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The scattering of atoms and rotons at the free smface of superfluid 4He is 
studied in the fi'amework of linearised time dependent mean field theory. The 
phenomenological Orsay-Trento density functional is used to solve numeri- 
cally the equations of motion for the elementary excitations in presence of a 
fi'ee surface and to calculate the flux of  rotons and atoms in the reflection, 
condensation, and evaporation processes. The probability associated with 
each process is evaluated as a function of energy, for incident angles such 
that only rotons and atoms are involved in the scattering (phonon forbidden 
region). The evaporation probability for R + rotons (positive group velocity) 
is predicted to increase quite rapidly from zero, near the roton minimum, to 
1 as the energy increases. Conversely the evaporation from R -  rotons 
(negative group velocity) remains smaller than 0.25for all energies. Close to 
the energy of the roton minimum, A, the mode-change process R+~-~ R-  is 
the dominant one. The consistency of  the results with general properties of 
the scattering matrix, such as unitarity and time reversal, is explicitly dis'- 
cussed. The condensation of  atoms into bulk excitations is also investigated. 
The condensation probability is almost 1 at high energy in agreement with 
experiments, but it lowers significantly when the energy approaches the roton 
minimum in the phonon forbidden region. 

1. I N T R O D U C T I O N  

One of the unique features of superfluid helium at low temperature is 
that elementary excitations like rotons and high energy phonons have a 
very long mean free path, long enough to propagate ballistically in the 
liquid on macroscopic distances. Furthermore their energy is comparable 
with the energy required to eject atoms from liquid to vacuum. Thus rotons 
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and phonons impinging on the free surface of the liquid can evaporate 
atoms by one-to-one quantum processes. One can also produce collimated 
beams of elementary excitations and collect the evaporated atoms above 
the surface in order to extract information on the properties of the super- 
fluid. Similarly one can investigate the opposite process of atoms which 
condense in the liquid by producing elementary excitations. Several 
experiments have been carried out in the last decades M~ to explore the 
phenomenon of quantum evaporation and condensation (see also Ref. 11 
for a recent review). From the theoretical viewpoint 12-~9 these processes are 
very appealing, being clean examples of scattering of excitations in a highly 
correlated many-body quantum system. A good theory of quantum 
evaporation and condensation is however a difficult task and a clear under- 
standing of the fundamental mechanisms underlying these phenomena has 
still to come, even though relevant steps in this direction have been accom- 
plished in the last years. 

In this paper we present a time dependent mean field theory, based on 
the density functional formalism, which allows one to calculate the scat- 
tering matrix elements associated with the scattering of rotons, phonons 
and atoms at the free surface. Preliminary results of this theory have been 
recently published in Ref. 19. Here we discuss the theory in more detail and 
we present results in a wider range of energy and wave vectors. 

A discussion about quantum evaporation and condensation requires 
first a detailed knowledge of the spectrum of elementary excitations of 
superfluid 4He. A schematic picture is given in Fig. 1. The liquid-vacuum 
interface is supposed to be in the xy-plane. The system is translational 
invariant in those directions, so that the parallel wave vector q~ is a con- 
served quantity (we choose q y = 0  without any loss of generality). The 
minimum energy needed to produce free atom states outside the liquid at 
zero temperature is the chemical potential I/z[ =7.15 K. The threshold for 
evaporation for given values of qx is then I#1 +h2q~/2m (dashed line). 
Phonons, rotons and atoms can propagate at different angles with respect 
to the surface, that is with different qz for a given q~+. The dispersion law 
for phonons and rotons propagating in the bulk liquid and in the direction 
parallel to the surface (qz = 0) is plotted as a function of qx. Excitations 
having qz r 0 fill different regions of the spectrum in Fig. 1 with a con- 
tinuum of states, For instance each point in region V corresponds to a 

roton R § (positive group velocity) propagating with q = ~ q~ such 
that boo(q) is the R + roton dispersion. Since qx ~ q, roton states with qz v a 0 
fill the region at the left of the roton branch plotted in the figure. Similarly 
in region IV also R rotons (negative group velocity) can propagate; 
each point in that region can be a combination of R + and R -  rotons 
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Fig. l. Schematic picture for the spectrum of elementary excitations in presence 
of a free surface�9 Solid line: phonon-roton dispersion for excitations propagating 
in the direction parallel to the surface (qz = 0). Dashed line: threshold for atom 
evaporation. Excitations propagating at different angles (qz 50) fill regions 
I-VI, as explained in the text. 

propagating at different angles. Above the threshold for evaporation, in 
region III,  a tom states outside the liquid are possible too. Similarly in 
region II  one has phonons, rotons as well as atoms; in region I, below the 
energy of the roton minimum, A, there are only phonons and atoms; finally 
in region VI, above the maxon energy, there are rotons and atoms. The free 
surface acts as a scattering region for all these excitations. 

In Refs. 17, 18 the effect of the surface on the propagat ion of the 
elementary excitations has been studied within a local density approxima- 
tion. The dispersion law of the excitations was assumed to be the same as 
for a uniform liquid of density equal to the local density. Maris 17 used a 
simple interpolation between the phonon-roton dispersion law in bulk 
liquid and the dispersion law of the free atoms. He studied the behavior of 
classical trajectories for quasiparticles along the z-direction assuming the 
conservation of energy and parallel momentum. From that analysis one 
finds some interesting constraints on the structure of the classical trajec- 
tories crossing the free surface. For  instance only phonons and rotons 
above the maxon energy (about  14 K) are found to evaporate atoms. Vice- 
versa, the theory predicts no evaporation from rotons with energy smaller 
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than the maxon energy, because of the occurrence of a barrier at the inter- 
face. The experimental evidence 11 for quantum evaporation induced by 
rotons even below the maxon energy is consequently an important indica- 
tion of the crucial role played by quantum effects. Quantum effects were 
partially included in the calculations of Ref. 18 by means of perturbation 
theory based on WKB states; the density profile in that case was 
approximated by a suitable analytic function and the dispersion law for the 
excited states, in local density approximation, was calculated using 
Beliaev's theory with an effective interaction. 

For  an accurate treatment of quantum effects one has to go beyond 
the local density approximation and the semiclassical treatment. To accom- 
plish the task we proceed in two distinct steps: 

�9 We first evaluate the ground state and the excited states of the 
inhomogeneous system within a self-consistent theory sufficiently 
accurate to reproduce the main features of the spectrum in Fig. 1, 
including the structure and the excitations of the free surface. 

�9 We identify the current carried by the elementary excitations and 
use the numerical solutions of the equations of motion to calculate 
the asymptotic flux of excitations associated with a given scattering 
process. While this identification is trivial in the description of free 
atoms in vacuum, it becomes less obvious in the liquid where 
manybody effects, present in this highly correlated system, must be 
properly included. Taking the ratios of incoming and outgoing fluxes 
one finally gets the evaporation and condensation probabilities, 
which are the final goal of the theory. 

For  the first step we use a time dependent mean field theory based on 
the least action principle applied to an energy functional I d r ~ [ ~ * ,  ~ ] .  
For  the form of the functional we follow the recent proposal of Ref. 20. We 
consider linear variation of ~ ,  in the form (~0 + 6~),  and expand c ~  in 
plane waves along the parallel direction. We restrict ourselves to variations 
of the energy linear in c~P. For  this reason the theory describes only one-to- 
one processes (evaporation of one atom by one roton, creation of one 
roton by condensing one atom, etc.) and not processes involving more than 
two excitations (for example multi-phonon or multi-ripplon production in 
the atom condensation process). It is worth mentioning that some 
experiments by Wyatt and co-workers 5'6'11 support the idea that the 
evaporation of atoms from bulk excitations is essentially a one-to-one 
process, so that the use of a linear theory seems justified in this case. Con- 
versely measurements of atom condensation 3' 9 point out an important role 
played by non linear effects associated with the creation of ripplons. This 
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asymmetry between evaporation and condensation is still basically 
unexplained. Quantitative predictions for the scattering rates in linear 
theory are essential in order to better understand the origin of this and 
other discrepancies. 

As concerns the second step we derive the definition of flux (or current 
density) associated with the propagation of the elementary excitations, in 
terms of the linearised solutions of the equations of motion. We show that 
such a current density obeys the proper equation of continuity. We will 
devote detailed discussions about the meaning of the flux of excitations and 
about the properties of the scattering matrix elements, which are calculated 
starting from the knowledge of the fluxes involved in the scattering 
process. 

The theory can be applied to all the relevant regions of the spectrum 
in Fig. 1. In the present work we present results for processes involving 
rotons and atoms in the region III. We chose this region for two basic 
reasons: first, phonons are not allowed there and thus the analysis is 
simpler; second, the arguments based on classical trajectories predict no 
evaporation in this region and this means that quantum effects should play 
a crucial role in the evaporation process. The analysis of the remaining 
parts of the spectrum will be the object of a future work. 

The paper is organised as follows: in Sec. 2 we present the theoretical 
formalism of the density functional and the equations of motion. In Sec. 3 
we introduce the concept of current of excitations. In Sec. 4 we discuss 
general properties of the scattering matrix. In Sec. 5 we present the 
results for the probabilities of evaporation and condensation. Finally we 
will give a brief summary of the main results and discuss some future 
perspectives. 

2. TIME DEPENDENT DENSITY FUNCTIONAL THEORY 

The formalism used in the present work was already introduced in 
Ref. 20. In that paper detailed discussions were devoted to the motivations 
of the theory and to the choice of the density functional. Results for static 
and dynamic properties of superfluid 4He in different geometries were 
presented. In Refs. 21 and 22, the dynamics of the free surface and of 
droplets, respectively, were studied in detail within the same scheme. As a 
consequence we refer to the above-mentioned papers for details and we 
recall here simply the main points. 

The starting assumption is that the energy can be written as a func- 
tional of the form 

E = f  dr ~EW, W*] (1) 



372 F. Dalfovo, A. Fracchetti, A. Lastri, L. Pitaevskii, and S. Stringari 

where the complex function W is written as 

(i ) 
~P(r, t) = ~(r,  t) exp ~ S(r, t) (2) 

The real function (I) is related to the diagonal one-body density by p = @2. 
The phase S fixes the velocity of the fluid through the relation 
v = (l/m) VS, where m is the mass of the 4He atoms. In the calculation of 
the ground state only states with zero velocity must be considered, so that 
the energy is a functional only of the particle density p(r). A natural 
representation is given by 

h 2 
E= f dr ~fo[p] = E~[p] + j dr ~mm(V/p)2, (3) 

where the second term on the r.h.s, is a quantum pressure, corresponding 
to the kinetic energy of a Bose gas of non uniform density. The quantity 
Ec[ p] is a correlation energy; it incorporates the effects of dynamic correla- 
tions induced by the interaction. Ground state configurations are obtained 
by minimising the energy of the system with respect to the density. This 
leads to the Hartree-type equation 

(H0 -/~) x / ~  = 0, (4) 

where 

h 2 
H o= V2+ U[p, r] (5) 

2m 

is an effective Hamiltonian. The quantity U[p, r] =-dEc/alp(r) acts as a 
mean field, while the chemical potential # is introduced in order to ensure 
the proper normalisation of the density to a fixed number of particles. The 
dynamics of the system can be studied by using the least action principle: 

dt dr J F [ W * , W ] - / ~ W * ~ P - ~ P * i h ~  - =0.  (6) 

By making variations with respect to W or W* one derives the equations 
of motion for the excited states, in the form of Schr6dinger-like equations. 
The equation for W is 

(H--I~) W = ih Ot rE' (7) 



Quantum Evaporation from the Free Surface of Superfluid 4He 373 

where H =  fiE~flY* is an effective Hamiltonian. We linearise the equation 
by writing 

�9 (r, t) = go(r) + 6~(r, t) (s) 

where go(r) corresponds to the ground state. The change of wave function 
c~  can be written in the form 

6~(r, t) = f(r) e-~~ + g*(r) e'% (9) 

where the functions f(r)  and g(r) are fixed, together with the frequency co, 
by the solution of the equations of motion (7), The Hamiltonian H then 
takes the form 

H = H o + ~ H  (10) 

and the equation of motion becomes 

(Ho - /z)  ~ + 6H ~o = ih ~ flY. (l l)  

The term dH is linear in fig and accounts for changes in the Hamiltonian 
induced by the collective motion of the system. Since H depends explicitly 
on the wave function ~, Equation (7) has to be solved using a self-con- 
sistent procedure. 

The above scheme corresponds to a time dependent density functional 
(TDDF) theory. A discussions about equivalent formulations of the same 
approach (hydrodynamic-like equations, Green's functions), as well as 
about the connection with other many body approaches, is given in 
Refs. 20-22. Equations of the same type are obtained using Correlated 
Basis Functions in the context of Hypernetted Chain approximation. 23 
Here we stress that the theory corresponds to a quantum mechanical treat- 
ment of the dynamics and consequently accounts for the interference and 
tunneling phenomena which are expected to play a crucial role in the 
evaporation process. Of course, due to linearisation, they do not include 
inelastic processes associated with multi-phonons or multi-ripplons. As 
already said in the Introduction, these effects lie beyond the present theory. 

To proceed further one has to specify both the explicit form of the 
energy functional (1) and the geometry of the system under investigation. 
The energy functional is the one introduced in Ref. 20. It consists of two 
parts, a functional of the particle density only and a functional of both the 
particle density and the current density. It corresponds to a generalisation 
of a previous finite-range functional introduced by Dupont-Roc et al. 24 Its 
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explicit form is given in Appendix A. The functional is phenomenological, 
i.e., it contains parameters which are fixed to reproduce known properties 
of the bulk liquid. In particular the equation of state and the static 
response function in bulk liquid are reproduced by construction. The new 
functional, with respect to the one of Ref. 24, contains a current-current 
effective interaction, which accounts for backflow-like correlations and 
allows one to reproduce the experimental phonon-roton spectrum in the 
uniform liquid. The latter is a crucial requirement for a theory whose goal 
is the prediction of evaporation and condensation probabilities, since these 
quantities depend dramatically on the form of the excitation spectrum. 

As concerns the geometry, we assume translational invariance in the 
x - y plane. The density profile of the liquid in the ground state is a func- 
tion of the orthogonal co-ordinate z. The profile of the free surface 
obtained with the present density functional theory is about 6 A thick and 
compares well with the one coming from ab initio calculations as well as 
with the experimental data of Ref. 25 (see Ref. 22 for a discussion). The 
excited states are described by fluctuations of the particle density and 
velocity associated with the solutions (9) of the equations of motion. In the 
planar geometry the same solutions can be written in the form 26 

d~t'(r, t) = f ( z )  e i(q . . . . .  '~ + g(z) e i(qxx ~t~ (12) 

With a proper choice for the boundary conditions the functions f ( z )  and 
g(z) can be chosen real. Once the equations of motion are written explicitly 
for the unknowns f ( z )  and g(z), they assume the typical form of the equa- 
tions of the random phase approximation (RPA) for bosons. In particular 
they account for both particle-hole I f (z)]  and hole-particle [ g(z)] transi- 
tions which are coupled by the equations of motion (6). This coupling is 
of crucial importance in order to treat the correlation effects associated 
with the propagation of elementary excitations in an interacting system. 
The equations of motion have also a structure formally identical to the one 
of the Bogoliubov equations for the dilute Bose gas 27 and to the one of the 
Beliaev equations for Bose superfluids. 18'28 With respect to those theories 
the present approach makes use of a finite ranged and momentum depen- 
dent effective interaction. The same theory gives a reliable description of 
surface modes (ripplons) both at small and high momenta. 2~ In the vacuum 
the equations of motion coincide with the Schr6dinger equation for the free 
atom wave function f(z), while g(z) vanishes. 

The equations for f ( z )  and g(z) are solved numerically in a finite box. 
We work in a slab geometry, that is, with the liquid confined within two 
parallel surfaces, the slab being centered in the box. The box size is of the 
order of 100+ 150A and the slab thickness is typically 50+ 100A to 
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simulate sufficiently well the semi-infinite medium. The space along z is 
represented by a mesh of points, with step 0.1 + 0.15 ]k. The Hartree equa- 
tion (4) for the ground state is solved by diffusing a trial wave function in 
imaginary time. After several iterations the procedure converges to the 
density profile which minimise the energy functional. The minimisation 
takes 2 + 5  hours of CPU-t ime on a workstation, depending on the 
accuracy required. The same calculation provides the self-consistent mean 
field entering the static Hamiltonian (5). Then we expand the linearised 
time dependent wave function 6 ~  on the basis of eigenstates of H o. By this 
way the equations of motion for f and g become a matrix equation for the 
coefficients of the expansion. We take a basis of 100 states or more to cover 
all the relevant part  of the spectrum, so that the matrix to diagonalise is 
at least of dimension 100 x 100. The solution of the equations of motion for 
a given value of parallel wave vector qx takes about  two hours of CPU- 
time on a workstation. The output is a set of discrete eigenenergies and the 
corresponding functions f(z) and g(z). By solving for different values of qx 
one can span the whole spectrum. An example is shown in Fig. 2, where we 
plot the energies of the excitations of a slab 80 ~t thick in a box of 150 •. 
One recognises clearly the main features already reported in Fig. 1, namely 
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Fig. 2. Spectrum of elementary excitations for a slab 80 ~ thick in a box 150 A 
wide, as obtained solving numerically the TDDF equations. Two surface modes 
(ripplons) are also visible below the phonon-roton dispersion. For simplicity, 
only states symmetric with respect to the center of the slab are shown. 
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the phonon-roton dispersion and threshold for free atom states. The 
spacing in energy depends on the thickness of the slab and of the free space 
between the slab surface and the confining box. In the limit of infinite slab 
thickness the excitations in the liquid will reduce to a continuum of states, 
as already discussed for Fig. 1. In Fig. 2 one also notices lower branches 
below the roton energy A and the phonon dispersion. They correspond to 
surface modes and a discussion about them has been already reported in 
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Fig. 3. Example of functions f(z), in arbitrary units, and g(z), in the same units but  
multiplied by 5, for a state at energy 10.2 K and parallel wave vector qx=0 .7 /~  1 
in the same slab as in Fig. 2. The density profile of the slab is shown as a dot- 
dashed line. In part  b, the Fourier transform of f (z )  is shown; it corresponds to the 
convolution of two delta functions, at the R + and R -  roton wave vectors, with the 
transform of the step function used to restrict the Fourier analysis within the slab. 
The function g(qz), not shown, has a similar structure, but  much  smaller amplitude. 
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Ref. 21. The function f and g, at given qx and o~, will take contributions 
from the elementary modes propagating inside and outside the liquid at 
different angles with respect to the surface. The contribution of each 
elementary mode (phonon, R-- and R roton, atom, surface mode) is 
characterised by the appropriate dispersion law and can be identified by 
looking at the form of f(z) and g(z) and their Fourier transforms. An 
example is given in Fig. 3, where we show the form off(z) and g(z) for one 
of the states of the spectrum in Fig. 2. The amplitude and the wave vector 
associated with the free atom are easily extracted from the form off (z)  
close to the boundary. The amplitudes and wave vectors of rotons can be 
calculated by looking at the Fourier transforms off (z)  and g(z) in the 
liquid. In the lower part of Fig. 3 we show the Fourier transform off(z). 
In the limit of infinite slab thickness, the functionf(qz ) would reduce to the 
sum of two c~-functions of the form J~5(qz-qz+), corresponding to R -+ 
rotons. Since the Fourier analysis is restricted to a finite box within the 
slab, f(qz) is actually the convolution of those c~-functions with the trans- 
form of a step function; this convolution produces the oscillations visible 
in the figure. The amplitudes f •  and the wave vectors qz_+ are extracted 
with great accuracy by fitting f(qz). In the case of Fig. 3b the best fit is 
indistinguishable from f(qz). 

All these numerical results are used as input in the calculation of the 
flux of excitations in the scattering processes at the surface, as explained in 
the following section. - 

3. FLUX OF ELEMENTARY EXCITATIONS 

In the standard theory of scattering the probability associated with a 
given output channel is written as the ratio between the outgoing flux in 
that channel and the incoming flux. In the case of quantum evaporation the 
free surface acts as scattering region and one has to consider the flux of 
elementary excitations, i.e., rotons, phonons and atoms. The solutions of 
the equations of motion provide the fluctuations of the density and current 
of helium atoms expressed by means of functionsf(z) and g(z) entering c~W. 
These functions are different inside and outside the liquid and the bound- 
ary produces the appropriate matching between the excitations of the bulk 
liquid and the free atoms states in vacuum. Now one has to relate the 
asymptotic form of these functions with the flux of incoming and outgoing 
excitations in a given scattering process. We proceed in two steps. First we 
introduce the concept of current of elementary excitations within the for- 
malism of linearised time dependent mean field theory. Then we represent 
the scattering processes by taking linear combinations of stationary solu- 
tions of the TDDF equations. 
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Far away from the surface and for a given energy hco the function 3q ~ 
is the sum of plane waves of the form 

dq?(r) = ~ [fj(r) e-i~~ + g*(r) e TM] = ~ [ f j e  i(q . . . .  r) q_ gje-i(q r-a)t)] (13) 
J J 

where the index j = a, +, - refers to the type of excitations atoms, R + 
and R -  respectively) which contributes to JW. Each type of excitation 
obeys its own dispersion law co(q) and contributes to Oq? with amplitudes 
J} and gj. 

Well outside the liquid JW describes free atoms. The hole-particle part 
g~ vanishes, while the atom density is given by Pa =f2a" The density of 
current is given by 

j.=hq f~=vaf~, (14) 
m 

where v is the group velocity which, for the free atoms, coincides with hq/m. 
These are the usual definitions of density and current density for free 
particles. 

Inside the liquid the same definitions can be generalised to describe the 
elementary modes of the correlated system. The RPA (or, equivalently, 
Bogoliubov) formalism provides a natural generalization for the density of 
elementary excitations which, in term of the components f and g of the 
time dependent solution (9), is given by 

p;x =_ i L . ( r ) 1 2 _  Igj(r) l= = (15) 

This expression is consistent with the well known ortho-normalisation 
property of the RPA solutions: 

f dr [ f * ( r ) f j ( r ) -  g*(r) gj(r)] = 6sj. (16) 

The total density of elementary excitations, peX-=Zjpy', 
equation of continuity: 

satisfies the 

0 t  9 e x  
- - + V . j ~ x = 0 .  (17) 

8t 

The quantity jex = F<j]x is identified with the current density of excitations, 
for which one expects the result 

�9 e x  e x  2 2 lj =vjpj  - = v j ( f j - g j )  (18t 
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where vj = Vqc0(q) is the group velocity of the j t h  elementary excitation. 
The group velocity should not be confused with the quantity hq/m (which 
is the correct expression only for free atoms) and actually becomes 
opposite to q in the R -  range of wave vectors. In Appendix B we show 
that the form (18) for the current density is fully consistent with the equa- 
tions for p~X derived starting from the solutions of the TDDF equations. 
We note also that, when peX and je, are calculated by using the stationary 
solutions of the equations of motion, the time derivative vanishes and the 
equation of continuity implies simply that the z-component of the current of 
elementary excitations is equal inside and outside the liquid. This result is 
also connected with the unitarity of the scattering matrix, as we will discuss 
in the next section. 

Equations (15, 17, 18) emphasise a remarkable feature of the TDDF 
solutions. In a dilute system they reduce to the usual expressions holding 
for free particles, while in the interacting liquid they include the correla- 
tions associated with the propagation of the collective modes. For instance 
in the long wavelength phonon regime (q ~ 0) the group velocity coincides 
with the sound velocity and g --- f 

From the knowledge of the current of elementary excitations 
associated with each asymptotic solution one can calculate the flux of 
incoming and outgoing excitations in a scattering process. Actually the out- 
put of our TDDF equations, as discussed in Sec. II, are stationary solu- 
tions, namely real functions f (z)  and g(z) which vanish at the border of the 
computational box. These functions can be viewed as a combination of R + 
and R -  rotons in the liquid and atoms outside, travelling to and from the 
surface as shown schematically in the upper part of Fig. 4. Using Eq. (18) 
one can calculate the current associated with each component. In order to 
select a single scattering process one can combine two or more stationary 
solutions at the same energy and parallel wave vector. 29 Iff(l~(z), f(2)(z) 
andf(3~(z) are three solutions of the linearised TDDF equation at the same 
energy and parallel wave vector, then the combination 

f (z)  = f(l~(z) + a~f(2~(z) + a3f(3)(z) (19) 

is also a solution (the same holds for g(z)). One can choose the coefficients 
of the combination in such a way that part of the incoming flux vanishes. 
For instance, if we want to represent one R + roton impinging onto the 
surface and reflecting as R § or R - ,  or evaporating an atom, we have to 
combine the TDDF solutions in order to make the incoming fluxes of 
atoms and R -  rotons vanish. This provides two equations for the complex 
coefficients a 2 and a 3 in terms of the amplitudes f / ~  and g(~ (the third 
coefficient al fixes the normalization of the wave function and its value is 
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Fig. 4. Schematic picture for scattering processes at the free surface. In the lower 
part a particular process is selected: an incoming R + roton can produce atom 
evaporation, normal reflection or mode-change reflection. 

no t  re levant  when one calculates  the ra t io  of  fluxes). Once  the coefficients 
are calcula ted,  one is left wi th  a so lu t ion  which represents  a flux (current  
densi ty  p ro jec ted  a long z) of  incoming  R + ro tons  and  a flux of  e va po ra t e d  
a toms  and  reflected R--  and  R -  ro tons ,  as in the lower  pa r t  of  Fig. 4. By 
definit ion,  the e v a p o r a t i o n  p robab i l i t y  is given by  

flux of  evapo ra t ed  a toms  
P + a  - (20) 

flux of  incoming  R + 
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the normal reflection probability is 

flux of reflected R + 

P + + = flux of incoming R + 
(21) 

and the mode-change reflection is 

flux of reflected R -  
P + - - flux of incoming R +" (22) 

The explicit formulae for this scattering process, including the geometry 
of the slab and the box, are given in Appendix C. By combining the 
stationary solutions with different coefficients one can select the process in 
which the incident excitation is a R roton. In this case the ratios of the 
outgoing fluxes and the incoming R flux provide the probabilities P ~ 
(evaporation), P _  (normal reflection) and P + (mode-change reflec- 
tion). Similarly, by selecting the process with an incident atom one gets the 
probabilities Paa (reflection), Pa + (condensation in R +) and P~_ (conden- 
sation in R - ) .  In region III of the spectrum in Fig. 1 these are the only 
one-to-one processes available. Generalisation to the other regions of the 
spectrum is straightforward. 

The method we have used in Ref. 19 to derive the evaporation and 
reflection probabilities is simpler but less general. It corresponds to the case 
when one of the state in the linear combination has vanishing amplitude 
outside the liquid, due to destructive interference. The existence of such 
resonant  s ta tes  simplifies the calculation of the probabilities Pij- However, 
the more general method used in the present work is not restricted to 
special states and provides results on a wider range of energy. Furthermore 
it can be easily extended to describe more scattering channels. 

4. THE SCATTERING MATRIX 

The scattering matrix S characterises a scattering process through the 
definition ~o,t=SWin.  The unitarity and the time reversal symmetry 
(t ~ - t )  of S imply 

and 

S* = S 1 (23) 

S* = S 1 (24) 
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respectively. Combining these two conditions one finds that the scattering 
matrix elements must satisfy the general property 

so  = sji.  (25) 

The scattering matrix elements are related to the probabilities Pij by 

Po.= ISu] 2. (26) 

Equation (25) then implies that the evaporation, reflection and condensa- 
tion rates, introduced in the previous section, reduce to six quantities to be 
calculated: P+a, P -a ,  P + + ,  P - - ,  P + -  and Pa~" Furthermore the 
unitarity condition takes also the form S * S  = 1, or 

IS+al2+ IS++ 12+ IS+_ 12= 1 (27) 

IS_~12 + IS__ 12+ i s _ +  12= 1 (28) 

IS+,[2+ IS a]2q - ISaa] 2= I. (29) 

These conditions express the conservation of flux in the three processes 
where the incoming excitation is a R + roton, a R -  roton and an atom, 
respectively. They reflect the fact that the present approach does not 
include inelastic channel. The unitarity of the S matrix gives three addi- 
tional constraints: 

* * + S *  S + _ = 0  (30)  S~aS +a + S~+ S + + 

S aa S *  . . . .  -~- S ~a + S + -~- S ~a S = 0  (31) 

S * ~ S _ ~ + S * +  S_ + + S * _ S _ _  =0.  (32) 

All these conditions for the scattering matrix elements can be used to 
obtain useful checks for the results of the numerical calculation. 

5. RESULTS 

The main results of the numerical analysis are shown in Fig. 5, where 
we report the probabilities Po = I SuI 2 as a function of energy. The data are 
obtained with several values of the parallel wave vector qx in order to span 
the phonon forbidden region (region III of the spectrum in Fig. 1). The 
data at lowest energies in Fig. 5 correspond to qx = 0.6 A -1, the ones at 
highest energy to qx=0.85 A-~. From the knowledge of the orthogonal 
wave vector q~ one extracts also the incidence angle. For R + and R 
rotons it is approximately 15 ~ +20 ~ and 20 ~ +30 ~ respectively, while for 
atoms is 50 ~ +90 ~ The range of incidence angles for rotons is rather 
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narrow, so that a discussion about the angular dependence of the evapora- 
tion and reflection probabilities is not significant in region III of the spec- 
trum. Further work is planned to explore the angular dependence including 
region II. The error bars arise from fluctuations of the numerical results. 
They originate mainly from the fact that the states in the linear combina- 
tion 19 may be not enough linearly independent. As explained at the end of 
Appendix C, this implies an amplification of small numerical uncertainties 
in the values of amplitudes, wave vectors and other parameters entering the 
expressions for P,y. 

~I P _L a a  

T 

T 
Q 
_L 

i; 
! [I 

.a_ 

P+a 

P-a 

-1- 
o 
..1- 

• 

P+_ 

D �9 

P++ 

D 
I 

I 

D 
Q �9 

m I 

P__ 

J- - _ _  
m Q ] i ] i [  ~ 

i - 1 - 1  i i i [ i i 1 1 1  ~ ; i l i 

9 10 11 12 9 10 11 12 

Energy (K) 
Fig. 5. Results for probabilities P~ as a function of energy, in the phonon forbidden region. 
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Looking at Fig. 5 one notices that the unitarity conditions 27-29 are 
satisfied within the error bars. Actually each point with error bar 
corresponds to several combinations of states at the same energy. The 
unitarity condition can be checked for each combination separately. It 
turns out that it is satisfied within about 5 % when the states in the com- 
bination are sufficiently linearly independent. An example of numerical 
values is given in Table I for states at energy 10.87 K. The results of dif- 
ferent combinations of four states are given. The four states correspond to 
symmetric and antisymmetric solutions for two slabs (62 and 63.7 A thick). 
One notes that the values of the probabilities Pu extracted form different 
combinations are close each other. The unitarity conditions, which 
correspond to Z = 1 in the notation of the table, is satisfied within 5 % in 
all cases. Furthermore one has P~ ~- Pji as expected from Eq. (25). 

The evaporation probabilities for R + and R -  rotons behave quite dif- 
ferently. The one for R + rotons grows from 0 to 1 by increasing the energy. 
A similar behavior has been recently observed in experiments at normal 
incidence in the same range of energy. 3~ Conversely the R -  rotons are less 
effective in evaporating atoms. The ratio between the two probabilities has 
to be 1 at the energy A of the roton minimum where the two excitations 
become identical. As soon as the energy grows the ratio P + a / P  , increases 
and becomes large. Results for P + a / P  a are shown in Fig. 6. 

At low energies, approaching A, the mode-change is dominant in the 
reflection processes for rotons. This is also consistent with symmetry 
arguments (see discussions in Ref. 21). At higher energies the mode-change 
becomes less probable. An incident R -  rotons has low probability of 
evaporating atoms, as discussed above, and it reflects as R + at low energy 
and as R -  at high energy. The behavior of an incident R + roton at high 

TABLE I 

Probabilities P,) for Three Different Scattering Processes (Incident Atom, R + and R , 
Respectively) Described by Linear Combinations of Four States at the Same Energy, 10.87 K, 
and the Same Parallel Wave Vector, 0.7/k -l .  The States 1-4 Are Symmetric (2 and 4) and 
Antisyrmnetric (1 and 3) Solutions for L,xab = 62 A (1 and 2) and 63.7 A (3 and 4), and for 
Lbox=126A (3), 134~ (4) and 135A (1 and 2). The Quantity Z Is the Sum of the 

Probabilities for Each Process 

atom --, atom, R +, R R + ~ atom, R +, R -  R ~a tom,  R+,R 

Comb. Pad Pa+ P,  Z P++ P+ P+a Z P__  P_+ P _ ,  E 

1-2-3 0.148 0.654 0.224 1.026 
1-2-4 0.146 0.645 0.224 1.015 
1-3-4 0.148 0.650 0.223 1.021 
3-2-4 0.146 0.645 0.224 1.015 

0.0004 0.357 0.603 0.960 
0.0003 0.358 0.612 0.970 
0.0004 0.358 0.605 0.963 
0.0004 0.358 0.612 0.970 

0.404 0.387 0.224 1.015 
0.403 0.385 0.228 1.016 
0.403 0.387 0.225 1.015 
0.404 0.384 0.228 1.016 
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Fig. 6. Ratio of the evaporation probabilities for R + and R -  rotons as a function 
of energy, Open circles: qx=0 .6  A ~; solid circles: qx=0.65 A - l ;  open squares: 
qx=0 .TA-~ ;  solid squares: q x = 0 . 7 5 A - l ;  triangles: q x = 0 . 8 A  -I.  Dashed line: 
limiting value P+a/P-o = 1 for energy approaching A = 8.6 K. 

energy is completely different: the normal reflection as R + is found to be 
practically zero everywhere. R + rotons prefer to evaporate atoms or to 
reflect as R - ,  the sum of the two probabilities being almost 1. This fact can 
be explained qualitatively by considering the change of momentum in a 
normal mode reflection. This should be twice hqz, where qz in this part of 
the spectrum is of the order of 2 A 1. But it is difficult to imagine a 
mechanism for absorbing a momentum of the order of 4 ~ - 1  at the surface, 
the latter being quite smooth (the Fourier transform of the density profile 
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has vanishing components above 2 A 1). On the contrary, the momentum 
transfer for reflections involving R rotons is at least a factor two smaller 
and it is expected to be more probable. 

The fact that P+ § is almost zero everywhere has an interesting conse- 
quence. If we assume S+ § = 0 and use the unitarity conditions (27-32), we 
can express all the probabilities through a single parameter, for instance 
P+~. Simple algebra gives (see Appendix D): 

P + _  = 1 - P + ~  (33) 

p = p2 (34) 
- -  §  

= _ = ( 1  - P + a )  2 ( 3 5 )  

P ~=P +P+a=(1-P+~)P+~. (36) 

Note that the maximum value of P a from the last equation, is obtained 
for P+a = 1/2 and thus the following inequality holds: 

P ~ � 8 8  (37) 

All the above relations, which follow from the assumption S+ + =0,  are 
well satisfied by the numerical results in Fig. 5. 

Finally, the results for the reflection probability for incident atoms are 
more intriguing. One knows from the experiments that the reflection prob- 
ability is less than 1% apart from very small values of qz where the long 
range Van der Waals interaction dominates. Our results for the reflection 
probability are consistent with the experimental results only at high energy, 
where P~a drops to zero. At lower energy the roton channels become less 
and less active in the condensation process and the atom is reflected with 
large probability. This behavior is mainly the consequence of the fact that 
in the range of angles considered in the present work phonons cannot be 
excited. As soon as phonons are allowed (region I and II in Fig. 1) they are 
expected to provide the natural channel for the condensation of the 
incoming atoms. It has been also suggested that, as soon as the atom has 
enough energy to feel the external part of the density profile, it dissipates 
its energy by producing many low energy ripplons. This mechanism is not 
accounted for in our one-to-one theory. 

6. CONCLUSIONS AND PERSPECTIVES 

In this paper we have investigated the evaporation and condensation 
processes taking place at the free surface of superfluid helium. The main 
achievements of the present work concern both the formal development of 
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scattering theory, in the framework of linearised time dependent density 
functional formalism, and the numerical analysis, which provides first 
systematic results for the evaporation, condensation and reflection rates. 
The most relevant steps and achievements of our approach are here sum- 
marised: 

�9 (i) The equations of motion of linearised time dependent density 
functional theory have been explicitly solved in the presence of the 
free surface using the Orsay-Trento phenomenological density func- 
tional. By taking linear combinations of different solutions carrying 
the same energy and momentum parallel to the surface, we have 
selected the relevant scattering processes (incoming atom reflected 
into an atom or condensed into a R + or R -  roton, etc.). 

�9 (ii) We have identified, in the framework of the time dependent 
density functional scheme, the current of elementary excitations 
which obeys the equation of continuity (17) and allows one to 
evaluate the rates of evaporation and reflection. This current is 
determined by the group velocity and by the density of elementary 
excitations for which the familiar RPA expression (15) holds. The 
resulting formalism has been shown to be consistent with the general 
properties of the scattering matrix, following from unitarity and time 
reversal invariance. 

�9 (iii) The numerical results, restricted in the present work to the 
region where only condensation of atoms into rotons is possible 
(region III of Fig. 1), reveal that rotons R + are systematically more 
effective than rotons R -  in the evaporation mechanism. An inter- 
esting feature emerging from our analysis, is that the P+ + scattering 
probability is extremely small at all energies. This behavior, with the 
help of the formal properties of the scattering matrix, allows one to 
express all the evaporation and reflection rates in terms of a single 
parameter [see Eqs. (33-36)]. 

�9 (iv) A major discrepancy between our predictions and the 
experimental data concerns the atomic reflectivity which is predicted 
to be significantly large when the energy approaches the roton mini- 
mum. This behavior is easily understood since our theory accounts 
only for one-to-one processes where condensation into ripplons is 
excluded by the conservation laws. Due to the absence of phonon 
excitations, which are excluded in region III, no active excitations 
are allowed in the condensation process when the energy approaches 
the roton minimum with the consequent full reflection of the 
incident atom. 
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Natural developments of the present work will include: 

�9 The study of the scattering process in different ranges of energy and 
incident angles, where phonons can participate in the scattering 
process. 

�9 The study of multi-ripplon excitations whose effects can be taken 
into account through the use of an optical-type potential in the time 
dependent equations. 

Work in these directions is in progress. 

A P P E N D I X  A. ORSAY-TRENTO DENSITY F U N C T I O N A L  

We use the phenomenological density functional of Ref. 20. It has the 
form: 

E= E(kin~[p, v] + E(C~[p] + E(bf)[p, v], (A1) 

where p and v are the density and velocity of the atoms, respectively. The 
first term is the kinetic energy of the non interacting bosons, 

h 2 
E(ken)[p, v] = f dr 2m [V~(r)[a 

- - fdr m 
~-p(r) Iv(r)l 2 ; (12) 

the correlation energy E (C~ is given by 

E(C>[p] : f dr {~ f dr'p(r) Vl(Ir--rtl)p(r')-~2P(r)(fir)2-~3P(r)(fir)3 

4m hz c%f dr'F(lr-r ' l)(1 - P(r)~vp(r)'Vp(r')( os / _ p(r')~ ; . p  0s / 3' 

(13) 

finally, the backflow energy E (bF~ is 

E(bf)[p,v]=- ---~ drdr' V1(Ir-r'l)p(r)p(r')[v(r)-v(r')] 2. (A4) 

The first term in the kinetic energy, which depends on gradient of the den- 
sity, is a quantum pressure; it corresponds to the zero temperature kinetic 
energy of non-interacting bosons of mass rn. The two-body interaction V~ 
in the correlation energy E (c) is the Lennard-Jones interatomic potential, 



Quantum Evaporation from the Free Surface of Superfluid 4He 

TABLE II 

Values of the Parameters Used in V~(r). See Eq. (A4) 

389 

~11 Y21 Y12 Y22 6(1 0{2 

-19.7544 -0.2395 12.5616 ~, -2 0.0312 A -2 1.023/~ 2 0.14912 A-2 

with the standard parameters ,=2 .556 A and e =  10.22 K, screened at 
short distance (V~  0 for r < h, with h = 2.1903 A). The two terms with the 
parameters c2 = -2.411857 x 104 K A 6 and c3 = 1.858496 x 106 K/~9 ac-  

c o u n t  phenomenologically for short range correlations between atoms. The 
weighted density/7 is the average of p(r) over a sphere of radius h. Those 
terms are very similar to the functional of Ref. 24. The last term in E (c), 
depending on the gradient of the density in different points, has been added 
in order to improve the description of the static response function in the 
roton region. The function F is a simple Gaussian, F(r)=~-3/2# -3 
exp(- r2f f  2) with # = I A ,  while ~ = 5 4 . 3 1 ~  3 and p 0 = 0 . 0 4 A  3. The 
energy E <b/~ contains an effective current-current interaction accounting for 
backflow-like correlations. In Ref. 20 the simple parametrisation 

Vj(r) -= (Yll %- YI2 r2) exp( - ~ i  r2) + (~21%" ~22 r2) exp( -~2p 2) (A5) 

was chosen in order to reproduce the phonon-roton dispersion in bulk 
liquid. The parameters are given in Table II. 

APPENDIX B. EQUATION OF CONTINUITY AND 
CURRENT OF ELEMENTARY EXCITATIONS 

In this appendix we show that definition (18) for the current of 
elementary excitations is consistent with equation (6) holding in time 
dependent density functional theory. In order to make the demonstration 
more transparent we use a simplified version of the energy functional of the 
form 

h 2 
= 2 m  [V~IJ(r 1)]2 %- f dr2 V( Jr1 - rz J) p(rl) p(r2), (B1) 

where V is a generic two-body interaction. The generalisation to the more 
complex Orsay-Trento functional is conceptually straightforward but 
rather tedious in practice. 

Taking variations with respect q~* in Eq. (6) one gets 

[ -ih&O _h 22m V2 + f dr2 V(lr]-r21) p ( r 2 ) - ~ ]  q~(rl, t )=0.  (B2) 
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Here we are interested in the solutions well inside the liquid, where the 
ground state density Po is a constant and the above equation yields 

/z = Po f dr V(r). (B3) 

As in Eq. (9) we take a linear expansion of �9 to describe the excited state. 
Let us include the time dependence in the definitions o f f  and g in the form 

f(r, t ) = f e  i(q . . . .  t); g(r, t )=ge i(q . . . .  t )  (B4) 

so that 

6qJ(r, t) : f(r ,  t) + g*(r, t). (Bs) 

Inserting this expression in Eq. (B2) and isolating the terms oscillating with 
positive and negative frequencies, one gets two coupled equations for f 
and g: 

8f( 1 ) h 2 f 
ih 8t 2mV2f(1)+po drzV(r l z ) [ f (2 )+g(2 ) ]=O (B6) 

ih 8g( 1 ) h 2 
8t 2m V2g(1) +P0 f dr2 V(r12)[f(2) + g(2)] = 0 (B7) 

where we have used the short notation (1) - (rl, t) and (2) = (r2, t). Now, 
take f(1) times the complex conjugate of Eq. (B6) and subtract f* (  1 ) times 
Eq. (B6) itself. Similarly take g(1) times the complex conjugate of Eq. (B7) 
and substract g*(1) times Eq. (B7). Summing up all the terms, one gets 

0 
ih ~t (]f(1)12 - tg(1)12) 

/~2 
=2~-m [f(1) V2f*(1) - f * ( 1 )  V2f(1) + g(1) V2g*(l)- g*(1) V2g(1)] 

- Po f dr2 V(r~2){ f(1) f*(2) - f * ( 1 )  f(2) + f(1) g*(2) - g*(1) f(2) 

+ g(1) f*(2) - f * ( 1 )  g(2) + g(1) g * ( 2 ) -  g*(1) g(2)}. (B8) 

This equation has the form of an equation of continuity if the quantity 

p ~ X = l f ( 1 ) [ a  [ g ( 1 ) l ~ = f a  g2 (B9) 



Quantum Evaporation from the Free Surface of Superfluid 4He 391 

is interpreted as the density of elementary excitations and if the right hand 
side is identified with - i h  V. jex. Now we prove that the quantity jex has 
indeed the form jex = vpeX, where v is the group velocity of the excitation. 
To this purpose we rewrite properly the various terms in Eq. (B8). We 
begin with the one coming from the kinetic energy. All terms with the 
laplacian can be written in the form -ih V-[jex]~i,, with 

h 
[je~Jk~- 2mi[f(1)Vf*(1)-f*(1)Vf(1)+g(1)Vg*(1)-g*(1)Vg(1)]. 

(B10) 

We remember that f(1) and g(1) are plane waves, as in Eq. (B4). Thus the 
expression for [je~]~, in terms of the real amplitudes f and g, becomes 

[j~x]k,. = hq (f2 + g2). (Bll) 
m 

To manage the terms containing the interaction is less trivial. Let us use 
the Fourier decomposition 

f(r ,  t) = f dql f(ql ,  t) 8 i q l ' r  (B12) 

and take the limit f ( q l ) = f f i ( q l - q )  at the end. We can rewrite the first 
two terms with the interaction in Eq. (B8) as 

f dr2 V(rlz){f(1)f*(2) - f * ( 1 ) f ( 2 ) }  

ff ,7~ ,~i(qI q2) �9 = dq~ -,t2,- r~f(ql, t)/*(q2, t)(V(q2)-- V(ql)) (B13) 

where V(q) is the Fourier transform of the interaction. By doing the same 
with the terms containing g, one gets 

V. [J~]pot-- -Po Jj dq~ dq2 e~q~ -q2)~m( V(q2)- V(q~)) 

x [f(q~, t) f*(q2, t) + g(q~, t) g*(q2, t) 

+ / ( q l ,  t) g*(q2, t) + g(ql, t)/*(q2, t)]. (B14) 

Now, by considering f(q) and g(q) as delta functions, one gets 

[JeX]pot = P o ( f +  g)(f* + g*) Vq V(q) (B15) 
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and summing []eX]pot to [je~]ki. one finally obtains the result 

jex = hq (f2 + g2) + Po(f + g)(f* + g*) Vq V(q) 
m 

(B16) 

for the total current. At this point it is convenient to rewrite Eq. (B16) in 
terms of the dispersion law co(q) coming from the solutions of the equa- 
tions of motion (B6-BT) which, for plane waves of the form (B4) and after 
some algebra, yield 

hq 2 

f +  g =2-mm~ ( f -  g)' (B17) 

f2~_ g 2  2m [ (hq2~21 [~q2(O ('02 -}- \2m/  J ( f2  _ g2), (B18) 

with 

 2/h2q2 ) 
co2(q) = ~m m ~m+2poV(q) .  (B19) 

Inserting these results in Eq. (B16) one finally finds 

jex = u  __ g2) = vqeX, (B20) 

where v coincides with the usual definition of the group velocity: 

v = Vqco(q). (B21) 

This is the desired definition of the current density, in terms of which 
Eq. (B8) has the form of the equation of continuity (17): 

~p e~ 
- -  + V. jex = 0. (B22) 

& 

A P P E N D I X  C. D E T E R M I N A T I O N  O F  T H E  S C A T T E R I N G  R A T E S  

We give an example of derivation of the probabilities Po in the case of 
R + rotons coming to the surface and producing evaporated atoms and 
reflected R § and R -  rotons. The geometry we use is the one in Fig. 7: the 
surface is at z = 0, the center of the slab at z = L and the left border of the 
box at z = - b .  The solutions of our T D D F  equations are real functions 
which vanish at z = - b .  They can be either symmetric and antisymmetric 
with respect to the center of the slab (z = L). If b and L are sufficiently 
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v a c u u m  s u r f a c e  l i q u i d  

density 

- -  0 L 

z 

Fig. 7. Schematic picture for the geometry used in Appendix C. 

large, the functions f (z)  and g(z), characterising the changes fiqJ as in 
Eq. (8), close to the boundary and near the origin are simple sinusoidal 
functions. In particular, close to z = - b  one has a free atom state of the 
form 

f ( z )  ~-s sin[qa(z + b ) ]  s eiq~beiq~ f~ e-iq~ -iq"-" 
=25 

(c1) 

and g = 0. Close to z = L, inside the liquid, f (z)  is the sum of two oscil- 
lating functions of the form 

{ f 
f (z)  ~-f+ s i n [ q + ( z - L ) l  ="~+ e ~q+-Leiq+~--~+- e<Le -iq• (C2) 

- 2i 2i 

in the antisymmetric case (a cosmus in the symmetric case) and the same 
for g. Here, for simplicity, the symbol q, for wave vectors, denotes the 
z-component only. The Fourier analysis of the solutions of the T D D F  
equations provides the amplitudes fa and f +  for fixed values of L and b. 
Changing L and b one can find different solutions at the same energy and 
parallel wave vector. Let us choose two symmetric states and an antisym- 
metric state and combine them in the form 

f = f(1~(z) + a2f<(z)  + a3f<(z)  (C3) 
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where the solution f(~) corresponds to the parameters L~ and b=. The 
atomic part, well outside the slab, becomes 

elqaZ ~ [ ' ( 2 ) ~ 1 7 7  rr(3)~ 

e --tqaZ 
2i [f(l~ e iqobl+,,~2~,c(2~o~ iqob2+a3f(3te-iqob3], (C4) 

the R + roton part, close to z = L, is 

etq + z 
f +  - -  2 [ --if(l+)e iq+bl +a 2dr~'(Z)eiq-bz~a+ 3jC(3)eiq+b3q+ A 

e iq+z 
+ ~ [ if(l+) e-iq+b, + a2f(2+) e-iq+b2 + a3f~) e iq+b3] (c5) 

and the R -  roton part is 

eiq z 
f -  = 2 [--if~)eiq-b' +azf(2-)eiq-b2 +aBf(B-~eiq-b3] 

e -- tq_z 
+_~_[/f(_l~ e i q - & q _ a 2 f ( 2 ) e - i q  b 2 q _ a 3 f ( 3 ) e - i q  b3]. (C6) 

The quantities in brackets represent the amplitudes of incoming and out- 
going excitations and one can choose the coefficients a2 and a 3 in order to 
make two of them vanish. As said at the beginning, we show here the case 
of an incident roton R--. So, we must have zero amplitude for incoming 
atoms and R -  rotons (see Fig. 4). Keeping in mind that R -  rotons travel 
with negative group velocity, one obtains the following algebraic equations 
for a2 and a3: 

(1) iqabl .q, f(2),oiqab2 .~ ~(3),::,iqab3 f a  e + ~ 2 J a  ~ A V . 3 j  a ~ ~ ' 0  

if(1)e iq_bl +a2f(2)e-iq ~2 + a3f(3_)e-iq_b3=O. 

(C7) 

(C8) 

Since the ratio between the amplitude of the particle-hole f and the hole- 
particle g components depends only on the energy and not on the par- 
ticular state in the combination, the above equations ensure that the 
incoming flux of atoms and R rotons vanish. One has to recall the defini- 
tion (18) of the current density and use the values of a2 and a3 coming 
from Eqs. (C7-C8) in order to calculate the flux of the incoming rotons 
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and the ones of the outgoing excitations. The scattering rates come out 
to be: 

.., ~(2L:,iq+b2 + a3A(3+~ eiq+b312 [ -- iA~  )eiq+b' + "z~" + 
P++ = liA2~e_,q+b,+a2A(~+~e_iq+~2+a3A(3+~e iq+b~l ~ (C9) 

[iA(l+~ e-iq b~ + a2A(2_~ e-iq_bz + a3A(3_~ e-iq_b312 
F+ =liA2~e_,~+~,+a2AT~ ~+~2+a3A2~ _iq+~l ~ (Cl0! 

i A  a(I) 6' - iqabl  ~-t~2eXar, A (2 )o - - i qab2 . . l - ,  ~ ~3XXad(3)~ 

P+~= [iA~)e_iq+b, +a2A(Z+)e_iq+bz+a3A(3+~e iq+b3l 2 (Cl l )  

where A j =  s ign( f j ) , /v~( f~-  g~). One can also derive similar expressions 
using two anti-symmetric states and one symmetric state. The other scat- 
tering rates can be evaluated by selecting different processes, i.e., by solving 
different equations for the coefficients a2 and a3. The states entering the 
combinations have to be linearly independent. This requires a certain care 
in selecting proper values of L and b. If the states are not sufficiently inde- 
pendent, it happens that the denominators in the expressions for P,y tend 
to be small and consequently small fluctuations in the numerical results 
produce large uncertainties in the final results. 

APPENDIX D. UNITARITY CONDITION IN THE 
A B S E N C E  O F  R + N O R M A L  REFLECTION 

In this appendix we will derive expressions (33-36) for the scattering 
matrix elements in the phonon forbidden region (region III in the spectrum 
of Fig. 1) which are valid if S+ + =0. In this hypothesis one can rewrite 
Eqs. (27), (30) and (32), respectively, as 

IS§  S _  12=1 (D1) 

S*.V ~-S* S =0  (D2) a a ~ + a  t a--  + 

S * , S  a + S *  S _ = 0 .  (03) 

The first equation coincides with the result (33). From the other two one 
gets 

S~+ 2_ S _  - -- S*2+a~aa '~ (D4) 

o r  

IS+ ]4 IS_ 12= [S+a] 4 [Saal 2, (D5) 
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Subtracting Eq. (29) from Eq. (28) one gets 

IS+_ 12- Is+al 2= Igaol 2 -  IS__ [2 (D6) 

Excluding Saa from Eqs. (D5) and (D6) one finds 

I,+_12+lS+ai2=(I-~+~ll~ l ) l s  I 2 (OT) 

or, using (D1): 

(D8) 

Thus we have obtained expression (34). Expression (35) can be derived in 
analogous  way. Finally, by  substituting (D1) and (D8) into (28), one finds 

IS ~12=1-1s+_[2-1s _12 

--- IS+o12- iS+al 4 

- -  IS+ol 2 Is_ + [2 (D9) 

which corresponds to the last result given in Eq. (36). 

A C K N O W L E D G M E N T S  

We are indebted to A. F. G. Wyat t ,  A. C. Forbes,  D. O. Edwards  and 
M. Guil leumas for m a n y  useful discussions. L. P. thanks the hospitali ty of  
the Dipar t imento  di Fisica at the University of  Trento as well as of  the 
Institute for Condensed Mat ter  Theory  at the University of  Karlsruhe and 
support  of  the Alexander von  H u m b o l d t  Foundat ion .  

R E F E R E N C E S  

1. W. D. Johnston and J. G. King, Phys. Rev. Lett. 16, 1191 (1966). 
2. S. Balibar, J. Buechner, B. Castaing, C. Laroche, and A. Libchaber, Phys. Rev. B 18, 3096 

(1978). 
3. D. O. Edwards, Physiea 109 & ll0B, 1531 (1982), and references therein; V. V. Nayak, 

D. O. Edwards, and N. Masuhara, Phys. Rev. Lett. 50, 990 (1983); S. Mukherjee, 
D. Candela, D. O. Edwards, and S. Kumar, Jap. J. AppL Phys. 26-3, 257 (1987). 

4. M. J. Baird, F. R. Hope, and A. F. G. Wyatt, Nature 304, 325 (1983); F. R. Hope, M. J. 
Baird, and A. F. G. Wyatt, Phys. Rev. Lett. 52, 1528 (1984). 

5. A. F. G. Wyatt, Physica 126B, 392 (1984). 
6. G. M. Wyborn and A. F. G. Wyatt, Phys. Rev. Lett. 65, 345 (1990). 
7. H. Baddar, D. O. Edwards, T. M. Levin, and M. S. Pettersen, Physica B 194-196, 513 

(1994). 



Quantum Evaporation from the Free Surface of Superfluid 4He 397 

8. C. Enss, S. R. Bandler, R. E. Lanou, H. J. Maris, T. More, F. S. Porter, and G. M. Seidel, 
Physica B 194-196, 515 (1994) 

9. A. F. G. Wyatt, M. A. H. Tucker, and R. F. Cregan, Phys. Rev. Lett. 74, 5236 (1995). 
i0. A. C. Forbes and A. F. G. Wyatt, 9". Low Temp. Phys. 101, 537 (1995). 
11. M. Brown and A. F. G. Wyatt, J. Phys.: Condens. Matter 2, 5025 (1990). 
12. A. Widom, Phys. Lett. 29A, 96 (1969); D. S. Hyman, M. O. Scully, and A. Widom, Phys. 

Rev. 186, 231 (1969). 
13. P. W. Anderson, Phys. Lett. 29A, 563 (1969). 
14. M. W. Cole, Phys. Rev. Lett. 28, 1622 (t972). 
15. C. Caroli, B. Roulet, and D. Saint-James, Phys. Rev. B 13, 3875, 3884 (1976). 
16. D. P. Clogherty and W. Kohn, Phys. Rev. B 46, 4921 (1992). 
17. H. J. Maris, J. Low Temp. Phys. 87, 773 (1992). 
18. P. A. Mulheran and J. C. Inkson, Phys. Rev. B 46, 5454 (1992). 
19. F. Dalfovo, A. Fracchetti, A. Lastri, L. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 75, 

2510 (1995). 
20. F. Dalfovo, A. Lastri, L. Pricaupenko, S. Stringari, and J. Treiner, Phys. Rev. B 52, 1193 

(1995). 
21. A. Lastri, F. Dalfovo, L. Pitaevskii, and S. Stringari, 3". Low Temp. Phys. 98, 227 (1995). 
22. M. Casas, F. Dalfovo, A. Lastri, L1. Serra, and S. Stringari, Z. Phys. D 35, 67 (1995). 
23. E. Krotscheck, in Condensed Matter Theories, M. Casas, M. de Llano, J. Navarro, and 

A. Polls eds. (Nova Science Pub., New York 1995) Vol. 10, p. 13. 
24. J. Dupont-Roc, M. Himbert, N. Pavloff, and J. Treiner, 3". Low Temp. Phys. 81, 31 (1990). 
25. L. B. Lurio etal., Phys. Rev. Lett. 68, 2628 (1992). 
26. Note that in the same expansion written in Ref. 19 (Eq. (1)) there was a misprint in the 

sign of the argument of the exponential after g(z). 
27. The functions f and g in the notation of standard Bogoliubov theory are called u and v, 

respectively. 
28. S. T. Beliaev, Zh. Eksp. Teor. Fiz. 34, 417 (1958) [Soy. Phys. JETP 7, 289 (1958)]. 
29. Different states at the same energy and wave vector can be found by varying the thickness 

of the slab and/or the size of the computational box. This procedure is equivalent to solve 
the equations of motion at fixed energy, slab and box, but different boundary conditions. 
We work with fixed boundary conditions ( f  and g vanish at the boundary). 

30. A. C. Forbes and A. F. G. Wyatt, private communication. 


