RC*-FIELDS

Yu. L. Ershov

It is stated that if a Boolean family W of valuation rings of a field F satisfies the block approximation property (BAP) and a global analog of the Hensel-Rychlick property (THR), in which case $\langle F, W \rangle$ is called an RC^* -field, then F is regularly closed with respect to the family W (Theorem 1). It is proved that every pair $\langle F, W \rangle$, where W is a weakly Boolean family of valuation rings of a field F, is embedded in the RC^* -field $\langle F_0, W_0 \rangle$ in such a manner that $R_0 \mapsto R_0 \cap F$, $R_0 \in W_0$ is a continuous map, W_0 is homeomorphic over W to a given Boolean space, and R_0 is a superstructure of $R_0 \cap F$ for every $R_0 \in W_0$ (Theorem 2).

In the present paper we prove most of the statements announced in [1].

For definitions of the basic notions in valued field theory, we ask the reader to consult Chap. 4 in [2]. If R is a valuation ring of a field F, then $\mathfrak{m}(R)$ is the maximal ideal of R, v_R is the corresponding valuation, $F_R = R/\mathfrak{m}(R)$ is a residue class field, Γ_R is a value group, R^h is the Henselization of R, and $H_R(F) = q(R^h) \leq \tilde{F}$ is the field of fractions of R^h ; moreover, $\mathbb{H}_R(F) = \langle H_R(F), R^h \rangle$.

1. Let W be some family of pairwise incomparable (w.r.t. inclusion) valuation rings of a field F. A canonical topology on W is one defined via the subbase of subsets of the form $V_a = \{R | R \in W, a \in R\}$, $a \in F^* = F \setminus \{0\}$; if $A \subseteq F^*$ is a finite nonempty subset, then $V_A = \bigcap V_a$.

We call W a weakly Boolean family of valuation rings if W endowed with the canonical topology becomes a Boolean space, and V_A is closed-open for every finite $A, \emptyset \neq A \subseteq F^*$. A weakly Boolean family W is Boolean if all closed-open subsets of W are of the form $V_a, a \in F^*$. In [3], it was established that W is a Boolean family iff F is the field of fractions of the ring R_W defined by W as follows: $R_W \rightleftharpoons \cap \{R | R \in W\}$, R_W is a regular Prüfer ring, and $W = \{(R_W)_m | m \text{ is a maximal ideal of } R_W\}$. If W is a (weakly) Boolean family of valuation rings of F, F_0 is an algebraic extension of F, and $W_0 \rightleftharpoons \{R_0 | R_0$ is a valuation ring of a field F_0 and $R_0 \cap F \in W\}$, then W_0 is a (weakly) Boolean family (Theorems 1 and 2 in [3]).

Let W be a weakly Boolean family of valuation rings of a field F. We say that W possesses the block approximation property (BAP) if, for every partition $[V_0, \ldots, V_n]$ of W, i.e., for a family V_0, \ldots, V_n of closedopen subsets of W such that $W = \bigcup_{i \leq n} V_i$ and $V_i \cap V_j = \emptyset$ for $0 \leq i < j \leq n$, for all $a_0, \ldots, a_n \in F$ and $\varepsilon_0, \ldots, \varepsilon_n \in F^* (= F \setminus \{0\})$, there exists an element $a \in F$ for which $v_R(a - a_i) \geq v_R(\varepsilon_i)$ with all $R \in V_i$, $i \leq n$.

Proposition 1. If a Boolean family W has BAP, then W is Boolean.

Note that for every partition $[V_0, \ldots, V_n]$, there exists a finer partition $[V_{00}, \ldots, V_{0k_0}, \ldots, V_{n0}, \ldots, V_{nk_n}]$ such that for every V_{ij} , there is an element $\varepsilon_{ij} \neq 0$ satisfying $v_R(\varepsilon_{ij}) > 0$ for all $R \in V_{ij}$. This follows from the fact that a family of closed-open subsets of the form $V_{\varepsilon}^* \rightleftharpoons V_{\varepsilon} \setminus V_{\varepsilon^{-1}}, \varepsilon \in F^*$, covers W. Let V be closed-open and let $[V_0, \ldots, V_n]$ be a refinement of the partition $[V, W \setminus V]$ such that for some

Translated from Algebra i Logika, Vol. 33, No. 4, pp. 367-386, July-August, 1994. Original article submitted February 2, 1994.

 $\varepsilon_0, \ldots, \varepsilon_n \in F^*$, we have $v_R(\varepsilon_i) > 0$ with all $R \in V_i$, $i \le n$. Put $a_i = 1$ if $V_i \subseteq V$, and $a_i = 0$ if $V_i \subseteq W \setminus V$, $i \le n$; if $a \in F$ is such that $v_R(a - a_i) \ge v_R(\varepsilon_i)$ for $R \in V_i$, $i \le n$, then $V = V_{a^{-1}}$.

If W is known to be Boolean, then the block approximation property for W is reworded as follows: If $\alpha_0, \ldots, \alpha_n \in F^*$ determines the partition $V_{\alpha_0}, \ldots, V_{\alpha_n}$ of the space W (in this case we say that $[\alpha_0, \ldots, \alpha_n]$ is a partition), $a_0, \ldots, a_n \in F$, and $0 \neq \epsilon \in R_W$, then there exists an element $a \in F$ such that $v_R(a - a_i) \ge v_R(\epsilon)$ for any $R \in V_{\alpha_i}$, $i \le n$.

Proposition 2. If W is a Boolean family of valuation rings of a field F, then the pairs $\langle F, R_W \rangle$ such that W has BAP are expressed via a system of axioms in the signature $\sigma_f \cup \langle R \rangle$.

The proposition follows from the following facts:

(1) For every $a \in F$, there exists an $\alpha \in R_W$ such that $V_a = V_{\alpha^{-1}}$.

Since R_W is a Prüfer ring, there exists a $\beta \in F$ such that $aR_W + R_W = \beta R_W$. It is easy to see that $\alpha \rightleftharpoons \beta^{-1} \in R_W$ and $V_a = V_\beta = V_{\alpha^{-1}}$. The elements a and α are connected via relations $\alpha \in R_W$ and $\exists r_0, r_1 \in R_W$ ($a\alpha r_0 + \alpha r_1 = 1$), which follow from the condition of $aR_W + R_W = \beta R_W$ being equivalent to $\alpha aR_W + \alpha R_W = R_W$.

(2) If $\alpha, \beta \in R_W$ and $\alpha \beta \neq 0$, then $V_{\alpha^{-1}} \cap V_{\beta^{-1}} = V_{(\alpha\beta)^{-1}}$.

Indeed, $R \in V_{\alpha^{-1}} \cap V_{\beta^{-1}} \Rightarrow \alpha, \beta \in R \setminus \mathfrak{m}(R) \Rightarrow \alpha\beta \in R \setminus \mathfrak{m}(R) \Rightarrow R \in V_{(\alpha\beta)^{-1}} R \in V_{(\alpha\beta)^{-1}} \Rightarrow \alpha^{-1} = \beta(\alpha\beta)^{-1} \in R$, and $\beta^{-1} = \alpha(\alpha\beta)^{-1} \in R \Rightarrow R \in V_{\alpha^{-1}} \cap V_{\beta^{-1}}$.

(3) If $\alpha \in R_W$, then $V_{\alpha^{-1}} = \emptyset$ iff α belongs to the Jacobson radical $J(R_W)$ of the ring R_W .

Let $V_{\alpha^{-1}} = \emptyset$; if m is a maximal ideal of R_W , then $(R_W)_m \in W$. We have $\alpha^{-1} \notin (R_W)_m$ and $\alpha \in \mathfrak{m}((R_W)_m) \cap R_W = \mathfrak{m}$, i.e., $\alpha \in \cap \{\mathfrak{m} | \mathfrak{m} \text{ is a maximal ideal of } R_W\} = J(R_W)$.

Conversely, let $\alpha \in J(R_W)$; then for $R \in W$, $\mathfrak{m}(R) \cap R_W$ is a maximal ideal of R_W , and $\mathfrak{m}(R) \cap R_W \supseteq J(R_W)$ holds; hence $\alpha \in \mathfrak{m}(R)$, and so $\alpha^{-1} \notin R$, i.e., $V_{\alpha^{-1}} = \emptyset$.

(4) If $\alpha \in R_W$, then $\alpha \in J(R_W)$ iff $R_W \models \forall x \exists y((1 + \alpha x)y = 1)$.

See, for instance, Proposition 1.9 in [4].

Let $0 \neq \alpha \in R_W$ and $R_{\alpha} \rightleftharpoons \cap \{R | R \in W, \alpha^{-1} \in R\}$.

(5) If $a \in F$ and $0 \neq \varepsilon \in R_W$, then the fact that $v_R(a) \geq v_R(\varepsilon)$ for all $R \in V_{\alpha^{-1}}$ is equivalent to the relation $a\varepsilon^{-1} \in R_{\alpha}$.

We have $v_R(a) \ge v_R(\varepsilon) \Leftrightarrow v_R(a\varepsilon^{-1}) \ge 0 \Leftrightarrow a\varepsilon^{-1} \in R$.

(6) If $0 \neq \alpha \in R_W$ and $\alpha_* \in R_W$ is such that $V_{\alpha^{-1}} \cap V_{\alpha_*^{-1}} = \emptyset$ and $V_{\alpha^{-1}} \cup V_{\alpha_*^{-1}} = W$, then $R_\alpha = \{ab^{-1}|a, b \in R_W, b \neq 0, V_{b^{-1}} \cup V_{\alpha_*^{-1}} = W\}$.

Indeed, $V_{b^{-1}} \cup V_{\alpha_*^{-1}} = W$ implies that $V_{\alpha^{-1}} \subseteq V_{b^{-1}}$, and so $b^{-1} \in R$ for all $R \in V_{\alpha^{-1}}$; then we have $b^{-1} \in \cap \{R | R \in V_{\alpha^{-1}}\} = R_{\alpha}$, and $R_W \leq R_{\alpha}$ implies $ab^{-1} \in R_{\alpha}$ for every $a \in R_W$.

Let $a \in R_{\alpha}$ and $\beta \in F$ be such that $aR_W + R_W = \beta R_W$; then it is obvious that $V_{\alpha^{-1}} \subseteq V_a \subseteq V_\beta$. Thus, $\beta^{-1} \in R_W$, and $a = r\beta$ for a suitable $r \in R_W$.

(7) Let $\alpha_0, \ldots, \alpha_n \in R_W \setminus \{0\}$. Then $\bigcup_{i \leq n} V_{\alpha_i^{-1}} = W$ iff $(\alpha_0, \ldots, \alpha_n) = R_W$ [here $(\alpha_0, \ldots, \alpha_n)$ is the ideal of R_W generated by elements $\alpha_0, \ldots, \alpha_n$] and $(\alpha_0, \ldots, \alpha_n) = R_W \Leftrightarrow \exists \beta_0, \ldots, \beta_n \in R_W (\sum_{i \leq n} \alpha_i \beta_i = 1)$.

If $(\alpha_0, \ldots, \alpha_n) \neq R_W$, then there exists a maximal ideal $m \ge (\alpha_0, \ldots, \alpha_n)$, in which case $\alpha_0, \ldots, \alpha_n \in R \iff (R_W)_m \in W$ and $R \in W \setminus \bigcup_{i \le n} V_{\alpha_i^{-1}}$. But if $(\alpha_0, \ldots, \alpha_n) = R_W$ and $R \in W$, then $1 \notin m(R)$ and $\alpha_i \notin m(R)$ for some $i \le n$, from which it follows that $R \in V_{\alpha_i^{-1}}$ and $W = \bigcup_{i \le n} V_{\alpha_i^{-1}}$.

Now, for every n > 1 we can write the BAP_n sentence in the signature $\sigma_j \cup \langle R \rangle$ to express the following property: For all $\alpha_0, \ldots, \alpha_n, a_0, \ldots, a_n \in F$ and $0 \neq \varepsilon \in R_W$, let $\beta_0, \ldots, \beta_n \in R_W \setminus \{0\}$ be such that $V_{\alpha_i} = V_{\beta_i^{-1}}, i \leq n$, and $V_{\beta_i^{-1}} \cap V_{\beta_i^{-1}} = \emptyset$ for $0 \leq i < j \leq n$ [which is equivalent to the condition $\beta_i \beta_j \in J(R_W), 0 \le i < j \le n$ and $\bigcup_{i \le n} V_{\beta_i^{-1}} = W$ [which is equivalent to the condition $(\beta_0, \ldots, \beta_n) = R_W$]. Then there exists an $a \in F$ satisfying $(a - a_i)\varepsilon^{-1} \in R_{\beta_i}, i < n$.

Then there exists an $a \in F$ satisfying $(a - a_i)\varepsilon = \in R_{\beta_i}, i \leq n$.

The collection of axioms BAP_n , n > 1, does axiomatize BAP.

LEMMA 1. If W is a Boolean family of valuation rings of a field F such that $W \neq \{F\}$, then $J(R_W) \neq \{0\}$.

If $J(R_W) = \{0\}$, then R_W is a subdirect product of fields: $R_W \leq \prod_{R \in W} F_R$. Since R_W has no zero divisors, it follows that |W| = 1 and $R_W \simeq F_R$ for R such that $W = \{R\}$, which is possible only in the case R = F.

We call the family W of valuation rings independent if any two distinct valuation rings, R and R', in W are independent, i.e., RR' = F.

Proposition 3. For W a Boolean family of valuation rings of a field F, the following conditions are equivalent:

(a) $\langle F, W \rangle \in BAP;$

(b) W is independent.

Let $\langle F, W \rangle \in BAP$, assuming that there exist $R_0 \neq R_1 \in W$ such that $R \Rightarrow R_0R_1 \neq F$. Let $a_i \in F^*$, i = 0, 1, be such that $R_0 \in V_{a_0}$, $R_1 \in V_{a_1}$, $V_{a_0} \cap V_{a_1} = \emptyset$, and $V_{a_0} \cup V_{a_1} = W$, let R be a valuation ring, and let $\mathfrak{m}(R) = \mathfrak{m}(R_0) \cap \mathfrak{m}(R_1) \geq J(R_W)$. Take $0 \neq b_0 \in J(R_W)$, which we can do since $J(R_W) \neq \{0\}$ by Lemma 1. Let $b_1 \in F \setminus R_1$. By BAP for $\varepsilon \Rightarrow b_0^2$, we can find an element b for which, in particular, $v_{R_0}(b-b_0) \geq v_{R_0}(\varepsilon)$ and $v_{R_1}(b-b_1) \geq v_{R_1}(\varepsilon)$. The first condition implies that $b - b_0 \in J(R_W)$, $b \in J(R_W) \leq \mathfrak{m}(R) \leq \mathfrak{m}(R_1)$, and $v_{R_1}(b) > 0$; it follows from the second condition that $v_{R_1}(b) = v_{R_1}(b_1) < 0$. Contradiction. Thus, (a) implies (b).

In order to prove that $(b) \Rightarrow (a)$, we need the following:

LEMMA 2. If W is an independent Boolean family and if α , $\beta \in F$ are such that $V_{\alpha} \cap V_{\beta} = \emptyset$ and $V_{\alpha} \cup V_{\beta} = W$, then for every $0 \neq \varepsilon \in R_W$, there exists an element a for which $v_R(1-a) \geq v_R(\varepsilon)$ if $R \in V_{\alpha}$, and $v_R(a) \geq v_R(\varepsilon)$ if $R \in V_{\beta}$.

There is no loss of generality in assuming that $V_{\alpha} \neq \emptyset$, $V_{\beta} \neq \emptyset$, and $\varepsilon \in J(R_W)$. Let $R_0 \in V_{\alpha}$; then for every $R_1 \in V_{\beta}$ the equality $R_0R_1 = F$ implies the existence of an a_{R_1} satisfying $v_{R_0}(1 - a_{R_1}) \ge v_{R_0}(\varepsilon)$ and $v_{R_1}(a_{R_1}) \ge v_{R_1}(\varepsilon)$. Let $V_{R_1} \rightleftharpoons V_{a_{R_1}\varepsilon^{-1}} \cap V_{\beta}$; then $R_1 \in V_{R_1} \subseteq V_{\beta}$ and $V_{\beta} = \bigcup_{\substack{R_1 \in V_{\beta}}} V_{R_1}$. Since V_{β}

is compact, there exist $R_1, \ldots, R_s \in V_\beta$ such that $V_\beta = \bigcup_{i=1}^s V_{R_i}$. If $a \rightleftharpoons \prod_{i=1}^s a_{R_i}$, then $v_R(a) \ge v_R(\varepsilon)$ for $R \in V_\beta$, and $v_{R_0}(1-a) \ge v_{R_0}(\varepsilon)$ [the latter is implied by the following: $1-a = (1-a_{R_1}) + a_{R_1}(1-a_{R_0}) + \ldots + a_{R_1} \cdots a_{R_{s-1}}(1-a_{R_s})$; $v_{R_0}(1-a_{R_i}) \ge v_{R_0}(\varepsilon)$ and $v_{R_0}(a_{R_i}) = 0$, $i = 1, \ldots, s$]. Thus, for every $R_0 \in V_\alpha$, there exists an $e_{R_0} \rightleftharpoons a \in F^*$ for which $v_{R_0}(1-e_{R_0}) \ge v_{R_0}(\varepsilon)$ and $v_R(e_{R_0}) \ge v_R(\varepsilon)$ for all $R \in V_\beta$. That element e_{R_0} is such that for every $R'_0 \in V_{R_0} \rightleftharpoons V_{(1-e_{R_0})\varepsilon^{-1}} \cap V_\alpha$, the condition that $v_{R'_0}(1-e_{R_0}) \ge v_{R'_0}(\varepsilon)$ and $v_R(e_{R_0}) \ge v_R(\varepsilon)$ is satisfied also for all $R \in V_\beta$. Therefore, $R_0 \in V_{R_0} \subseteq V_\alpha$ and $V_\alpha = \bigcup_{R \in V_\alpha} V_R$. Since V_α is compact, there exist $R_0, \ldots, R_k \in V_\alpha$ such that $V_\alpha = \bigcup_{i \le k} V_{R_i}$. Let $e \rightleftharpoons \sum_{i \le k} e_{R_i} - \sum_{0 \le i < j \le k} e_{R_i} e_{R_j} + \sum_{0 \le i < j < k} e_{R_i} e_{R_i} e_{R_i} e_{R_i} + \dots + (-1)^k e_{R_0} \cdots e_{R_k}$. It is not hard to verify (e.g., for the case k = 1) that $v_R(1-e) > v_R(\varepsilon)$ if $R \in V_\alpha$, and $v_R(\varepsilon) > v_R(\varepsilon)$ if $R \in V_\beta$.

Now, let $[\alpha_0, \ldots, \alpha_n]$ be a partition, $a_0, \ldots, a_n \in F$, and $0 \neq \varepsilon \in R_W$. For each a_i , we will find b_i such that $a_i R_W + R_W = b_i R_W$, $i \leq n$. Note that $c_i \rightleftharpoons b_i^{-1} \in R_W$ and $a_i c_i \in R_W$, $i \leq n$. Choose $\varepsilon' \neq 0$ in $J(R_W)$ and put $\varepsilon_0 \rightleftharpoons \varepsilon \cdot \varepsilon' \cdot \prod_{i \leq n} c_i$. By Lemma 2, we can find elements $e_0, \ldots, e_n (\in R_W)$ such that $v_R(1-e_i) \geq v_R(\varepsilon_0)$

if $R \in V_{\alpha_i}$, and $v_R(e_i) \ge v_R(\varepsilon_0)$ if $R \in W \setminus V_{\alpha_i}$. Therefore, the element $a = \sum_{i \le n} a_i e_i$ satisfies the condition $v_R(a - a_i) \ge v_R(\varepsilon)$ if $R \in V_{\alpha_i}$, $i \le n$. Indeed, if $R \in V_{\alpha_i}$, then $a - a_i = a_i(e_i - 1) + \sum_{j \ne i} a_j e_j$. We have $v_R(a_i(e_i - 1)) = v_R(a_i) + v_R(e_i - 1) \ge v_R(a_i) + v_R(\varepsilon_0) \ge v_R(a_i) + v_R(c_i) + v_R(\varepsilon) = v_R(a_i c_i) + v_R(\varepsilon) \ge v_R(\varepsilon)$ since $v_R(a_i c_i) \ge 0$. Further, $v_R(a_j e_j) = v_R(a_j) + v_R(e_j) \ge v_R(a_j) + v_R(\varepsilon_0) \ge v_R(a_j) + v_R(c_j) + v_R(\varepsilon) = v_R(a_j) + v_R(\varepsilon_j) + v_R(\varepsilon_j) = v_R(a_j) + v_R(\varepsilon_j) \ge v_R(\varepsilon)$.

COROLLARY. If W is an independent Boolean family of valuation rings of the field $F, F_0 \ge F$ is an algebraic extension of F, and $W_0 \rightleftharpoons \{R_0 | R_0$ is a valuation ring of the field F_0 , and $R_0 \cap F \in W\}$, then $\langle F_0, W_0 \rangle \in BAP$.

Indeed, if W is independent, then so is W_0 .

2. Let us recall a number of basic definitions from [5].

Let $F \leq F_0$ be a field extension. The field F_0 is a 1-extension of F $(F \leq F_0)$ if, for every finite subset $C \subseteq F_0$, there exists an F-homomorphism φ of the ring F[C] into F.

For W a Boolean family of valuation rings of the field F, F is said to be regularly closed with respect to W, and we write $F \in RC(W)$ or $\langle F, W \rangle \in RC$, if for every regular extension F_0 of F the fact that $H_R(F) \leq_1 H_R(F) F_0$ for all $R \in W$ implies that $F \leq_1 F_0$.

If $F \leq F_0$ and R_0 is a valuation ring of the field F_0 , we say that F is dense in the valued field $\langle F_0, R_0 \rangle$ if, for any $a_0 \in F_0$ and $\gamma_0 \in \Gamma_{R_0}$, there exists an $a \in F$ such that $v_{R_0}(a - a_0) \geq \gamma_0$.

COROLLARY. If R is a valuation ring of the field F dense in $\mathbb{H}_R(F) = \langle H_R(F), R^h \rangle$ and if $R < R_0 < F$ and $R = R_0 \circ \overline{R}$ for a suitable valuation ring \overline{R} of the field F_{R_0} , then \overline{R} is Henselian.

Proposition 4. If $\langle F, W \rangle$ is an *RC*-field, *W* is independent, and $R \in W$, then *F* is dense in $\mathbb{H}_R(F) = \langle H_R(F), R^h \rangle$.

As in the proof of Theorem 3 in [5], we argue that the property of being dense is a consequence of the following property shared by RC- fields $\langle F, W \rangle$ possessing BAP.

If $g \in R_W[x]$ is a unitary polynomial and $a \in R_W$ is such that $g(a) \in J(R_W)$ and $g'(a)^{-1} \in R_W$, then for every $c \in J(R_W) \setminus \{0\}$ the polynomial $g(x) \cdot g(y) - c^2 \in R_W[x, y]$ has a root in F.

This property is proved in exactly the same way as (*) for RC_{π} -fields.

We proceed to formulate the THR property for $\langle F, R_W \rangle$ ($\langle F, W \rangle$).

Let F be the field of fractions of a regular Prüfer ring R_W . Then, for every absolutely irreducible polynomial $f \in R_W[x, \bar{y}]$ $(\bar{y} = y_0, \ldots, y_n)$ unitary in x and for all $a, \bar{b}, 0 \neq \epsilon \in R_W$ such that

$$f'_x(a,\bar{b}) \neq 0, \ f(a,\bar{b})f'_x(a,\bar{b})^{-2} \in J(R_W),$$

there exist $c, \bar{d} \in R_W$ satisfying

$$f(c, \bar{d}) = 0; \ (b_i - d_i)\varepsilon^{-1} \in J(R_W), \ i \le n;$$

 $(a - c)^{-1}f(a, \bar{b})f'_x(a, \bar{b})^{-1}, \ (a - c)f(a, \bar{b})^{-1}f'_x(a, \bar{b}) \in R_W.$

A pair $\langle F, W \rangle$ ($\langle F, R_W \rangle$) is called an RC^* -field if W is a Boolean family of valuation rings of the field F, and $\langle F, W \rangle$ satisfies BAP and THR.

Proposition 5. If (F, W) is an RC^* -field, then F is dense in $\mathbb{H}_R(F)$ for every $R \in W$.

Suppose that $g \in R_W[x]$ is a unitary polynomial for which there exists an $a \in R_W$ such that $g(a) \in J(R_W)$ and $g'(a)^{-1} \in R_W$. We show that for every $\varepsilon \in J(R_W) \setminus \{0\}$, we can find $\alpha_{\varepsilon} \in R_W$ for which $g(\alpha_{\varepsilon})\varepsilon^{-1} \in R_W$.

Let h(x, y) = g(x) + y. The polynomial h is absolutely irreducible, $h(a, \varepsilon) = g(a) + \varepsilon \in J(R_W)$, and $h'_x(a, \varepsilon) = g'(a)$ is invertible in R_W . By THR, there exist $c, d \in R_W$ such that h(c, d) = 0 and $(\varepsilon - d)\varepsilon^{-1} \in J(R_W)$, and so we have g(c) + d = 0, g(c) = -d and $g(c)\varepsilon^{-1} = -d\varepsilon^{-1} = (\varepsilon - d)\varepsilon^{-1} - 1 \in R_W$.

Now the conclusion of our proposition follows from this property and Proposition 7 in [6, Sec. 1], reasoning in the same way as in the proof of Theorem 3 in [5].

THEOREM 1. If (F, R_W) ((F, W)) is an RC^* -field, then (F, R_W) is an RC-field.

Suppose that $\langle F, W \rangle$ satisfies BAP and THR and let $F_0 \ge F$ be a finitely generated regular extension of F such that $H_R(F) \le H_R(F) + F_0$ for all $R \in W$.

Let \bar{b}, a be an R_W -special system of generators of the field F_0 over F (see [5, p. 595]), let $f \in R_W[\bar{x}, \bar{y}]$ be the corresponding absolutely irreducible polynomial, and let $0 \neq h \in R_W[\bar{y}]$. For every $R \in W$, the fact that $H_R(F) \leq_1 H_R(F)F_0$ implies that there exist $a_R, \bar{b}_R \in R^h$ such that $f(a_R, \bar{b}_R) = 0, f'_x(a_R, \bar{b}_R) \neq 0$, and $h(\bar{b}_R) \neq 0$. Since F is dense in $\mathbb{H}_R(F)$, there exist $\alpha_R, \bar{\beta}_R \in R$ for which $f'_x(\alpha_R, \bar{\beta}_R) \neq 0$, $f(\alpha_R, \bar{\beta}_R)f'_x(\alpha_R, \bar{\beta}_R)^{-2} \in \mathfrak{m}(R), h(\bar{\beta}_R) \neq 0, f(\alpha_R, \bar{\beta}_R) \neq 0$, and $f(\alpha_R, \bar{\beta}_R)h(\bar{\beta}_R)^{-1} \in \mathfrak{m}(R)$. Then $R \in$ $V_R \rightleftharpoons (\cap V_{\bar{\beta}_R}) \cap V_{\alpha_R} \cap (V_{f(\alpha_R, \bar{\beta}_R)h(\bar{\beta}_R)^{-1} \setminus V_{h(\bar{\beta}_R)f(\alpha_R, \bar{\beta}_R)^{-1}}) \cap (V_{f(\alpha_R, \bar{\beta}_R)f'_x(\alpha_R, \bar{\beta}_R)^{-2} \setminus V_{f'_x(\alpha_R, \bar{\beta}_R)^{-2}(\alpha_R, \bar{\beta}_R)^{-1})$ and $W = \bigcup_{R \in W} V_R$. Let $0 \neq \varepsilon_R \in R_W$ be such that $v_{R'}(f(\alpha_R, \bar{\beta}_R)) \leq v_{R'}(\varepsilon_R)$ for all $R' \in V_R$. Such ε_R can well be chosen in view of the following: If $\eta \in F$ satisfies the condition that $f(\alpha_R, \bar{\beta}_R)R_W + R_W = \eta R_W$, then $\eta^{-1} \in R_W$ and $\eta^{-1}f(\alpha_R, \bar{\beta}_R) \in R_W$, and we put $\varepsilon_R = \eta^{-1}f(\alpha_R, \bar{\beta}_R)$. Since W is compact, there exist $R_0, \ldots, R_n \in W$ such that $W = \bigcup_{i \leq n} V_{R_i}$. Since W is Boolean, there exists a partition $[a_0, \ldots, a_n]$ with $V_{a_i} \subseteq V_{R_i}$, $i \leq n$. Let $\varepsilon \rightleftharpoons \prod_{i \leq n} \varepsilon_{R_i}$ and choose $\gamma, \bar{\delta} \in F$ such that $v_R(\gamma - \alpha_{R_i}) \geq v_R(\varepsilon)$ and $v_R(\bar{\delta} - \bar{\beta}_{R_i}) \geq v_R(\varepsilon)$ for $R \in V_{a_i}, i \leq n$; the choices are possible in view of BAP. Now it is easy to verify that $\gamma, \bar{\delta} \in R_W, f'_x(\gamma, \bar{\delta}) \neq 0$, and $f(\gamma, \bar{\delta})f'_x(\gamma, \bar{\delta})^{-2} \in J(R_W)$. If, by THR, $\gamma', \bar{\delta}' \in R_W$ are chosen in such a way that $(\bar{\delta} - \bar{\delta}')\varepsilon^{-1} \in J(R_W)$ and $f(\gamma', \bar{\delta}') = 0$, we also have $h(\bar{\delta}') \neq 0$. Indeed, let $R \in V_{a_i}$; then $v_R(h(\bar{\beta}_{R_i})) < v_R(h(\bar{\delta}'))$. Hence $F \leq_1 F_0$ and $\langle F, W \rangle \in RC$.

Remark. THR can obviously be expressed via a system of axioms in the signature $\sigma_f \cup \langle R \rangle$, so that the property of being an RC^* -field for a pair $\langle F, R_W \rangle$ is axiomatizable.

3. In this section we argue to show that the class of RC^* -fields is sufficiently broad.

Let $F \leq F_0$, let R_0 be a valuation ring of the field F_0 , and let $R \rightleftharpoons R_0 \cap F$. We call R_0 a superstructure of R if $\mathbb{H}_R(F) \leq_1 \mathbb{H}_{R_0}(F_0)$ and there exists a decomposition $R_0 = R'_0 \circ \bar{R}$, where $R'_0 > R_0$ is a valuation ring of F_0 , \bar{R} is a valuation ring of $F_{R'_0}$, and $R'_0 \circ \bar{R} \rightleftharpoons \{a | a \in R'_0, a + \mathfrak{m}(R'_0) \in \bar{R}\}$, such that $F \leq R'_0$, $R(\simeq R + \mathfrak{m}(R'_0)/\mathfrak{m}(R'_0)) \leq \bar{R} \leq R^h$, and $\Gamma_{R'_0}$ is a divisible group.

THEOREM 2. If W is a weakly Boolean family of valuation rings of the field F and $\pi: X \to W$ is a continuous surjective map of Boolean spaces, then there exist a regular extension F_0 of the field F, a Boolean family W_0 of valuation rings of F, and a homeomorphism $\varepsilon: W_0 \xrightarrow{\sim} X$ such that $\langle F_0, W_0 \rangle$ is an RC^* -field, and for every $R_0 \in W_0$, $\pi \varepsilon(R_0) = R_0 \cap F$ and R_0 is the superstructure of $R_0 \cap F$.

In [1], a proof of the theorem was sketched for the case where W is Boolean and π is a homeomorphism. Proposition 1 shows that the case where W is a weakly Boolean family can be proved following essentially the same line. We thus need the following:

Proposition 6. If W is a weakly Boolean family of valuation rings of a field F and if $\pi: X \to W$ is a continuous surjective map of Boolean spaces, then there exist a regular extension F_* of the field F, a weakly Boolean family W_* of valuation rings of F_* , and a homeomorphism $\varepsilon: W_* \xrightarrow{\sim} X$ such that for every $R_* \in W_*, \ \pi \varepsilon(R_*) = R_* \cap F$ and R_* is the superstructure of $R_* \cap F$. In order to prove this, we need a number of auxiliary facts concerning maps of Boolean spaces. The facts laid out below are probably well known. It is difficult, however, to point out a convenient source, and so we cite them to make our treatment self-contained.

A surjective continuous map $\pi: X \to Y$ of Boolean spaces is called *two-sheeted* if there exists a closedopen subspace $V \subseteq X$ such that $\pi \upharpoonright V$ and $\pi \upharpoonright (X \setminus V)$ are one-to-one.

Every surjective continuous map $\pi: X \to Y$ of Boolean spaces proves to be an inverse limit of two-sheeted maps.

Let $\pi: X \to Y$ be a surjective continuous map of Boolean spaces and let $V \subseteq X$ be closed-open. Denote by $(Y)_V$ a subspace of the Boolean space $Y \times \{V, X \setminus V\}$ (the latter two-element space is endowed with discrete topology), consisting of elements of the form $\langle \eta, V \rangle$, $\eta \in \pi(V)$, and of the form $\langle \eta, X \setminus V \rangle$, $\eta \in$ $\pi(X \setminus V)$. Now, $(Y)_V$ is closed and, hence, Boolean. The projection $\varepsilon_V: (Y)_V \to Y$ on the first coordinate is a two-sheeted map and $\pi_V: X \to (Y)_V$ is a continuous map defined as follows: $\pi_V(\xi) \rightleftharpoons \langle \pi(\xi), V \rangle$ if $\xi \in V$, and $\pi_V(\xi) \rightleftharpoons \langle \pi(\xi), X \setminus V \rangle$ if $\xi \in X \setminus V$.

Let a surjective continuous map $\pi: X \to Y$ of the Boolean spaces X and Y be defined.

Suppose that B(X) refers to a family of all closed-open subsets of X. Denote by |B(X)| the cardinality of the set B(X) and assume that $\{V_{\alpha}|\alpha < |B(X)|\} = B(X)$ is some well-ordering of B(X).

For every ordinal $\alpha < |B(X)|$, a Boolean space Y_{α} and surjective continuous maps $\pi_{\alpha} : X \to Y_{\alpha}$ and $\varepsilon_{\alpha,\beta} : Y_{\alpha} \to Y_{\beta}, \beta \leq \alpha$, are defined as follows:

 $Y_0 \rightleftharpoons Y, \pi_0 \rightleftharpoons \pi$, and $\varepsilon_{0,0} \rightleftharpoons \operatorname{id}_Y$.

Let $Y_{\alpha}, \pi_{\alpha} : X \to Y_{\alpha}$, and $\varepsilon_{\alpha,\beta} : Y_{\alpha} \to Y_{\beta}, \beta \leq \alpha$, be defined. We then put $Y_{\alpha+1} = (Y_{\alpha})_{V_{\alpha}}, \pi_{\alpha+1} = (\pi_{\alpha})_{V_{\alpha}}$, and $\varepsilon_{\alpha+1,\alpha+1} = \operatorname{id}_{Y_{\alpha+1}}, \varepsilon_{\alpha+1,\alpha} = \varepsilon_{V_{\alpha}} : Y_{\alpha+1} = (Y_{\alpha})_{V_{\alpha}} \to Y_{\alpha}$, letting $\varepsilon_{\alpha+1,\beta} = \varepsilon_{\alpha,\beta} \cdot \varepsilon_{\alpha+1,\alpha}, \beta \leq \alpha$.

Suppose that Y_{α} , π_{α} , and $\varepsilon_{\alpha,\beta}$ are defined for all $\beta \leq \alpha < \gamma < |B(X)|$ and let γ be a limit ordinal.

By induction we can assume that for $\delta \leq \beta \leq \alpha < \gamma$, we have $\pi_{\beta} = e_{\alpha,\beta}\pi_{\alpha}$, $\varepsilon_{\alpha,\delta} = \varepsilon_{\beta,\delta} \cdot \varepsilon_{\alpha,\beta}$, and $\varepsilon_{\alpha,\alpha} = \operatorname{id}_{Y_{\alpha}}$. Then $\{Y_{\beta} | \varepsilon_{\delta,\beta}, \delta \leq \beta < \alpha\}$ forms an inverse spectrum, and for limit $\alpha < \gamma Y_{\alpha}$, is isomorphic, by assumption, to $\lim \{Y_{\beta} | \beta < \alpha\}$ (with projections $\varepsilon_{\alpha,\beta} \colon Y_{\alpha} \to Y_{\beta}, \beta < \alpha$). Hence, we can assume that $Y_{\gamma} = \lim \{Y_{\alpha} | \alpha < \gamma\}, \varepsilon_{\gamma,\alpha} \colon Y_{\gamma} \to Y_{\alpha}$ are the corresponding projections, and that $\pi_{\gamma} \colon X \to Y_{\gamma}$ is uniquely determined from $\varepsilon_{\gamma,\alpha}\pi_{\gamma} = \pi_{\alpha}, \alpha < \gamma$.

It is not hard to verify that X is isomorphic to $\lim \{Y_{\alpha} | \alpha < |B(X)|\}$.

We turn to the case where $\pi: X \to W$ is two-sheeted. Let V be a closed-open subset of X such that $\pi \upharpoonright V$ and $\pi \upharpoonright (X \setminus V)$ are one-to-one. Let $F_1 \rightleftharpoons F(t)$ be a field of rational functions in the variable t over F and let $F_0 \rightleftharpoons F(t^{n^{-1}}, n > 1)$. Suppose that R'_0 is the valuation ring of F_1 such that $F \leq R'_0$ and $\mathfrak{m}(R'_0) = tR'_0$, and that R'_1 is the valuation ring of F_1 such that $F \leq R'_1$ and $\mathfrak{m}(R'_1) = t^{-1}R'_1$. These are the conditions by which R'_0 and R'_1 are defined uniquely. There exist valuation rings R_0 and R_1 of F_0 which are uniquely defined by $R_i \cap F_1 = R'_i$, i = 0, 1. Let $W_V \rightleftharpoons \{R_0 \circ R \mid R \in \pi(V)\}$ and $W_{X\setminus V} \rightleftharpoons \{R_1 \circ R \mid R \in \pi(X\setminus V)\}$; then W_V , being a space, is homeomorphic to V, and so to $\pi(V)$; $W_{X\setminus V}$ is homeomorphic to $X\setminus V$, and so to $\pi(X\setminus V)$; and W_V , $W_{X\setminus V}$ are weakly Boolean families of valuation rings for F_0 .

LEMMA 3. If W_0 and W_1 are weakly Boolean families of valuation rings of a field F, $W = W_0 \cap W_1$ is Hausdorff, and W_0 and W_1 are closed in W, then W is also a weakly Boolean family of valuation rings of F.

The family W is obviously compact. It suffices to show that V_A is closed in W for every finite $A \subseteq F$. Let $R \in W \setminus V_A$; then $R \in W_i$ with i = 0 or 1. Since W_i is weakly Boolean, there exists a finite $B \subseteq F$ such that $R \in V_B$ and $V_B \cap W_i \subseteq W_i \setminus V_A$. In addition, if $R \in W_{1-i}$, there exists a finite $C \subseteq F$ such that $R \in V_C$ and

 $V_C \cap W_{1-i} \subseteq W_{1-i} \setminus V_A$. Then $R \in V_B \cap V_C \subseteq W \setminus V_A$. But if $R \notin W_{1-i}$, then $R \in V_B \cap (W \setminus W_{1-i}) \subseteq W \setminus V_A$ and $V_B \cap (W \setminus W_{1-i})$ is open.

It is not hard to verify that W_V and $W_{X\setminus V}$ satisfy the conditions of the lemma, so that $W_0 \rightleftharpoons W_V \cup W_{X\setminus V}$ is a weakly Boolean family of valuation rings of the field F_0 , and there exists a homeomorphism $\varepsilon \colon W_0 \to X$ such that $\pi \varepsilon(R) = R \cap F$ holds for every $R \in W_0$. Moreover, R is the superstructure of $R \cap F$ since $R = R_0 \circ (R \cap F)$ or $R = R_1 \circ (R \cap F)$, and Γ_{R_0} , Γ_{R_1} are divisible groups.

LEMMA 4. Let $\langle F_i, W_i \rangle$, $i \in I$, be the family of fields with weakly Boolean families of valuation rings for which $\{F_i | i \in I\}$ is directed by inclusion, and for all $i, j \in I$, if $F_i \leq F_j$, then the map of W_j onto W_i is defined by the rule $R \mapsto R \cap F_i$, $R \in W_j$. Therefore, the field $F_* \rightleftharpoons \bigcup_{i \in I} F_i$ contains a weakly Boolean family of valuation rings W_* such that $R \cap F_i \in W_i$ holds for every $R \in W_*$, $i \in I$, and for every $R' \in W_i$, there exists an $R \in W_*$ for which $R' = R \cap F_i$.

Put $W_* \rightleftharpoons \{R | R \text{ is the valuation ring of } F_*$, and $R \cap F_i \in W_i$ for all $i \in I\}$. The conditions of the lemma imply that $\{W_i | \pi_{i,j} : W_j \to W_i, F_i \leq F_j \ (\pi_{ij}(R) \rightleftharpoons R \cap F_i, R \in W_j)\}$ is an inverse spectrum of Boolean spaces with continuous maps onto. If $X \rightleftharpoons \lim W_i$, then X is nonempty and, moreover, the projections $\pi_i : X \to W_i$ are onto. For each $\xi \in X$, let $R_{\xi} \rightleftharpoons \cup \{\pi_i(\xi) | i \in I\}$. It is easy to see that $R_{\xi} \in W_*$. Conversely, if $R \in W_*$, then the family $R_i \rightleftharpoons R \cap F_i$, $i \in I$, satisfies the condition that $\pi_{ij}(R_j) = R_j \cap F_i = R_i$ for all $i, j \in I$ such that $F_i \leq F_j$. The family $R_i, i \in I$, uniquely defines the point $\xi \in X$ for which $R_i = \pi_i(\xi)$, $i \in I$.

Thus, there does exist a one-to-one correspondence between X and W_* , which, as is easy to check, is a homeomorphism of these spaces.

For W_* in the conclusion of the lemma, we write $\lim W_i$.

We are now in a position to prove the proposition. For $\pi: X \to W$, we will find an inverse spectrum $\{Y_{\alpha} | \alpha < |B(X)|\}$ of Boolean spaces such that $Y_{\alpha+1} \to Y_{\alpha}$ is two-sheeted with all $\alpha < |B(X)|$, and $Y_{\alpha} \simeq \lim_{\alpha \neq X_{\beta}} Y_{\beta}$ with all limit $\alpha < |B(X)|$. Define the sequence $\langle F_{\alpha}, W_{\alpha} \rangle$, $\alpha < |B(X)|$, of fields with weakly $\beta < \alpha$

Boolean families W_{α} so that $F_0 = F$ and $W_0 = W$. If $\langle F_{\alpha}, W_{\alpha} \rangle$ is already defined, let $F_{\alpha+1} = F_{\alpha}(t_{\alpha}^{n-1}, n > 1)$. Assume that $W_{\alpha+1}$ is obtained from W_{α} , and $\pi_{\alpha+1}(V_{\alpha})$ [a closed-open subset of $Y_{\alpha+1} = \pi_{\alpha+1}(X)$], as was done in the case where $\pi: X \to W$ is two-sheeted, considered above. If $\alpha \leq |B(X)|$ is limit and $\langle F_{\beta}, W_{\beta} \rangle$ are defined for all $\beta < \alpha$, we put $F_{\alpha} = \bigcup_{\substack{\beta < \alpha \\ \beta < \alpha}} F_{\beta}$ and $W_{\alpha} = \lim_{\substack{\leftarrow \alpha \\ \beta < \alpha}} W_{\beta}$, in which case $F_* = F_{|B(X)|}$

and $W_* = W_{|B(X)|}$ are, respectively, the required extension of F and the required weakly Boolean family of valuation rings of F_* .

Indeed, for every $\alpha < |B(X)|$ there exists a natural homeomorphism $\varepsilon_{\alpha} : W_{\alpha} \to Y_{\alpha}$ which induces the homeomorphism

$$\varepsilon \colon W_* = W_{|B(X)|} \xrightarrow{\sim} \lim_{\alpha < |B(X)|} W_{\alpha} \simeq \lim_{\alpha < |B(X)|} Y_{\alpha} \simeq X,$$

from which we can readily verify that $\pi \varepsilon(R_*) = R_* \cap F$ holds for every $R_* \in W_*$, and R_* is the superstructure of $R_* \cap F$.

To conclude this section, we point out yet another result related to the above considerations.

LEMMA 5. If $F \leq F_0$ is a field extension, W_0 is a weakly Boolean family of valuation rings of F_0 , and $W = \{R_0 \cap F | R_0 \in W_0\}$ is Hausdorff, then W is also weakly Boolean.

Since W is an image of the compact space under the continuous mapping, W is compact, in which case we need only establish that $V_A^F \subseteq W$, where A is a finite subset of F closed in W. Further, $V_A^{F_0} \rightleftharpoons \{R_0 | R_0 \in W_0\}$,

 $A \subseteq R_0$ is closed-open in W_0 , and $V_A^F = \pi(V_A^{F_0})$, where $\pi(R_0) = R_0 \cap F$, $R_0 \in W_0$; consequently, V_A^F , being an image of the closed subset, is also closed.

Remark. If, in the conditions of the lemma, W_0 is Boolean, we cannot generally state that W is also. This is illustrated by the following example. Let W be a weakly Boolean family of valuation rings of the field F and let $F_0 = F(t)$ be the field of rational functions in t over F. Suppose $W_0 = \{R_t | R \in W\}$, where the valuation ring R_t of F_0 is uniquely determined from R, using the conditions that $R \leq R_t$, $t \in R_t \setminus \mathfrak{m}(R_t)$, and $t+\mathfrak{m}(R_t)$ is transcendental over $F_R = R/\mathfrak{m}(R) \leq R_t/\mathfrak{m}(R_t)$. Then W_0 is weakly Boolean and homeomorphic to W under the map $R_t \mapsto R_t \cap F(=R)$, $R \in W$. But if the polynomial $x^2 - t$ is taken as $f_a(x)$, the reasons for W_0 to be Boolean are provided by the corollary to Proposition 2 in [7].

4. Using Theorem 2, we show that Theorem 1 admits reversion in some cases.

A valuation ring R is called *distinguished* if at least one of the following conditions is met:

(0) the field F_R is not separably closed;

(n) the formula

$$\Phi_n \rightleftharpoons \forall x \exists y \forall z (x > 0 \rightarrow 0 < y \le x \land (n+1)z \ne y), \ n > 0,$$

is satisfied in Γ_R .

COROLLARY 1. If R is a distinguished valuation ring of F, and $R \leq R' \leq F$, then R' also has this property, and so does \bar{R} provided R < R' and $R = R' \circ \bar{R}$.

COROLLARY 2. If R is distinguished, then $H_R(F)$ is not separably closed.

LEMMA 6. If R_0 and R_1 are distinguished valuation rings of a field F and if R_0 is Henselian, then R_0 and R_1 are comparable with respect to inclusion.

Assume on the contrary that $R_0 \not\leq R_1$ and $R_1 \not\leq R_0$; then $R \Rightarrow R_0R_1 > R_0, R_1$. If R = F, then R_0 and R_1 are independent, and since R_0 is Henselian, $H_{R_1}(F)$ should be separably closed (see, e.g., the corollary to Prop. 4 in [6, Sec. 3]), which it is not because R_1 is distinguished. If $R \neq F$, then $R_0 = R \circ \bar{R}_0$ and $R_1 = R \circ \bar{R}_1$ for suitable nontrivial valuation rings \bar{R}_0 and \bar{R}_1 of the field F_R . But then \bar{R}_0 and \bar{R}_1 are distinguished and independent rings, and \bar{R}_0 is Henselian, an impossibility.

We call a Boolean family W of valuation rings of a field F distinguished if, for every elementary extension $\langle F_1, R_1 \rangle \succeq \langle F, R_W \rangle$ and for every $R \in W_{R_1} (= \{(R_1)_m \mid m \text{ is a maximal ideal in } R_1\})$, the conditions $R' \rightleftharpoons R^h F$ and $R^h = R' \circ \overline{R}$ for a suitable valuation ring \overline{R} of $F_{R'}$ imply that $\overline{R} \cap \widetilde{F} \cap F_{R'}$ is a distinguished ring.

COROLLARY. If W is distinguished, $R \in W_{R_1}$, $R < R' < F_1$, $F \leq R'$, and $R = R' \circ \overline{R}$, then $H_{\overline{R}}(F_{R'})$ is not separably closed.

Remark. If W is finite, then it is distinguished iff every R in W is.

Nonrigid sufficient conditions for a family W to be distinguished are given below.

THEOREM 3. If $\langle F, W \rangle$ is an *RC*-field and *W* is distinguished, then $\langle F, W \rangle$ is an *RC*^{*}-field.

By Theorem 2, there exists an RC^* -field $\langle F_0, W_0 \rangle$ such that F_0 is a regular extension of F, the map $R_0 \mapsto R_0 \cap F$, $R_0 \in W_0$, is the homeomorphism of W_0 and W, and R_0 is the superstructure of $R_0 \cap F$ for all $R_0 \in W_0$. Then $\mathbb{H}_{R_0 \cap F}(F) \leq_1 \mathbb{H}_{R_0}(F_0)$ for all $R_0 \in W_0$, and the fact that $\langle F, W \rangle$ is an RC-field implies that $F \leq_1 F_0$. Therefore, there exists an ultrapower $F_1 \rightleftharpoons F^I / \mathcal{D}$ of F for which one can find an F-embedding $\varphi: F_0 \to F_1$. In what follows we identify F_0 with $\varphi(F_0)$, i.e., assume that $F_0 \leq F_1$. Let $R_1 \rightleftharpoons R_W^I / \mathcal{D}$; then $\langle F, R_W \rangle \preceq \langle F_1, R_1 \rangle$. We argue that $R_{W_0} = R_1 \cap F_0$, for which it suffices to show that for every $R \in W_{R_1}$, the ring $R_0 \rightleftharpoons R \cap F_0$ is in W_0 .

We show that $H_{R_0}(F_0)$ is not separably closed. We have $H_{R_0}(F_0) \leq H_R(F_1)$. Let F'_0 be an algebraic closure of F_0 in $H_R(F_1)$ $[H_{R_0}(F_0) \leq F'_0]$ and let $R' \rightleftharpoons R^h F$ and $R'_0 \rightleftharpoons R' \cap F'_0$. We have $R^h = R' \circ \overline{R}$ and $R_0 = R'_0 \circ \overline{R}_0$ for suitable valuation rings \overline{R} and \overline{R}_0 of the fields $F_{R'}$ and $F_{R'_0}$, respectively. Suppose that F' is an algebraic closure of the field $F (\leq R')$ in $F_{R'}$. By the definition of being distinguished for W, the ring $\overline{R} \cap F'$ is also distinguished, and so F' is not separably closed. Further, $F \leq F_{R'_0} \leq F'$ and $F' \cap F_{R'_0}$ is algebraically closed in $F_{R'_0}$, but it is not separably closed, and hence also $F_{R'_0}$ is not. If $R''_0 \rightleftharpoons R^h_0 F$ and $R^h_0 = R''_0 \circ \overline{R}'_0$, then $F \leq F_{R''_0} \leq F_{R'_0}$ and $F_{R''_0}$ is not separably closed, hence also $H_{R_0}(F_0) = q(R^h_0) = q(R^h_0)$ is not.

In view of the corollary to Proposition 4 in [5], there exists an $R'_0 \in W_0$ such that $R' = R_0 R'_0 \neq F_0$. If $F \leq R'$, then $R' > R_0$, R'_0 since $R_0 \cap F$, $R'_0 \cap F \in W$; consequently, $R_0 \geq F$ and $R'_0 \geq F$. Let $R_0 = R' \circ \bar{R}_0$ and $R'_0 = R' \circ \bar{R}'_0$; then \bar{R}_0 and \bar{R}'_0 are nontrivial independent valuation rings of $F_{R'}$. But \bar{R}'_0 is Henselian, and hence $H_{\bar{R}_0}(F_{R'})$ should be separably closed, which contradicts the definition of being distinguished for W. If $F \leq R'$, let R = R'F. We have $R = R'_0F = R_0F$ (since $R'_0 \leq R'$, $R'_0 \leq R'_0F$, and $R'_0F \leq R'$, it follows that $R' \leq R'_0F$; $R' \leq R_0F$ is obtained similarly). The fact that R'_0 is the superstructure of $R'_0 \cap F \in W$ implies that there exists a decomposition $R'_0 = R'' \circ \bar{R}''_0$ such that $F \leq R''$ and $R'_0 \cap F \leq \bar{R}''_0 \leq (R'_0 \cap F)^h$. Since $F \leq R''$, we have $R = R'_0F \leq R''$, but $F_{R''} = q(\bar{R}''_0)$ is an algebraic extension of F; consequently, R'' = R and $F_R = F_{R''}$ is an algebraic extension of F also. The family W and, hence, the ring $\bar{R}_0 \cap \tilde{F} \cap F_R = \bar{R}_0 \cap F_R = \bar{R}_0$ are distinguished because R'_0 is. Thus, \bar{R}_0 and \bar{R}'_0 are distinguished valuation rings of F; moreover, \bar{R}'_0 is Henselian [since $R > R'_0$ and F_0 is dense in $\mathbb{H}_{R'_0}(F_0)$]. Then we have $\bar{R}_0 \leq \bar{R}'_0 \cap \bar{F} \in W$ and $\bar{R}'_0 \cap F = R'_0 \cap F \in W$, and so $\bar{R}_0 \cap F \leq \bar{R}'_0 \cap F$.

We have thus established that $R_{W_0} = R_1 \cap F_0$, from which it is easy to infer the following:

If $R' \in W_{R_1} = \{(R_1)_m | m \text{ is a maximal ideal in } R_1\}$, $R \rightleftharpoons R' \cap F$, and R_0 is that unique valuation ring in W_0 for which $R_0 \cap F = R$, then $R' \cap F_0 = R_0$.

Now we show that $\langle F, R_W \rangle \in RC^*$. Let $R' \neq R'' \in W$ and let $R'_1 \rightleftharpoons R'^I / \mathcal{D}$ and $R''_1 \rightleftharpoons R''^I / \mathcal{D} \in W_{R_1}$. Then $\langle F, R', R'' \rangle \preceq \langle F_1, R'_1, R''_1 \rangle$. Since $R'_0 \rightleftharpoons R'_1 \cap F_0 \neq R''_0 \rightleftharpoons R''_1 \cap F_0$, and W_0 is independent, it follows that $F_0 = R'_0 R''_0$, $F \leq R'_0 R''_0 \leq R'_1 R''_1$, and the fact that $\langle F, R', R'' \rangle \preceq \langle F_1, R'_1, R''_1 \rangle$ is an elementary embedding implies that $F \leq R'R''$, i.e., F = R'R''. Hence, the rings R' and R'' are independent, and so $\langle F, W \rangle$ satisfies BAP.

Let $f \in R_W[x, \bar{y}]$ be an absolutely irreducible polynomial unitary in x. Suppose that $a, \bar{b}, 0 \neq \varepsilon \in R_W$ are such that

$$f'_x(a,\bar{b}) \neq 0, \ f(a,\bar{b})f'_x(a,\bar{b})^{-2} \in J(R_W).$$

Since $J(R_W) = J(R_{W_0}) \cap F$ (which is easily checked) and $\langle F_0, W_0 \rangle \in RC^*$, there exist $c, \bar{d} \in R_{W_0}$ satisfying $f(c, \bar{d}) = 0$, $(b_i - d_i)\varepsilon^{-1} \in J(R_{W_0})$, $i \leq n$, and $(a-c)^{-1}f(a, \bar{b})f'_x(a, \bar{b})^{-1}$, $(a-c)f(a, \bar{b})^{-1}f'_x(a, \bar{b}) \in R_{W_0}$.

It is easy to verify that $J(R_1) \cap F_0 = J(R_{W_0})$, from which we can see that $c, \bar{d} \in R_1, (b_i - d_i)\varepsilon^{-1} \in J(R_1), i \leq n$, and $(a-c)^{-1}f(a,\bar{b})f'_x(a,\bar{b})^{-1}, (a-c)f(a,\bar{b})^{-1}f'_x(a,\bar{b}) \in R_1$.

Since $\langle F, R_W \rangle \preceq \langle F_1, R_1 \rangle$, there exist $c', \bar{d'} \in R_W$ such that $f(c', \bar{d'}) = 0, f'_x(c', \bar{d'}) \neq 0, (b_i - d'_i)e^{-1} \in J(R_W), i \leq n$, and $(a - c')^{-1}f(a, \bar{b})f'_x(a, \bar{b})^{-1}, (a - c')f(a, \bar{b})^{-1}f'_x(a, \bar{b}) \in R_W$.

Consequently, $\langle F, W \rangle$ satisfies THR, proving that $\langle F, W \rangle$ is an RC^* -field.

Remark. In Proposition 2 [1], a stronger statement is formulated, which, however, is still not proved.

What we can prove is a part of the statement concerning BAP.

Proposition 7. Let W be a Boolean family of valuation rings of a field F, suppose that $\langle F, W \rangle \in RC$, and assume that the rings in W are all distinguished. Then W is independent.

Assume the contrary. Let $R_0 \neq R_1 \in W$, $R \Rightarrow R_0R_1 \neq F$, and $F_0 \Rightarrow H_R(F)$; R'_0 and R'_1 are the valuation rings of F_0 such that $R_0 \leq R'_0 \leq R^h_0$, $R_1 \leq R'_1 \leq R^h_1$, and $R'_0R'_1 = R^h$. Using Zorn's lemma, we can find a maximal algebraic extension F_1 of F_0 such that in F_1 , there exist valuation rings R^*_0 and R^*_1 satisfying the conditions $R'_0 \leq R^*_0 \leq R^h_0$ and $R'_1 \leq R^*_1 \leq R^h_1$. Note that $R^*_0R^*_1$ dominates R^h $(R^*_0R^*_1 \cap F_0 = R^h)$, and hence $R^*_0R^*_1 \neq F_1$, i.e., R^*_0 and R^*_1 are dependent.

We argue that F_1 is regularly closed with respect to the family $\{R_0^*, R_1^*\}$. Let W_1 be the family of all valuation rings R^* of the field F_1 such that $R^* \cap F \in W$. By Proposition 4 in [5], F_1 is then regularly closed with respect to W_1 , and $R_0^*, R_1^* \in W_1$. We can show that for every $R^* \in W_1$, there exists either an F-embedding $H_{R_0^*}(F_1)$ in $H_{R^*}(F_1)$ or an F-embedding $H_{R_1^*}(F_1)$ in $H_{R^*}(F_1)$. Hence F_1 will be regularly closed with respect to $\{R_0^*, R_1^*\}$. Let $R^* \in W_1$. If R^* is independent of R_0^* and R_1^* , then by the corollary to Proposition 4 in [5], $H_{R^*}(F_1)$ is separably closed, i.e., it is a separable closure of F_1 , and hence $H_{R_0^*}(F_1)$, $H_{R_1^*}(F_1) \leq H_{R^*}(F_1)$. Let R^* be such that $R' = R_0^*R^* \neq F_1$. Since $R_0^*, R^* \in W_1$, we have $R_0^* \leq R^*$ and $R^* \leq R_0^*$; hence, there exist representations $R_0^* = R' \circ \bar{R}_0$ and $R^* = R' \circ \bar{R}$ for suitable nontrivial independent valuation rings \bar{R}_0 and \bar{R} of the field $F_{R'}$. In view of the maximality of F_1 , it is not hard to show that \bar{R}_0 is Henselian, from which it will follow that $H_{\bar{R}}(F_{R'})$ is separably closed, and so we can assume that $H_{R_0^*}(F_1) \leq H_{R^*}(F_1)$. Similarly we argue for the case where $R_1^*R^* \neq F_1$ [and so $H_{R_1^*}(F_1) \leq H_{R^*}(F_1)$].

We have thus proved that $\langle F_1, \{R_0^*, R_1^*\} \rangle \in RC$. But $(R_0^*)^h = R_0^h$, $(R_1^*)^h = R_1^h$, and so the rings R_0^* , R_1^* and the family $\{R_0^*, R_1^*\}$ are distinguished. By Theorem 3, $\langle F, \{R_0^*, R_1^*\} \rangle$ is an RC^* -field and R_0^* and R_1^* should be distinguished, which they are not by construction. This is a contradiction, which proves the proposition.

A Boolean family W is called a family of the first kind if there exists a unitary polynomial $f \in R_W[x]$ such that for every $R \in W$, its reduction $\overline{f} \in F_R[x]$ is a separable polynomial without roots in F_R .

A Boolean family W is called a family of the second kind if there exists an n > 0 such that for every $R \in W$ we have $\Gamma_R \models \Phi_n$, and for every $a \in \mathfrak{m}(R)$, there exist a $b \in \mathfrak{m}(R) \setminus \{0\}$ and a neighborhood $W' \subseteq W$ of the ring R such that for every $R' \in W'$ we have $b \in \mathfrak{m}(R')$, $v_{R'}(b) \leq v_{R'}(a)$, and $v_{R'}(b)$ is not divisible by (n + 1) in $\Gamma_{R'}$.

Proposition 8. If, for every R in the Boolean family W, there exists a closed-open neighborhood of the first (second) kind, then W is distinguished.

It suffices to prove the proposition for the case where W is itself a family of the first (second) kind.

Suppose that W is a family of the first kind and $f \in R_W[x]$ is a unitary polynomial such that for every $R \in W$, its reduction $\tilde{f} \in F_R[x]$ is a separable polynomial without roots in F_R . This condition is equivalent to stating that the following elementary sentence is valid on R_W :

$$\forall a \exists b (f(a) \cdot b = 1)$$

Hence, if $\langle F, R_W \rangle \preceq \langle F_1, R_1 \rangle$, then

$$R_1 \models \forall a \exists b (f(a) \cdot b = 1),$$

and so for every $R \in W_{R_1}$, the reduction $\overline{f} \in F_R[x]$ has no roots in F_R . If $R' = R^h F$ and $R^h = R' \circ \overline{R}$, then $F_{\overline{R}} = F_R \ge F_{\overline{R} \cap \overline{F} \cap F_{R'}} \ge F_{R \cap F}$. The polynomial \overline{f} is in $F_{R \cap F}[x]$ and has no roots in $F_{\overline{R}}$. Consequently, $F_{\overline{R} \cap \overline{F} \cap F_{R'}}$ is not separably closed and $\overline{R} \cap \overline{F} \cap F_{R'}$ is a distinguished ring.

Let W be a family of the second kind and let n > 0 be the number satisfying the definition. Suppose that $\langle F, R_W \rangle \preceq \langle F_1, R_1 \rangle$, $R \in W_{R_1}$, $R' = R^h F$, and $R^h = R' \circ \overline{R}$ for a suitable valuation ring \overline{R} of the field $F_{R'}$. Let F_0 be an algebraic closure of F in $F_{R'}$ and let $R_0 = \overline{R} \cap F_0$. We need to verify that $\Gamma_{R_0} \models \Phi_n$. Since $\langle F, R \cap F \rangle \leq \langle F_0, R_0 \rangle$ and F_0 is the algebraic closure of F, it follows that for every $a_0 \in \mathfrak{m}(R_0)$, there exists an $a \in \mathfrak{m}(R \cap F)$ such that $(0 <) v_{R_0}(a) \leq v_{R_0}(a_0)$. Since $R \cap F \in W$, there exist a neighborhood (of the form $V_{\alpha^{-1}}^F$, $\alpha \in R_W$) of the ring $R \cap F$ and an element $b \in \mathfrak{m}(R \cap F) \setminus \{0\}$ such that for every $R' \in V_{\alpha^{-1}}$ we have $b \in \mathfrak{m}(R')$, $v_{R'}(b) \leq v_{R'}(a)$, and $v_{R'}(b)$ is not divisible by (n + 1) in $\Gamma_{R'}$.

Let $R_{\alpha} = \bigcap \{ R' | R' \in W, \alpha^{-1} \in R' \}$; then the conditions formulated for a and b above can be represented as follows:

$$b \in J(R_{\alpha}) \setminus \{0\}, ab^{-1} \in R_{\alpha},$$

and

$$\forall c \in R_{\alpha}(bc^{-(n+1)} \in R_{\alpha} \to bc^{-(n+1)} \in J(R_{\alpha})).$$

These are the elementary conditions imposed on α , a, and b; consequently, they also hold in $\langle F_1, R_1 \rangle$. In particular, every $R' \in V_{\alpha^{-1}}^{F_1}$ satisfies the following: $b \in \mathfrak{m}(R')$, $ab^{-1} \in R'$ [i.e., $v_{R'}(b) \leq v_{R'}(a)$], and $v_{R'}(b)$ is not divisible by (n+1) in $\Gamma_{R'}$. We have $R \in V_{\alpha^{-1}}^{F_1}$ because $R \cap F \in V_{\alpha^{-1}}^{F}$, and so $0 < v_R(b) \leq v_R(a)$ and $v_R(b)$ is not divisible by (n+1) in $\Gamma_R = \Gamma_{R^h}$. Further, $\Gamma_{\bar{R}}$ is isomorphic to a convex subgroup $\Gamma'_{\bar{R}}$ of Γ_{R^h} . Consequently, $\Gamma'_{\bar{R}}$ is a pure subgroup in Γ_{R^h} and $v_R(b) \in \Gamma'_{\bar{R}}$ is not divisible by (n+1) in $\Gamma'_{\bar{R}}$, and so in $\Gamma_{\bar{R}}$. Therefore, $v_R(b) \in \Gamma_{R_0} \leq \Gamma_{\bar{R}}$ is not divisible by (n+1) in Γ_{R_0} . Moreover, $v_R(b) = v_{R_0}(b) \leq v_{R_0}(a) \leq v_{R_0}(a_0)$, and since a_0 is an arbitrary element in $\mathfrak{m}(R_0) \setminus \{0\}$ (see above), it follows that $\Gamma_{R_0} \models \Phi_n$ and R_0 is a distinguished ring.

COROLLARY. If, for a Boolean family $W \neq \emptyset$ of valuation rings of the field F, there exist $\pi \in F$ and n > 0 such that $R \in W$ is a (π, n) -valuation ring, i.e., $W \subseteq W_{\pi,n}$ (see [1]), then W is distinguished.

Under the conditions of the corollary, W is a family of the second kind.

REFERENCES

- 1. Yu. L. Ershov, "Relatively regularly closed fields," Dokl. Ross. Akad. Nauk, 332, No. 3, 286-288 (1993).
- 2. Yu. L. Ershov, Decidability Problems and Constructive Models [in Russian], Nauka, Moscow (1980).
- 3. Yu. L. Ershov, "Boolean families of valuation rings," Algebra Logika, 31, No. 2, 119-131 (1992).
- 4. M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading (1969).
- 5. Yu. L. Ershov, "Relative regular closeness and π -valuations," Algebra Logika, 31, No. 6, 592-623 (1992).
- 6. Yu. L. Ershov, "Multiply valued fields," Usp. Mat. Nauk, 37, No. 3, 55-93 (1982).
- 7. Yu. L. Ershov, "Boolean families of valuation rings. II," Algebra Logika, 32, No. 3, 261-266 (1993).

Translated by O. Bessonova