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Abstract: The equation of state for fully degenerate high-density plasmas is derived using a 
modified Thomas-Fermi model. Although the classical TF model is adequate to obtain the energy 
of an atom at very high densities it fails for low densities. A new version of this model for plasmas is 
presented which addresses this deficiency by including near-nucleus, exchange and correlation 
corrections. An analytic formula for the equation of state E(ni) is obtained, valid for all densities 
(n i < 1026 cm- 3). For low densities, Hartree-Fock results are reproduced with less than 1% error, 
and the classical result is recovered in the high-density limit. 

PACS: 31.20Lr, 52.25Kn, 64.10+h 

Recently, various experiments have produced high- 
density plasmas, using, for example, high-energy lasers, 
particle beams and Z-pinches. High-density is important 
for inertial confinement fusion experiments as well as in 
connection with the irradiation of matter by short pulses, 
(~-fs). In nature, such densities exist inside planets and 
stars. 

An essential requirement for the analysis of high- 
density experiments is the equation of state (EOS), which 
is usually the pressure p or the energy E as a function of 
density and temperature. In this paper only the fully 
degenerate or temperature-independent energy of the 
electrons is investigated; this means 

l ( kT "] 3/2 
n i>=1 .4x1023y \10eV/  " (1) 

In the case of dense plasmas a strong interaction of the 
ions exists, i.e. the orbits of neighbouring atoms overlap 
and conducting bands occur. This lowers the binding 
energy of the electrons, and the energy gap between free 
and bound electrons decreases, which in turn leads to the 
lowering of the ionization potentials. If the density is high 
enough, this can lead to ionization, i.e. pressure 
ionization. 

The Thomas-Fermi (TF) model [-1] is used to describe 
atoms in high-density matter, because in contrast to 
Hartree-Fock calculations it enables one to investigate 
the influence of high density in high-Z atoms with 
relatively little effort. The main problems with numerical 
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simulations using the TF equation occur at low densities 
and temperatures, because quantum effects are always 
significant in regions near the nucleus, and on the 
periphery of the isolated atom. Thus the application of the 
simple TF model to the calculation of the total energy of a 
heavy atom will actually lead to substantial errors. 
Attempts have been made to improve the results by taking 
into account exchange and correlation effects. The results 
are not very satisfactory because these effects lead to 
corrections in the outer region of the atom, but the energy 
is dominated by the behaviour near the nucleus. Schwin- 
ger improved the TF model for free atoms in this region 
[2]. A comparison of the energy of the free atom 
calculated by i) TF, ii) TF with two corrections proposed 
by Schwinger, and iii) measured values, will show that for 
high-Z atoms the Schwinger equation with both correc- 
tions approximates the Hartree-Fock results with less 
than 1% error. Because the TF model with corrections is 
an adequate method for free atoms, this result implies that 
a similiar near-nucleus correction should improve the 
energy results in the case of dense plasmas too. 

In Sect. 2 the energy is calculated using near-nucleus 
as well as exchange and correlation corrections for high- 
density matter. An analytic formula for the density 
dependence of the energy of atoms is obtained, which can 
be used over a large range of densities. 

1. Energy in the Thomas-Fermi Model 

The statistical model for atomic electrons was originally 
derived by Thomas [-3] and Fermi [-4] to investigate free 
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many-electron atoms. Later on it was shown [1] that the 
model could be used in the case of high-density plasmas, 
too. 

The statistical theory of the atom is based on the 
assumption that the electrons of the system can be treated 
as a degenerate electron gas within a self-consistent 
electrostatic field. The electron gas is described by Fermi- 
Dirac statistics, which in the case of full degeneracy, see 
(1), reduces to the Pauli principle. In this paper only the 
temperature-independent case will be considered. If all 
effects other than the electrostatic interaction can be 
neglected, the energies of the atoms and ions are given by: 
the kinetic energy Eu,; the potential energy of the electron 
gas in the potential field of the core EV; and the energy of 

ww the electrostatic interaction Ep . Thus 
v ww 

E = Eki n + Ep + Ep (2) 

e 2 ne(r) n~(r') 
=Cl~nS/3d3r-e~Vn~dar+2 ~ Ir-r'l d3rd3r" (3) 

where C 1 = ~(3rc2)2/3e2ao and n~ is the electron density. 
Using the Thomas-Fermi equation 

~3/2 
xl/2 (4) 

8~ (2me~ 3/2 
with x=r/p, C 2 = ~ - \  hE j , ~=[(4rcCz)Z/3eZl13] -1 

and ~=r(V-Vo)/Ze and boundary conditions as for 
atoms in plasmas 4(0)= 1 ; and ~(Xo) -Xoq~'(Xo)= O, where 
xo is the boundary of the elementary cell, the electron 
density is then given by 

no(r) = 

Eliezer et al. [5] have shown that the energy of the 
atom in a plasma using the TF model is 

Z2e 2 F 3  2 -I 
E a p -  tx L - 7 q J ' ( O ) + ~ x l ° i z + 5 ° i Z J  ' (6) 

where 4~ o is the abbreviated notation for l(Xo). Approxim- 
ation formulae for q)(xo) and 4'(0) are given by March [6]. 
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Fig. 1. Comparison of the total energies of free atoms calculated 
using the TF, TFS, and TFDS model and experimental data as a 
function of the atomic number Z 
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2. Energy Corrections 

It has been shown [7-9] that the TF model is an adequate 
description at very high densities (> 1025 cm-3), but its 
use at low densities (~  solid density) is problematic. What 
are the deficiences of the TF model in this region? 

In the case of free atoms Schwinger [2] and Englert 
[10, 11] have shown that the TF model fails because of: 

(a) the inner region of strong binding.The basic point 
of this correction is that the TF description is valid only 
when the wavelength of the particle is small compared to 
the radial distance, h/p ~ r, which leads to x >> Z-2/3. SO 
for a given x the TF model is only reliable if Z is large 
enough or, alternatively, there is a inner region where the 
TF approximation fails. 

(b) the neglect of all interactions other than electrostatic. 
For a more detailed description of the electrons, the 
exchange and correlation corrections have to be taken 
into account. 

Because of the strong binding energies of the electrons 
near the nucleus, the first of these is the more important. 
The energy in the corrected model is given by 

ETFSD = ETF" (1 --  0.6505Z- 1/3 + 0.346Z- 2/3). (7) 

Figure 1 compares the results using the simple TF, the 
TF with corrections (a) and (b), and experimental data 
[12] for the energies for free atoms of different Z. 

For low-Z elements the error of the simple TF model 
is up to 25%. A comparison with energies obtained by the 
TF model with the two Schwinger corrections shows that 
for Z > 20 the discrepancy is less than 1%. 

We now consider similar corrections for atoms in 
high-density plasmas. 

2.1. Leading Correction 

Scott [13] was the first to present the leading correction of 
the TF energy. As shown before, the TF model is only 
valid if x >> Z-2/3. There have been different attempts to 
improve the result by including a gradient correction. 
Here a different method is used to avoid the unphysical 
behaviour of the electron number density at small x. 
Similar to Schwinger's treatment of free atoms, the 
integration is stopped at a lower limit ~_ Z -  213. To analyze 
the density dependence of the energy, the integrals of (3) 
are solved within different limits. 

3 e 2 (2Z) v/3 ~o ~}5/2 
Ekin = -- ~ ao (3re) z/3 ~J-2,3 x -W2 dx 

3 e2 (2Z)7ia (io q~m2 ~z-2,3 ~5/2~ 
- 5 ao (3re) 2/3 x 1/2 ! xl/~ j dx (8)  

with 

~ z - z l 3  4 5/2 ~ Z - 2 / 3  i 

[. ~-i7~- dx ~- ~ x- ~ dx = C3Z- a/3. (9) 
o o 

For moderate densities, C 3 = 1.03 as in Schwinger's 
calculation for the free atom. At high densities C3 is a 
function of the density too. Here, and in what follows, it is 
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Fig. 2. Comparison of the density dependence of Ekin, E v, and E ww 
using the TF and the Thomas-Fermi model with generalized 
Schwinger correction (TFS) 
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assumed that ~(x) = 1 near the nucleus. The kinetic energy 
of ions in high density plasmas is given by 

3 e2 (2Z)7/3 (--4 '  + 5 o o C3 Z-1[3) 4 Xt/2~5/2 __ (10) 
E k i n - -  7 ao (37Z) 2/3 

The potential energies are given by 

ZEe 2 xo 4 3 / 2  

E v -  _ _  z f  ~ - 

# - c 3 z -  1/3 , (11) 

E W W - 2 e  ~°~z-~/~ n j r ) (V( r ) -Ze )  dar 

- -  Z2e2 {~[~,(O)_t_C3Z-1/3]_}_2x1/2~5/2 
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Fig. 3. Comparison of the density dependence of the total energy of 
an atom using the TF, Thomas-Fermi model with generalized 
leading (TFS) and exchange and correlation (TFDS) correction 
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Figure 2 shows a comparison of these energies cal- 
culated by using the simple TF equation and the TF 
equation with the first correction. 

The total energy is then given by 

3 e 2 (2Z) v/a 
E =  7 ao (3n) 2/3 

[ 2 1'2 5'2 ~ o 7 J  X 4(0)+~X o/ ~o' -C3 Z-1/3 (13) 
xo 9Z " 

Figure 3 shows a comparison between the TF and the 
(TFS) result of(13). As expected the main difference occurs 
at low densities. 

2.2. TFS with Exchange and Correlation Corrections 

Like the Thomas-Fermi model, the TFS model can be 
improved by taking into account exchange and correl- 
ation corrections. The exchange energy is the effect of the 
antisymmetrization of the electron wavefunctions on the 
electrostatic interaction energy. This additional energy 

Eex is [-14] 

e 2 
E e l -  4 ~  (3nz)4/3 j" n4/3d3r' (14) 

which, using the TF equation, is given by 

e 2 ( 32 "~1/3 e 2 
E~x- Z5/3 ao \~-~4 } ~ q~2dx = - 0.3588 --ao Z 5/3 ~ ,I~2dx. 

(15) 

Solving the integral 

~° 42 dx 
0 

(16) 

numerically, one obtains Fig. 4. The correlation energy E c 
is of the same order as the exchange correction. Englert 
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and Schwinger [10] have shown that 

2 
Ec = ~ Eex. (17) 

Therefore, the totaI correction term is 
2 

E a = -0.438 e- Z5/3 S ~2dx. (18) 
a o  

Figure 3 also includes the result of the TF equation 
including all corrections. So the energies in these three 
models are given by 

e 2 
ETF(ni):l.195Z7/3~of3~'(O)--~--~Xlo/2~95/21 

e 2 
ETFS(ni): ]']95Z7/3 - -  [~ ~'(O)-- ~ 

3 -1 

- - -  J 

+ ~ C3Z-1/3 4o l 
Xo 

e 2 

3 ~'o 1 _Z_2/3f.~2dx-]. + 7 C3 Z - 1 / 3 _  . (19) 
J x o 3Z 

For low densities the result reproduces the Schwinger 
equation, which means that our result is in good agree- 
ment with Hartree-Fock results too. In the case of high 
densities it reproduces the standard TF results. 

3. Conclusions 

In this paper the TF model has been modified by 
including near-nucleus, exchange and correlation correc- 
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tions for fully degerate high-density plasmas. This model 
has been used to calculate the energy equation of state, 
from which we obtain the following: 

• Hartree-Fock results are repruduced to within 1% for 
low densities 
• the classical TF model is recovered in the high-density 
limit (ni > 1024 cm- 3) 
• the equation of state can be expressed by a simple 
analytic expression (suitable for insertion into fluid codes) 

This method could be extended with little effort to the 
temperature-dependent case. 
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