maximum relaxation of the structure, the individual bond lengths 
are equal to their lengths in the pure components (Rz and R2). This hypothesis leads to 
the "bond alternation" model in the solid solution. 

Both extreme cases considered above agree equally well with Vegard's law, as shown schem- 
atically in Fig. i. It is clear that the actual change in the different type of bond lengths 
should be found between the indicated limits. In other words, partial relaxation of the 
structure also does not contradict Vegard's law (see Fig. i). 

Determination of the degree of relaxation of the structure, i.e., the local displace- 
ments of the atoms, is an independent and rather complicated experimental and theoretical 
problem. It is especially difficult to obtain information about the local structure using 
traditional methods, which provide information about the average coordinates of the atoms 
in the crystal. Nevertheless, early x-ray studies of the solid solutions KCI-KBr and KCI- 
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Fig. 3. Functional relationship between the 
compliance parameter c s and the first coordina- 
tion number v I. The solid curve is the calcu- 
lation using Eq. (15). 

RbCI (i:i) carried out by Wasastjerna [16] observed a decrease in the intensity of reflec- 
tions compared with the pure crystals, which cannot be explained only by thermal vibrations 
but rather require hypotheses of significant static displacements of the ions from their 
ideal positions. The local displacements of those atoms which are found in a mixed environ- 
ment (K in the first case and C1 in the second case) proved to be especially greater, on 
the order of the difference between the interatomic distances of the pure components. The 
x-ray study of alloys in [17] also showed that when the spatial symmetry of the pure compon- 
ents is retained by the mixed crystal, weakening of the intensities of the reflections and 
appearance of regions of diffuse scattering near them are evidence for local deformation 
of the structure of the alloy at a distance of several bond lengths about the impurity atom. 
An attempt to analyze such effects in [18] led to the conclusion that local shifts are on 
the order of the difference in interatomic distances, but no rigorous correlation was ob- 
served. 

It became possible only about i0 years ago to directly determine the different types 
of individual bond lengths in mixed crystals using EXAFS (extended x-ray spectroscopy of 
the absorption edge fine structure). Using this method, in 1979-1980 appreciable local dis- 
placements of atoms about an impurity were observed in metallic alloys, and then in mixed 
chalcogenides. In Fig. 2a, as an example we show the experimentally measured [19] depend- 
ences on composition o~ the nearest-neighbor distances Ga-As and In-As in the solid solution 
(Ga, In)As with the sphalerite structure (coordination number 4). We can see that the maxi- 
mum change in the bond length in a dilute solution is only 20-25% of the difference between 
the bond lengths of the pure components ~E = R 2 - R I (R 2 > Rl). Thus the real interatomic 
distances are quite different from the virtual crystal model, although the weighted-mean of 
these distances is almost exactly described by Vegard's law. 

Another observation made in this experiment [19] was that the width of the distribu- 
tions of the Ga-As and In-As distances in the solid solution are virtually the same as in 
the pure crystals, in accordance with the fact that the immediate environment of both cations 
is homogeneous and consists only of As atoms. In contrast, about As we observe a bimodal 
distribution of distances, corresponding to a mixed cationic (Ga, In) environment for this 
atom. 

The distances between the next-nearest neighbors (cation-cation and anion-anion) are 
quite different from one another in character. The EXAFS data clearly indicate the existence 
of two different As-As distances in the solid solutions: the shorter distances correspond 
to As-Ga-As configurations, and the longer distances correspond to As-ln-As configurations 
(Fig. 2b). The weighted-mean of these two distances corresponds to u law, which is 
shown in Fig. 2b by the solid line. From these data it is clear that the anionic packing 
in the solid solution is strongly distorted compared with the regular cubic (closest) pack- 
ing of the anions in the pure components. 

The cation-cation distances of the next-nearest neighbors give a completely different 
pattern. As shown by Fig. 2c, all the interatomic distances Ga-Ga z In--In, In--Ga vary accord- 
ing to Vegard's law (within deviation limits on the order of 0.05 %), as follows from the 
virtual crystal model. This means that in the mixed-composition (cationic) subiattice, in 
contrast to the unmixed (anionic) sublattice, the atoms occupy almost regular ties and the 
distortions of the ideal packing are relatively small. 

Such results are mainly obtained by the EXAFS method for ionic solid solutions with 
the NaCI structure (coordination number six): (K, Rb)Br and Rb(Br, I) [20]. However, in 
these two cases, the maximum change in the distances is about twice that for essentially 
covalent crystals with the ZnS structure, and is about 40%. Relatively large changes in 
the distances of about 40% were also observed for Sr-substituted fluorite CaF 2 [21]. In 
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these solutions, the mixed sublattice can be represented as a slightly distorted packing, 
while the common atoms are shifted from the ideal positions. The local structure of the 
substitutional solid solution observed by the EXAFS method agrees well with numerous theo- 
retical calculations of structure distortions about an impurity in an ionic crystal [22-26]. 
A typical result of such calculations is the fact that the shift of nearest neighbors about 
the impurity in an NaCI structure is about half the difference between the interatomic dis- 
tances: 6R = (I/2)AR. The shifts of the next-nearest and more remote neighbors decrease 
approximately in proportion to the square of the interatomic distances, as follows from the 
elastic continuum model in [27]. 

A more detailed picture of the local displacements is given by modeling by the DLS 
[distance least squares] method, which involves least-squares optimization of the individual 
bond lengths, adjusting them to some standard distances (the latter for solid solutions are 
simply the distances in the pure components). Application of the DLS method for isovalent 
solid solutions with different structures allowed Dollase [28] to introduce the concept of 
"site compliance," by which is meant the real fraction of increase (or decrease) in the bond 
length in the infinite dilution limit (very small number of impurity atoms) relative to the 
difference between the bond lengths of the pure components. Analyzing his results [28], 
Dollase concluded that the compliance parameter c s is inversely proportonal to the coordina- 
tion number of the nearest neighbors of the impurity, since it is specifically those neigh- 
bors which undergo the greatest displacement (Fig. 3). Thus large changes in the bond 
lengths characterize less closely packed structures (ZnS, ReO3) , while small changes charac- 
terize the more closely packed structures (NaCI, CsCI). It is important to note that DLS 
calculations agree well with experiment. Thus the predicted relaxation of s bond lengths 
in an NaCI structure is about 50%, while it is about 20% in a ZnS structure, corresponding 
closely to experimental data (40-50 and 20-25%, respectively). 

FIRST-ORDER SHIFTS IN SIMPLE STRUCTURES 

The experimental and theoretical data considered in the preceding section are evidence 
that the greatest displacements in the structure of a solid solution (AxzBx2)C are experi- 
enced by the C atoms in the sublattice in which mixing does not occur, while the A and B 
atoms form almost an undistorted packing. Further consequences of this situation are as 
follows. 

If the environment of the common atom C is homogeneous, i.e., consists only of type 
A atoms or only of type B atoms, then all the A-C or B-C distances are identical and are 
equal to the average values of R(x) (4). If the environment of the C atom is mixed, i.e., 
consists of some number of A atoms and some number of B atoms, then bond chains of the A-C-B 
type arise in the structure as well as a shift of the C atom from its ideal position in the 
middle between neighbors toward the smaller atom. For example, let the A atom be larger 
than the B atom. Then the C atom is shifted from the center of the A-C-B chain toward B, 
and the A-C distance becomes equal to R + u, where u is some shift of the C atom. 

The change in the C-B distance in the A-C-B chain will depend on the bond angle~ A-C-B, 
and to a first approximation may be represented as: 

chains appear with angles 180 ~ , i09~ ', and 70~ ' 
case 

(5) U I ~ U COS ~ 

where ~ = ZA-C-B. 

In an NaCl structure (octahedral environment), the A-C-B chain is linear, e = 180 ~ , 
and consequently u I = -u 0. 

In a ZnS structure (tetrahedral coordination), ~ = i09~ ' and therefore u z = -i/3u. 

In a CsCI structure with a cubic environment of the central atom, three systems of bond 

From Eq. (5) it follows that in this 

, i ul=• 

Thus i n  t h e  f i r s t  a p p r o x i m a t i o n  c o n s i d e r e d  h e r e ,  m u t u a l  C o m p e n s a t i o n  o f  bond l e n g t h s  
a b o u t  t h e  i m p u r i t y  f o r  an NaC1 s t r u c t u r e  o c c u r s  owing t o  t h e  change  i n  t h e  l e n g t h s  o f  t h e  
two bonds  by +u and - u ,  r e s p e c t i v e l y ;  i n  a ZnS s t r u c t u r e ,  t h e  s h i f t  o f  t h e  common atom a l o n g  
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one of the bond lines by u is compensated by the change in the lengths of the other three 
bonds in the tetrahedron by -i/3u each. In a CsCI structure, the shift of the atom from 
the center of the cube simultaneously increases the length of one of the bonds by u and de- 
creases the other by -u, but in addition the increase in the bond length by u is accompa- 
nied by shortening of the other three bonds by -i/3u, and a corresponding decrease in the 
bond length by -u is accompanied by lengthening of the other three bonds by i/3u. 

In other words, first-order shifts completely compensate each other and cannot explain 
the observed deviations from Vegard's law. 

RADIAL FORCE MODEL IN A STATISTICAL SOLID SOLUTION 

Let us now attempt to estimate the magnitude of the first-order shifts using a simple 
radial force model. Let us designate as E(R) the energy of some pair of atoms bonded with 
each other, separated by the distance R. The number of A-C bonds in A-C-A chains will be 
proportional to the probability of encountering these pairs of bonds in the solid solution, 
i.e., x12; the number of A-C bonds in A-C-B chains will be proportional to xlx 2. Similarly, 

X 2 the number of B-C bonds in B-C-B chains will be proportional to 2 , and in B-C-A bonds it 
will be proportional to x2x I. 

Then the change in energy upon formation of the solid solution can be represented as: 

AE = ~%' {Xl 2 [E 1 (n)  - -  E 1 (~1)] I x 2 [82 (~) __ ~2 (n2)] ~- XlX2 [El (R1)--  E1 (nl) ]  ~- Z2Xl [82 (~2) - -  E2 (n2)] }- ( 6 ) 

Here N is Avogadro's number; v is the coordination number; eI(R I) and g2(R2) are the ener- 
gies of pair interactions in the pure components; El(R) and s2(R) are the energies of the 
two_types of bonds (A-C and B-C) at the average distance R in symmetric chains of bonds; 
st(R1) and g2(R2) are the energies of the same bonds in asymmetric chains of bonds. 

The distances Rl and R2 depend on the shifts of the C atoms in accordance with the mag- 
nitude of the bond angle, as shown in the preceding section. For example, for an NaCI struc- 
ture: 

RI = R--U. 

Let us expand the energy AE in a Taylor series, limiting ourselves to second-order terms 
and considering that in the equilibrium state e'(R) = 0 (at T = 0 K): 

(R) - -  e (Ro) = ~ e ~ (Ro) (R - -  Ro) 2. 

If we also assume that the properties of the components are similar, i.e., ez"(R z) = s2(R 2) = 
g"(R), then from (6) we obtain: 

AE = "7 Nv8" (B) -- Bi)2 + -- R2) ~ + -- -- ~j" + xlx 2 (R -- l~ 2 + u)~]. (7) 

Using Vegard's law (4), let us rewrite (7) in the following form: 

AE = ~ Nve" (R) [ 2x~x2 (AR) 2 + (x25R - -  u) ~ + ( - -  x , A R  + u)~]. ( 8 )  

Minimizing the change in energy AE relative to the shift u, we obtain the condition: 

daE xlx 2 . . . .  
d~ - -  - ~ -  Iv ve (R) [ - -2x2AB + 2u - -  2x lAR  + 2u] = 0, 

F rom t h i s  4u  = 2 5 R ( x  z + x 2 ) .  

S i n c e  x l  + x2 = 1 ,  we f i n a l l y  h a v e  

l 
u= ~ AR. (9) 

This result means that for an NaCI structure, the shift of the common atom is half the 
difference between the interatomic distances in the pure components. This estimate agrees 
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closely with the experimental data in [20] and the compliance parameter of the DLS method 
in [28]. 

In solid solutions with the ZnS structure, the shift of the common atom when it has 
an asymmetric environment [i.e., in the A-C-(B) chain] by u is coupled with a simultaneous 
change in the lengths of the other three B-C bonds by -1/3u. Consequently, the individual 
bond lengths are equal to: 

R2 = R - : - u  = R2--zI~R + u, 
( 1 0 )  

t ( 3 X ) R 1  = B - -  7 u  = R 1 + x 2 A R - - T u .  

The radial force model was already used earlier in [29] for a mixed-composition tetra- 
hedral environment of the central atom, and the following value of the primary shift was 
found: 

3 
u =  T ~R.  ( l l )  

The value obtained for the primary shift is consistent with the displacements of the atoms 
observed by the EXAFS method (by 20-25% of the bond length in the pure component) and with 
those predicted by the DLS method [28] (compliance parameter c s = 0.84). 

As shown in the preceding section, in solid solutions with a CsCI structure, each prim- 
ary shift by +u is accompanied by three shifts by u Hence the total change in energy 
in the radial force approximation can be expressed as: 

M i n i m i z a t i o n  o f  (12)  r e l a t i v e  t o  u g i v e s :  

- ( ~ dAE _ zlx~ Nve" (B) -- 2xiAB -- 2u -- 2xoAR + 2u + T u = 0, (13) 
du 2 

from this we have u = (3/8)AR. 

This result again agrees well with the estimate of the site compliance in a CsCI struc- 
ture: c s = 0.38 [28] (compare with 3/8 = 0.375). 

Generalizing the estimates obtained above for the primary shifts of the central atom 
of the coordination polyhedron when it has an asymmetric environment, we can write the ex- 
pression: 

u =  --3~R. 
�9 " ; 1  " (14) 

where ~i is the first coordination number. This corresponds to the conclusion by Dollase 
[28] that the site compliance is inversely proportional to the number of ligands. In other 
words, we obtain the following simple connection between c s and v: 

c= = 3/% ( 1 5 )  

which  i s  compa red  in  F i g .  3 w i t h  t h e  r e s u l t s  o f  t h e  DLS me thod .  

SECONDARY SHIFTS AND DEVIATIONS FROM VEGARD'S LAW 

The primary shifts of neighbors of the central atoms of a mixed-composition coordination 
polyhedron, which can be estimated using formula (i), involve second-order and higher-order 
displacements. In fact, let us consider an octahedral environment with one substituted atom 
at the vertex of a regular octahedron, while starting from the assumption of regular undis- 
torted packing of the mixed-composition sublattice (Fig. 4). We can see that the shift of 
the C atom from the center of the oetahedron along the bond direction causes not only changes 
in the two bond lengths by +u and --u respectively, but also in the remaining four bonds. 
It is easy to determine that the change in the lengths of symmetric bonds will be 61 = 
v~ ~ + u 2 - R ~ u2/(2R) (to accuracy up to second-order terms). In the case of two substi- 
tuted atoms at the vertices of the octahedron (Fig. 5), all the bonds undergo additional 
secondary shifts by 62 = u2/R, and in the case of three substituted atoms (Fig. 6) by 63 = 
3u2/2R. 

73 



u 2 

cR=e  

Fig. 4 

u 2 
@R= 2 -- @R= �9 

R 
3u 2 .2 

dR =2 2R OR= 22-- ~ 

Fig. 5 Fig. 6 

Fig. 4. Octahedral environment of the central atom with one 
substituted vertex (~R is the change in the distances to the 
next-nearest neighbors; P is the probability of the configura- 
tion). 

Fig. 5. Octahedral environments with two substituted vertices, 
the changes in the bond lengths 6R corresponding to them and 
the probabilities P. 

Fig. 6. Octahedral environments with three substituted ver- 
tices, the changes in the bond lengths 6R corresponding to them 
and the probabilities P. 

The general expression for the secondary shifts are the following: 5 i = (i/2)(u2/R) 
(i = i, 2, 3). The doubled and tripled values of the shifts for i = 2 and i = 3 are con- 
nected with the fact that all the ligands become next-nearest neighbors of the two (i = 2) 
or three (i = 3) substituting atoms. 

The fractions of different types of configurations for the different compositions can 
be easily calculated using Newton's binomial formula 

P = (xl + x2)v" (16) 

The probabilities of the individual configurations are determined by the expression 

P~ = m~xT-~x~ , (17) 

where ~ is the number of different types of atoms at the vertices of the polyhedron; m i is 
the multiplicity of the given configuration (corresponding to the coefficient in Newton's 
binomial). The multiplicity m i can be easily determined from the obvious relationship 

(18) 
n ~ 

where n is the symmetry number of the regular coordination polyhedron; n i is the symmetry 
number of the i-th configuration (the "substituted" polyhedron). For example, the multi- 
plicity of the first type of configuration in Fig. 4 is 

48 
m1=T=6, 

74 



a b 

\ \>,V 

_ +du uZl .... /2u+u2l+W2u u 2) 
~R-~ ~ +~ /  ~ - q  -5 ~ /  zl--5 +~/ 

_ u+u 2 

Fig. 7 Fig. 8 

4u 2u 2 4u 

Fig. 9 

Fig. 7. Tetrahedral environments with one (a) and two (b) sub- 
stituted vertices, the changes in the bond lengths 5R corre- 
sponding to them, and the probabilities of the configurations P. 

Fig. 8. Cubic environment with one substituted vertex, the 
changes in the bond lengths 5R, and the probability P. 

Fig. 9. Cubic environments with two substituted vertices, the 
corresponding changes in the bond lengths ~R, and the proba- 
bilities P. 

since 48 is the symmetry number of the (m3m) regular octahedron, 8 is the symmetry number 
of the (4mm) "singly-substituted" octahedron. 

We should also consider that the secondary shifts pertain to distances between the cen- 
tral atom and the next-nearest neighbors of the substitution defect, while (16) and (17) 
compute the relative probabilities of the primary shifts. The number of secondary shifts 
are related to the number of primary shifts as s = v2/vl, where vl and ~2 are the first and 
second coordination numbers, respectively. From this we can calculate the probabilities 
of the shifts from the formula 

t . X ~ _ ~ X  ~ 
Pi = m ~ t  1 2. (19) 

Then we can obtain the final equation: 

6R =EP  i (20) { 

Considering that for the NaCI (BI) structure s = (12/6) = 2 and using the previously obtained 
values 6 i = iu2/2R (i = i, 2, 3), after a series of transformations of the sum in (20) we 
obtain 

~Bm= 6x~x2 (~). (21) 
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Fig. Ii. Cubic environments with four substituted vertices, 
the corresponding changes in the bond lengths dR, and the 
probabilities P. 

As was found in the preceding section, for the NaCI structure u = AE/2. Therefore, 

3 (AR) ~ 5RBl=~xix~ ~ �9 (22) 

In the case of a tetrahedral environment, two configurations arise, with one and two 
substituting atoms (Fig. 7). The corresponding primary and secondary shifts and their proba- 
bilities are indicated in Fig. 7. The ratio of the number of secondary and primary shifts 
is ~ = 3, in accordance with the ratio v2/v z = 12/4 = 3. 

Summing (20) in this case gives the expression 

6BB3 = 4xlx~ (;)  ( 2 3 )  

and considering that for the ZnS (33) structure u = (3/4)AR, we obtain 

9 _ ~ (AR) 2 
6BB3 = Txl~2 ~ . ( 2 4 )  

The cubic environment in the CsCI (32) structure allows for 13 different configurations 
with substitutions of one, two, three, and four vertices of the cube. The corresponding 
primary and secondary shifts and their probabilities are presented in Figs. 8-11. For the 
B2 structure, the ratio of the number of secondary shifts to the number of primary shifts 
is s = 3.25, in accordance with the fact that next-nearest neighbors (~2 = 6), third-nearest 
neighbors (v 3 = 12), and fourth-nearest neighbors (v~ = 8) of the impurity defects partici- 
pate in them. Summing (20) in this case gives 
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TABLE i. Measured and Calculated Deviations from Vegard's 
Law (A) 

X~ 

0,t 
0,3 
0.5 
0.7 

0 , 9  

NaCI--KCI 

expt. 
[34] 

0.0045 
010t11 
0,0127 
010t05 
o:oo53 

calcu- 
lation 

0,0048 
0,0110 
0,0i33 
0.0110 
o:oo~s 

NaCI--NaBr 

expt. calcu- 
[35] lation 

0,0020 0,0013 
0,0035 01003t 
0,0040 010037 
0,0027 010031 
0,00t2 0,0013 

KCi--KBr 

expt., calcu- 
[36~ lation' 

0.00t0 O.O0tO 
010016 010023 
010023 0.0027 

010023 
o.~os o:oo:o 

RbI--RbBr 

expt. [calu- 
[37] " lation 

0.0020 
o,o75o o:oo~o 
o;ooso oloo~o 
o,oo~o 0,0050 

0,0020 

6R~2 = Sx, x~ (~J). 
(25) 

Recalling that for the B2 structure u = (3/8)AR, we have 

9 (AR) ~ 

Equations (21), (23), and (25) can be rewritten in the general form 

6R=~lxlx2(~), 
w h i l e  E q s .  ( 2 2 ) ,  ( 2 4 ) ,  and  ( 2 6 )  c a n  be  r e w r i t t e n  i n  t h e  f o r m  

6R 9 (AR) ~" 

( 2 6 )  

( 2 7 )  

(28) 

COMPARISON OF THE GEOMETRIC MODEL WITH EXPERIMENT 

For solid solutions with the CsCI structure, only a very few measurements are available 
on the lattice parameter as a function of composition. Thus for the CsCI-CsBr system, the 
measured deviations from Vegard's law are no more than +0.002 ~ for all compositions [30, 
31]. The calculation using formula (26) leads to the following result: the maximum devia- 
tion for the composition x I = x 2 = 0.5 is +0.0017 ~, which does not contradict experiment. 
For TICI-TIBr and TIBr-TII, the measured [32] deviations for x 2 = 0.3 and 0.5 are 0.003 and 
0.007 ~ (the calculation gives 0.006 and 0.003 ~). 

In [33], the cell parameters were studied as a function of composition for low-tempera- 
ture (B2 structure) and high-temperature (BI structure) solid solutions NH4CI-NH~Br. The 
positive deviation of the interatomic distances from Vegard's law for intermediate composi- 
tions (x = 0.5) of the low-temperature series is about 0.004 • 0.002 ~ (high-angle measure- 
ments). From formula (26), we obtain 0.002 ~, which also does not contradict experiment. 

There are significantly more measurements available for solid solutions with the NaCI 
structure. In Table i, we compare the calculated [according to Eq. (22)] and the measured 
deviations from Vegard's law for four systems. We can see that the agreement between the 
theoretical estimates and the experiment is very good. 

In addition, less exact measurements have been made for the systems KCI-RbCI [38] and 
KBr-KI [39]. The positive deviations of the interatomic distances from additivity for the 
first of these systems are within the range 0.001-0.008 ~, while the theoretical values are 
within the narrower range 0.001-0.003 ~. For the second system, the scatter in the experi- 
mental deviations is greater, ranging from --0.001 to 0.017 ~. The deviations calculated 
from Eq. (22) are no more than 0.006 ~. 

Very many measurements have been made on the cell parameters as a function of composi- 
tion for solid solutions with the sphalerite (B3) and wurtzite (B4) structure. The results 
of these measurements, done with different degrees of accuracy, sometimes contradict one 
another. Thus, for the system wurtzite ZnS--greenockite CdS (B4), both positive and negative 
deviations from Vegard's law have been observed, although most of the measurements agree 
with Vegard's law within experimental error limits (• -3 ~) [40, 41]. Calculations using 
the geometric model [Eq. (22)] show that the maximum positive deviation of the parameters a 
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and c from linearity for intermediate compositoins should not be greater than 0.012-0.015 
L 

Multiple measurements of the composition dependence of the cubic cell (B3) parameters 
of the solid solutions sphalerite ZnS-metacinnabarite HgS show agreement with Vegard's law 
within limits which in any case are no greater than • ~ [41]. Calculations using Eq. 
(24) predict a maximum positive deviation of 0.016 ~ for intermediate compositions. 

However, for the parameter a in the series of solid solutions ZnS-7-MnS (structure B4), 
an appreciable positive deviation from additivity was observed in [41], reaching 0.03 ~ for 
intermediate compositions. The geometric model predicts much smaller positive deviations. 
This shows that the chemical factors for the deviations of intermediate interatomic dis- 
tances from additivity should be subjected to additional analysis. 

We also cannot exclude the possibility that the accuracy of the predictions of the geo- 
metric model drops with a decrease in the density of packing of the atoms in the crystal. 
In fact, this model is based on the assumption that the mixed-composition sublattice forms 
a regular packing, i.e., the coordination polyhedra about the central atom (in the unmixed 
sublattice) are undistorted. In fact, this is not quite true, as shown experimentally by 
the EXAFS method for the system InAs-GaAs [19]. As we see from Fig. 2c, the In-In distances 
are systematically 0.08 ~ greater than the Ga-Ga distances for all the compositions of the 
solid solution, while the Ga-In and In-Ga distances have intermediate values and are close 
to additive according to Vegard's law. Hence relaxation of the solid solution encompasses 
(although to different degrees) both sublattices, and therefore the changes in the bond 
lengths (both first- and second-order) relative to the original lengths should be less than 
in the model considered above. 

In conclusion, we should emphasize that the deviation from additivity (i.e., from ideal 
behavior) of the geometric characteristics of solid solutions is closely connected with the 
nonideality of other properties: in particular, the enthalpy of mixing of solid solutions 
is a function of the square of the size parameter &R/R 

AHmix = xlx2e(AR/R) 2, (29) 

where c is some parameter which is constant for individual groups of crystals [42]. From 
this follows the linear correlation between these properties 

5R/AHmtx = R/k, (30) 

where ~ is some energy parameter. 

I am pleased to express my sincere appreciation to I. P. Deineko for helping consider- 
ably in all stages of this work. 
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