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RC*-FIELDS 

Yu. L. E r s h o v  UDC 518.5 

It is stated that if a Boolean family W of valuation rings of a field F satisfies the block approx- 

imation property (BAP) and a global analog of the Hensel-Rychlick property (THR), in which 

case (F, W) is called an RC*-field, then F is regularly closed with respect to the family W (The- 

orem I). It is proved that every pair (F, W), where W is a weakly Boolean family of valuation 

rings of a field F, is embedded in the RC*-field (Fo, Wo) in such a manner that Ro H Ro M F, 

Ro E Wo is a continuous map, Wo is homeomorphic over W to a given Boolean space, and Ro 

is a superstructure of Ro N F for every Ro E Wo (Theorem 2). 

In the present paper we prove most of the statements announced in [1]. 

For definitions of the basic notions in valued field theory, we ask the reader to consult Chap. 4 in 

[2]. If R is a valuation ring of a field F, then re(R) is the maximal ideal of R, vR is the corresponding 

valuation, FR ~- R/m(R)  is a residue class field, 2R is a value group, R h is the Henselization of R, and 

IfR(F) ~- q(Rh)< F is the field of fractions of Rh; moreover, IER(F) ~- (HR(F), Rh). 

1. Let W be some family of pairwise incomparable (w.r.t. inclusion) valuation rings of a field F.  A 

canonical topology on W is one defined via the subbase of subsets of the form V~ ~-- {RIR G W, a E R), 

a E F* ~ F \{0} ;  if A C_ F* is a finite nonempty subset, then VA ~-- N Va. 
aEA 

We call W a weakly Boolean family of valuation rings if W endowed with the canonical topology becomes 

a Boolean space, and VA is closed-open for every finite A, O # A C F*. A weakly Boolean family W is 

Boolean if all closed-open subsets of W are of the form Va, a E F*. In [3], it was established that  W is a 

Boolean family iff F is the field of fractions of the ring Rw defined by W as follows: Rw ~- N{R]R E W}, 

Rw is a regular Pr/ifer ring, and W = {(Rw)•l m is a maximal ideal of Rw}.  If W is a (weakly) Boolean 

family of valuation rings of F,  F0 is an algebraic extension of F,  and W0 ~- {R0lR0 is a valuation ring of a 

field Fo and R0 ;3 F E W) ,  then W0 is a (weakly) Boolean family (Theorems 1 and 2 in [3]). 

Let W be a weakly Boolean family of valuation rings of a field F.  We say that  W possesses the block 

approximation property (BAP) if, for every partition [V0,... ,  V,~] of W, i.e., for a family V0,. • . ,  V~ of closed- 

open subsets of W such that  W =  U ~ and ~ A V j  = o for o _ < i  < j_< n, for a l l a0 , . . . , a ,~  E F and 
i<n  

So, . . . ,  e,~ E F * ( =  F \ { 0 ) ) ,  there exists an element a E F for which vR(a - ai) > vR(si) with all R E V/, 

i < n .  

P r o p o s i t i o n  1. If a Boolean family W has BAP, then W is Boolean. 

Note that  for every partition [V0,...,V,~], there exists a finer partition [Voo,...,Vo1,o,..., 

Vno, . . . ,  V,~k~] such that  for every V~j, there is an element ¢~1 # 0 satisfying vn(cij) > 0 for all R C v~¢. 
This follows from the fact that a family of closed-open subsets of the form V~* ~--- V~\V~-~, e C F*, covers 

W. Let V be closed-open and let [Vo,. . . ,  V,~] be a refinement of the partition [V, W\V] such that  for some 
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co,. . . ,  ¢n E F*, we have vR(ei) > 0 with all R E Vi, i < n. Put ai ~- I if Vi C V, and ai ~ O if V~ C W \ V ,  

i <__ n; if a 6 F is such that vR(a -- ai) >_ oR(el) for R 6 V/, i < n, then V = V~-~. 

If W is known to be Boolean, then the block approximation property for W is reworded as follows: If 

S o , . . . ,  an E F* determines the partition Vao, . . . ,  Va~ of the space W (in this case we say that  [ao, . .  o, s~] 

is a partition), no, . . . .  an E F, and 0 ¢ e E Rw, then there exists an element a E F such that  v • ( a -  al) > 

oR(e) for any R E Vai, i < n. 

P r o p o s i t i o n  2. If W is a Boolean family of valuation rings of a field F,  then ~he pairs (F, Rw)  such 

that W has BAP are expressed via a system of axioms in the signature ~r! U (R). 

The proposition follows from the following facts: 

(1) For every a E F,  there exists an a E Rw such that V~ = Ve`-l. 

Since Rw is a Pr~ifer ring, there exists a fl E F such that aRw + Rw = ~Rw.  It is easy to see ~ha~ 

s = ~-1 E Rw and V~ = V~ = Ve`-~. The elements a and a are connected via relations s C Rw and 

3to, rx E Rw (aar0 + s t1  = 1), which follow from the condition of aRw + Rw = ~ R w  being equivalent ~o 

saRw + a R w  = Rw.  
(9) If s ,  ~ c Rw and s~  # O, then V~,-, n V~-~ = Y(o~)-~. 
Indeed, R E Ve`-i f3 VZ-~ ~ s ,  fl E R\m(R)  ~ aft E R\m(R)  ~ R E ~ Z ) - ~  R E V(~Z)-~ ~ s -~ = 

Z(s~ )  -~ e R, and fi-~ = ~ ( ~ ) - ~  e R ~ n C V~-~ n V,_~. 

(3) If s E Rw,  then Ve`-~ -- O iff a belongs to the Jacobson radical J(Rw)  of the ring Rw.  

Let Ve`-~ = g;  if m is a maximal ideal of Rw, then (Rw)m E W. We have s -~ ~ (Rw)r~ and 

a E m((Rw)r~) ~ Rw = m, i.e., a E n(mlm is a maximal ideal of Rw}  = J(Rw).  

Conversely, let a E J(Rw);  then for R E W, re(R) n Rw is a maximal ideal of Rw, and re(R) M Rw D_ 

J (Rw)  holds; hence s E re(R), and so a -1 ~ R, i.e., Ve`-, = Z. 

(4) If s E Rw, then a E J(Rw)  iff Rw ~ Vz3y((1 + az)y = 1). 

See, for instance, Proposition 1.9 in [4]. 

Let 0 ¢ s E R w  a n d R a ~ - - - ~ { R I R E W ,  s - 1 E R ) .  

(5) If a E F and 0 5~ e E Rw, then the fact that oR(a) > oR(e) for all R E V~-~ is equivalent to  the 

relation a¢ -1 E R~. 

We have ~R(~) >__ ~R(~) ¢* ~R(a~-' )  _> o ~ a~ -~ c R. 

(6) I f0  # a E Rw and a. E Rw is such that V~_~nV:~ = o and Ve`-~UVe`:~ = W, then R~ = {ab-~]a, 

b e  Rw, b #  0, vb-. uv~:. = w}. 

Indeed, Vb-~ U Va~ = W implies that  V~-~ C Vb-~ , and so b -1 E R for all R E V~-~; then we have 

b -~ E A{RIR ~ Ve`-t) = Ra, and Rw <_ Re, implies ab -1 e Rc~ for every a E Rw. 

Let a E R a  and fl ~ F be such that aRw + Rw = flRw; then it is obvious that  V~-t C Va C: V~3, Thus,  

f l - t  E Rw,  and a = r/3 for a suitable r C Rw. 

(7) Let a o , . . . , s , ~  E Rw\{O). Then U V~-, = W iff ( s o , . . . ,  s,~) = Rw [here ( so , . . o ,  s, ,)  is the ideal 
i < n  

of Rw generated by elements s 0 , . . .  ,a,~] and ( s0 , . . . , a ,~ )  = Rw ¢~ 3flo,...,/3,~ E R w ( ~  si~i  = 1). 
i_<n 

If (so, . . .  ,s,~) ¢ Rw, then there exists a maximal ideal m > ( a0 , . . .  , s , , ) ,  in which case n o , . . .  , s ,  E 

R ~--- (Rw)m E W and R E W \  U V~-I. But i f ( a o , . . . , s , , )  = Rw and R E W~ then 1 ~ rn(R) and 
i_<n 

s~ ~ re(R) for some i < n, from which it follows that R E V~7~ and W = ,<~ V~?~. 

Now, for every n > 1 we can write the BAP,, sentence in the signature a !  U (R) to express the foUowing 

property: For all s o , . . . , s n ,  ao,...,a,~ ~ F and 0 ¢ e E Rw, let /3o,... ,/3n E Rw\{O) be such tha~ 

Va, --- V~-x, i _< n, and V~-z MV~;~ = g for 0 _< i < j _< n ~which is equivalent ~o the condition 
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~irj E J (Rw) ,  0 <_ i < j <_ n] and U v¢:~ = w [which is equivalent to the condition (rio,°.. ,~,,) = Rw]. 
i < n  

Then there exists an a E F satisfying (a - ai)e -1 E R~,  i < n. 

The collection of axioms BAP,~, n > 1, does axiomatize BAP° 

L E M M A  1. If W is a Boolean family of valuation rings of a field F such that  W ~ {F) ,  then 

.r(Rw) # {o}. 
If J (Rw )  = {0}, then Rw is a subdirect product of fields: Rw <_ H FR. Since R w  has no zero 

REW 
divisors, it follows that  IW] = 1 and Rw ~- F• for R such that W = {R}, which is possible only in the case 

R = F .  
We call the family W of valuation rings independent if any two distinct valuation rings, R and R', in W 

are independent, i.e., RR I = F. 

P r o p o s i t i o n  3. For W a Boolean family of valuation rings of a field F, the following conditions are 

equivalent: 

(a) ( f ,  W) E BAP; 

(b) W is independent. 

Let (F,W) E BAP, assuming that  there exist R o ¢  R1 E W such that R ~--- RoR1 ¢ F. Let ai E F*, 

i = 0, 1, be such that  Ro E Vao, R1 E Vat, Vao nVa~ = 0, and Vao DV,~I = W, let R be a valuation ring, and 

let ra(R) = m(Ro)Nm(R1) > J(Rw) .  Take 0 ¢ b0 E J (Rw) ,  which we can do since J (Rw)  ¢ {0} by Lemma 

1. Let bl E F\R1.  By BAP for e : b02, we can find an element b for which, in particular, vRo(b-bo) > Vrto(e) 

and vRl(b - bl) > yR,(e). The first condition implies that b -  b0 E J (Rw) ,  b E J (Rw)  < re(R) < re(R1), 

and vR, (b) > 0; it follows from the second condition that vR, (b) = vR, (bl) < 0. Contradiction. Thus, (a) 

implies (b). 

In order to prove that  (b)~(a) ,  we need the following: 

L E M M A  2. If W is an independent Boolean family and if c~,/3 E F are such that  V,~ n V/3 = 0 and 

V~ u V/~ = W, then for every 0 ¢ e E Rw,  there exists an element a for which vR(1 - a) > vR(e) if R E V,~, 

and vn(a) >__ vn(e) if R E V~. 

There is no loss of generality in assuming that V,~ ~ O, V~ ~ O, and ~ E J(Rw) .  Let Ro E V~; then 

for every Rt  E V/~ the equality RoR~ = F implies the existence of an aR~ satisfying VRo(1 - aR~) > VRo(¢) 

and vR~(ag~) > vR~(t). Let VR~ ~ VaR~-,MV,;  then R1 E VR~ C_ Vt~ and V~ = U vR,. Since v~ 
R1Ev~ 

' iI  is compact, there exist R1 , . . . ,  R, E V/3 such that V~ = U VR,. If a ~- dR,, then vR(a) > vR(e) for 
i = l  i = 1  

R E V¢, and vR0(1 - a) > vRo(e ) [the latter is implied by the following: 1 - a = (1 - aRz ) + aR~(1 -- 

a R o ) + . . . + a / ~ ' - . . ' a R , _ ~ ( 1 - - a R , ) ;  vi%(1--aR,) > VRo(e) andv1%(aR,) = 0, i = 1 , . . . , s ] .  Thus, for 

every Ro E V,~, there exists an eRo ~-- a E F* for which VRo(1 -- eRo) > VRo(e) and vR(eR°) > vR(e) for 

all R E VO. That  element eRo is such that for every R~ E VR0 ~-- V(~-~o)~-~ M V,~, the condition that  

vR~(1 - eRo) > vR'o(e) and v~(eRo) >_ vR(e) is satisfied also for all R E V¢. Therefore, R0 E VRo C_ V,~ 

and Ira = U vR. Since va is compact, there exist R 0 , . . . , R k  E Va such that  Va = U VR~. Let 
R~V~, i<k 

e ~-- ~ eR, -- Y~ eR, eRi + ~ eR,eR~eR, + . . .  + (--1)keRo " . . .  "eR~. It is not hard to verify (e.g., 
i___~ o<i<]__~ o_<i<1<~___~ 

for the case k = 1) that  vR(1 -- e) > VR(e) if R E V,~, and v~(e) > vR(e) if R E V~. 

Now, let [c~o,...,c~n] be a partition, ao,...,a,~ ~ F, and 0 ¢ e ~ Rw.  For each hi, we will find b~ such 

that  a i R w + R w  = biRw, i <_ n. Note that ci ~-- b~ -~ E Rw and aici E Rw,  i <_ n. Choose e ~ ¢ 0 in J (Rw)  
and put eo ~ e.e' .  11 cl. By Lemma 2, we can find elements e0 , . . . ,  e , (E Rw) such that  VR(1--el) > VR(eO) 

207 



if R E V,~,, and vR(e~) > vg(¢o) if R E W\V~,. Therefore, the elemea~ a ~ ~ aiei saiisfies ~he co~:~ditio2:~ 
i<_n 

vR(a--ai) > vn(z) i f R E  V ~ i < _  n. Indeed, if R E  V~,~hen a - a i  = a ~ ( e ¢ -  1 ) +  ~ a j e j o  We:.~ave 
j#i 

since vR(a~c~) >_ O. Farther, vR(ajej) = vr~(aj) + vR(ej) > vn(aj) + va(Zo) >_ vn(aj) + vR(cj) + v~)'~' = 
v~(aicj) + vR(~) >_ v,(~). Hence v~(a - ai) > VR(¢). 

C O R O L L A R Y .  ~f W is an independent Boolean family of valuation flags of the field F,  Fo > ~ is 

an algebraic extension of F,  and Wo ~-- {Ro]Ro is a valuation ring of the field Fo, and Ro O Y ~ W}~ then 

(Fo, W0) e BAP. 
Indeed, if W is independent, then so is Wo. 

2. Let us recall a number of basic definitions from [5]. 

Let F < Fo be a field extension. The field Fo is a 1-eztension of F (F<~Fo) if, for every finite subset 

C C_ F0, there exists an F-homomorphism ~o of the ring F[C] into F. 

For W a Boolean family of valuation rings of the field F, F is said to be regularly closed with respeci 
to W, and we write F E RC(W) or (F, W) E RC, if for every regular extension F0 of F the fact that  

HR(F)<_~H~(F)Fo for all R E W implies that F<_IFo. 
If F <__ Fo and Ro is a valuation ring of the field Fo, we say that F is dense in the valued field (Fo, Ro) 

if, for any ao fi Fo and 7o ~ FRo, there exists an a E F such that  v~to(a - ao) >_ 7o. 

C O R O L L A R Y .  If R is a valuation ring of the field F dense in ]ER(F) = (HR(F), R h ) and if R < Ro < 

F and R = R0 o R for a suitable valuation ring/~ of the field FRo, then /~ is Henselian. 

P r o p o s i t i o n  4. If (F, W) is an RC-field, W is independent, and R E W, then F is dense in ~ R ( F )  =- 

(HR(F), Rh). 
As in the proof of Theorem 3 in [5], we argue that the property of being dense is a consequence of the 

following property shared by RC- fields (F, W) possessing BAP. 

If g E Rw[z] is a unitary polynomial and a E Rw is such that g(a) E J(Rw) and g~(a), ~ E Rw, ¢hen 

for every c ~ J(Rw)\{O} the polynomial g(x). 9(y) - c 2 ~ Rw[z,y] has a root in F. 

This property is proved in exactly the same way as (,)  for RC~-fields. 

We proceed to formulate the THR property for (F, Rw) ((F, W)). 
Let F be the field of fractions of a regular Priifer ring Rw. Then, for every absolutely i~reducible 

polynomial f E Rw[z,9] (Y = Yo,... ,Y,,) unitary in z and for all a, b, 0 # ¢ E Rw such that  

there exist c, d E Rw satisfying 

f~(a, b) ~ O, f(a, b)f~(a, ~)-2 C J (Rw) ,  

f ( c , d )  = 0; (b, -1 e J ( n w ) ,  i < 

(a -- c ) - l f ( a ,  b)fex(a , ~)-1, (a - c)f(a, b)-If~(a, b) C Rw. 

A pair (F, W) ((F, Rw)) is called an RC*-field if W is a Boolean family of valuation rings of the field 

F, and (F, W) satisfies BAP and THR. 

P r o p o s i t i o n  5. If (F, W) is an RC*-field, then F is dense in IER(F) for every R E W. 

Suppose that  g E Rw[~] is a unitary polynomial for which there exists an a E Rw such that, 9(a) 
J(Rw) and g'(a) - t  e a w .  We show that for every e E J(Rw)\{O}, we can find a e e Rw for which 

g(at)¢ - t  E Rw. 
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Let h(a ,y)  ~-- g(x) + y. The polynomial h is absolutely irreducible, h(a , c )=  g(a) + ~ E J(Rw),  
and h~(a,e) = g~(a) is invertible in Rw. By THR, there exist c, d E Rw such that  h(c,d) = 0 and 

( e -d ) e  -1 G J(Rw) ,  and so we have g(c) + d = 0, g(c) = - d  and g(c)e -I  = -de  -1 = ( c -  d)c - 1 -  1 E Rw.  
Now the conclusion of our proposition follows from this property and Proposition 7 in [6, Sec. 1], 

reasoning in the same way as in the proof of Theorem 3 in [5]. 

T H E O R E M  1. If <f, Rw) ((F, W)) is an RC*-field, then (F, Rw) is an RC-field. 

Suppose that  (F, W) satisfies BAP and THR and let Fo > F be a finitely generated regular extension 

of F such that  HR(F)<IHR(F)Fo for all R ~ w .  

Let b, a be an Rw-special system of generators of the field Fo over F (see [5, p. 595]), let f E Rw[z,  ~1] 
be the corresponding absolutely irreducible polynomial, and let 0 ~ h ~ Rw[~]. For every R G W, the 

fact that  HR(F) <_1 HR(F)Fo implies that there exist aR, bR E R h such that f(aR, bR) = 0, f~(aR, bR) ¢ 
0, and h(bR) ¢ 0. Since F is dense in ~R(F) ,  there exist aR, f i r  E R for which ' - # O, 
f (aR, jR) f~(at~, jR)  -2 E ca(R), h(jR) ¢ 0, f(al~,#l~) ¢ 0, and f(aR, jR)h(DR) - i  E re(R). Then R E 

v a  n n n 

and W =-- U VR. Let 0 # cRE Rw be such that vR,(f(c~R,~R)) < VR,(eR) for all R' E VR. Such eR can 
RGW 

well be chosen in view of the following: If ,7 E F satisfies the condition that  f(aR, f lg)Rw + R w  = ~Rw, 

then ~?-x E Rw and ~-x f (ag ,~a)  e Rw,  and we put ea ~- ~?-xf(aR,~a). Since W is compact, there 

exist R o , . . . ,  Rn ~ W such that  W = U v~,. Since W is Boolean, there exists a partition [ao, . . . ,an]  
i < n  

with V~, C__ VR,, i < n. Let ¢ ~ ] l e g ,  and choose 7, $ E F such that  VR(7--aa , )  > vg(e) and 
i < n  

va(~ - JR,) >_ v~(e) for R ~ V~,, i <_ n; the choices are possible in view of BAP. Now it is easy to verify 

' ~ ' J(Rw).  If, by THR, 7', ~' ~ Rw are chosen in such that  %8  ~ Rw,  f~(7,$) ¢ 0, and f (7 ,  )f~('r,$) -~ E 

a way that  ($ - ~')e-~ E J(Rw)  and f (7 ' ,$ ' )  = 0, we also have h(g') ¢ 0. Indeed, let R EVa,; then 

vtt(h(flR,)) < vR( f ( c~ , , jR , ) )  <_ v~(e~,) <_ vR(~). Also vt~(h(jR,)-h($')) > vt~(jl~,-$') >_ vx~(z). Finally, 

vR(h(jR,)) = v~(h(~')). Hence F <_1 F0 and (F, W) E RC. 

R e m a r k .  THR can obviously be expressed via a system of axioms in the signature c~] U <R), so that 

the property of being an RC*-field for a pair <F, Rw) is axiomatizable. 

3. In this section we argue to show that the class of RC*-fields is sufficiently broad. 

Let F <_ Fo, let R0 be a valuation ring of the field F0, and let R ~ R0 n F. We call Ro a superstructure 
of R if ~ ( F ) < _ i  ~ 0 ( F o )  and there exists a decomposition Ro = R~ o/~, where R~ > Ro is a valuation 

ring of F0, /~ is a valuation ring of FR'o, and R' o o it ~- {ala E R'o, a + m(R~) E /~), such that  F <_ R~, 

R(~ R + ra(R'o)/m(R~o)) < R < R u, and F ~  is a divisible group. 

T H E O R E M  2. If W is a weakly Boolean family of valuation rings of the field F and ~" : X --* W 

is a continuous surjective map of Boolean spaces, then there exist a regular extension F0 of the field F,  a 

Boolean family Wo of valuation rings of F,  and a homeomorphism ~ : Wo -% X such that  (Fo, W0) is an 

RC*-field, and for every R0 E Wo, ~re(R0) = R0 M F and R0 is the superstructure of R0 M F.  

In [1], a proof of the theorem was sketched for the case where W is Boolean and ~r is a homeomorphism. 

Proposition 1 shows that  the case where W is a weakly Boolean family can be proved following essentially 
the same line. We thus need the following: 

P r o p o s i t i o n  6.  If W is a weakly Boolean family of valuation rings of a field F and if r : X ---, W 

is a continuous surjective map of Boolean spaces, then there exist a regular extension F. of the field F ,  a 

weakly Boolean family W. of valuation rings of F. ,  and a homeomorphism e : W. -% X such that  for every 

R.  E W., r e (R . )  = R.  M F and R,  is the superstructure of R. ~ F.  
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In order to prove this, we need a number of auxiliary facts concerning maps of Boolean spaces. The 

facts laid out below are probably well known. It is difficult, however, to point out a convenient source, and 

so we cite them to make our treatment self-contained. 

A surjective continuous map 7r : X --, Y of Boolean spaces is called ~wo-sheet.ed if there exists a ciosed- 

open subspace V C X such that  ~r [ V and 7r [ (X\V) are one-to-one. 

Every surjective continuous map lr : X ~ Y of Boolean spaces proves to be an inverse limit of two-sheeted 

maps. 

Let 7r: X ---* Y be a surjective continuous map of Boolean spaces and let V C X be closed-openo Denote 

by (Y)v a subspace of the Boolean space Y x {V, X \ V }  (the latter two-element space is endowed with 

discrete topology), consisting of elements of the form (~?, V), ~? E r (V) ,  and of the form (~7, X\V),  ~ C 
~r(X\V). Now, (Y)v is closed and, hence, Boolean. The projection ev: (Y)v --~ Y on the first coordinate 

is a two-sheeted map and ~rv: X --* (Y)v is a continuous map defined as follows: xv(~) ~- (~'(~),V) if 

E V, and lrv(~) ~--- (Tr(~), X\V)  if ~ E X\V.  
Let a surjective continuous map ~r : X --+ Y of the Boolean spaces X and Y be defined. 

Suppose that  B(X) refers to a family of aft closed-open subsets of X. Denote by IB(X)! the cardinality 

of the set B(X) and assume that  {Void < ]B(X)]} = B(X) is some well-ordering of B(X). 
For every ordinal o~ < IB(X)[, a Boolean space Ya and surjective continuous maps 7r~ : X --+ Y~ and 

¢a,13 : Ya ~ Y[3, fl < a, are defined as follows: 

Yo ~-- Y, ~ro ~- ~r, and ~0,o ~- idy.  

Let Ya, ~ra : X --~ Ya, and e~,~ : Ya - '  Y~, 13 _< a,  be defined. We then put Y~+I ~- (Y~)v~, 

7ra+ 1 = ( 'Ka)Ve , and e a + l , a +  1 = idy~+x, e~+l,a ~ eV~ : Ya+l = (Ya)v~ -" Ya, letting e~+l,# = *~,~'e~+l,~, 

~_<a. 
Suppose that  Y~, ~r~, and e~,a are defined for all fl _< a < 7 < IB(X)I and let ~ be a limit ordinal  

By induction we can assume that  for 6 < fl < a < 7, we have ~r~ -- e~,~r~, e~,, -- ~ , ,  ~ e~,~ and 

eo,~ = i d y .  Then {Y~[e6,~, ~ _< fl < a )  forms an inverse spectrum, and for limit a < 7 Y~, is isomorphic, 

by assumption, to ~m{Y~ [~5 < a )  (with projections ,~,~: Y~ ~ Y~, ~ < a). Hence, we can assume *hat 

Y~ ~ ~m{Y~ [a < "r), *-~,~ : Y~ ~ Y~ are the corresponding projections, and that  ~r~: X ~ ~ is uniquely 

determined from e.~,~r~ = ~ro, a < 7. 

It is not hard to verify that  X is isomorphic to ~m{Y~[a < [B(X)I ). 

We turn to the case where ~r: X ~ W is two-sheeted. Let V be a closed-open subset of X such !ha~ ~r I V 

and 7r [ (XkV) are one-to-one. Let FI ~- F(t) be a field of rational functions in the variable t over F and 

let Fo ~-- F(i~-' ,n > 1). Suppose that  R~ is the valuation ring of Fx such ~hat F <_ R~ and m(R~) -- tR~o, 
and that  R~ is the valuation ring of F~ such that F < R~ and m(R~) = *-XR~. These are the conditions 

by which R~ and R~ are defined uniquely. There exist valuation rings Ro and Rx of Fo which are uniquely 

defined by R./N Ft  = R~, i = 0, 1. Let Wv ~- {ao o RIR ~ ~r(V)) and Wx\v ~ {R~ o RIR ~ ~r(X\V)); 
then Wv, being a space, is homeomorphic to V, and so to ~r(V); Wx\v ~s homeomorphic to X\V ,  and se 

to 7r(X\V); and Wv, Wx\v  are weakly Boolean families of valuation rings for F0. 

L E M M A  3. If W0 and Wt are weakly Boolean families of valuation rings of a field F,  W ~ Wo ~ W~ 

is ttausdorff, and Wo and W~ are closed in W, then W is also a weakly Boolean family of valuation rings 

of F.  

The family W is obviously compact. It suffices to show that IrA is closed in W for every finite A C- F.  Le~ 

R ~ WkVA; then R ~ Wi with i = 0 or 1. Since Wi is weakly Boolean, there exists a finite B C F such tha~ 

R ~ VB and VB N Wi C Wi\VA. In addition, if R ~ Wl-i ,  there exists a finite C C F such that  R ~ Vc and 
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Vc N Wl - i  C WI-i \VA.  Then R E VB N Vc C_ W\VA. But if R ~ W1-i, then R E VB N (W\WI_ i )  C_ W\VA 

and VB n (W\WI_d is open. 

It is not hard to verify that  Wv and W x \ v  satisfy the conditions of the lamina, so that  Wo ~- W v U W x \ v  
is a weakly Boolean family of valuation rings of the field Fo, and there exists a homeomorphism e : Wo ~ X 

such that  r e ( R )  = R N F holds for every R E Wo. Moreover, R is the superstructure of R ~ F since 

R = Ro o ( R n  F) or R = R~ o (RA F),  and FRo, rR1 are divisible groups. 

L E M M A  4. Let (Fi, Wi), i E I, be the family of fields with weakly Boolean families of valuation rings 

for which {Fi]i E I}  is directed by inclusion, and for all i, j E I, if Fi < Fj, then the map of Wj onto Wi is 

defined by the rule R ~ RNFi ,  R E Wj. Therefore, the field F.  = U Fi contains a weakly Boolean family 
iEI 

of valuation rings W, such that  R N Fi E Wi holds for every R E W., i E I, and for every R' E Wi, there 

exists an R E W. for which R ~ = R n Fi. 

Put  W . . ~  {R[R is the valuation ring of F. ,  and R N F~ E W~ for all i E I}.  The conditions of the lemma 

imply that  {WilTri,i : Wj --* Wi, Fi < Fj ( r i i (R)  ~- R n Fi, R E Wj)} is an inverse spectrum of Boolean 

spaces with continuous maps onto. If X ~ lim Wi, then X is nonempty and, moreover, the projections 

r i :  X ~ Wi are onto. For each ~ E X,  let R( ~- U{ri(~)[i e I}. It is easy to see that  R( E W.. Conversely, 

if R E IV., then the family R4 ~--- R A  F~, i E I, satisfies the condition that r~j(Rj) = Rj M F~ = R~ for all 

i, j E I such that  F~ < Fj .  The family/?4, i E I,  uniquely defines the point ~ E X for which R~ = ~r~(~), 

i E I .  
Thus, there does exist a one-to-one correspondence between X and W,, which, as is easy to check, is a 

homeomorphism of these spaces. 

For W. in the conclusion of the lamina, we write lira Wi. 

We are now in a position to prove the propositiom For 7r: X --* W, we will find an inverse spectrum 

{Y,~[a < [B(X)[} of Boolean spaces such that Y~+I -~ Y~ is two-sheeted with all a < IB(X)], and 

Y~ _~ lim Y~ with all l i m i t  a < tB(X)[. Define the sequence (F~, W~), a < [B(X)], of fields with weakly 
4---- 

Boolean families W~ so that  Fo ~-- F and Wo ~- W. If (Fa, Wa) is already defined, let F~+x ~ F,~(t~ -~, 
n > 1). Assume that  Wa+l is obtained from W~, and r~+l(V~) [a closed-open subset of Ya+l = ra+1(X)] ,  

as was done in the case where ~r: X ~ W  is two-sheeted, considered above. If a _< !B(X)] is limit and 

(Ft~ , W~> are defined for all fl < a, we put F~, ~ U F~ and W~ = am W~, in which case F,  = FIB(x)[ 
O<a fl<a 

and W. ~-~ V~B(X)I are, respectively, the required extension of F and the required weakly Boolean family 

of valuation rings of F. .  

Indeed, for every a < IB(X)I there exists a natural homeomorphism e~ : W~ -~ Y~ which induces the 

homeomorphism 

e: W. = WIB(X)I --* lim W~ _~ lim Y~ ~_ X, 

~<IB(X)[ a<lB(X)l 

from which we can readily verify that  r e ( R , )  = R, NF holds for every R, E W,, and R, is the superstructure 

of R.  n F.  

To conclude this section, we point out yet another result related to the above considerations. 

L E M M A  5. If F < F0 is a field extension, W0 is a weakly Boolean family of valuation rings of Fo, and 

W ~ {R0 n FIRo ~ Wo} is Hausdorff, then W is also weakly Boolean. 

Since W is an image of the compact space under the continuous mapping, W is compact, in which case we 

need only establish that  V~ ~ C_ W, where A is a finite subset of F closed in W. Further, Vff ° .-~ {RoIRo E Wo, 
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A C R0} is closed-open in Wo, and V v : 7r(Vff°), where ~r(Ro) : Ro fq F, Ro E Wo; consequently, VA F, 

being an image of the closed subset, is also closed. 

Remark .  If, in the conditions of the lemma, Wo is Boolean, we cannot generally state that W is also. 

This is illustrated by the following example. Let W be a weakly Boolean family of valuation rings of the:field 

F and let Fo ~-- F(t) be the field of rational functions in t over F. Suppose Wo ~- {RtlR E W}, where ~he 

valuation ring Rt of F0 is uniquely determined from R, using the conditions that R <__ Rt, ~ E Rt\m(R~), and 

tq-m(Rt) is transcendental over Fa = RIm(R) < Rt/ra(Rt). Then Wo is weakly Boolean and homeomorphic 

to W under the map Rt s--, Rt r3 F (=  R), R E W. But if the polynomial z 2 - t  is taken as fa(x), the reasons 

for W0 to be Boolean are provided by the corollary to Proposition 2 in [7]. 

4. Using Theorem 2, we show that Theorem 1 admits reversion in some cases. 

A valuation ring R is called distinguished if at least one of the following conditions is met: 

(0) the field Fa is not separably closed; 

(n) the formula 

¢ .  = W 3 y V z ( z  > 0 --. 0 < y < • A (n + 1)z # y), n > 0, 

is satisfied in £R. 

C O R O L L A R Y  1. If R is a distinguished valuation ring of F, and R _< R ~ < F~ then R ~ "also has ~his 

property, and so does/~ provided R < R' and R = R' o R. 

C O R O L L A R Y  2. If R is distinguished, then Ha(F) is not separably closed. 

L E M M A  6. If R0 and Ri are distinguished valuation rings of a field F and if R0 is Henselian, then 

R0 and Rt are comparable with respect to inclusion. 

Assume on the contrary that Ro ~ Ri and Ri ~ Ro; then R ~- RoRi > Ro, Ri. If R = F, then R0 and 

Ri are independent, and since Ro is Henselian, HR,(F) should be separably closed (see, e.g,, ~he corollary 

to Prop. 4 in [6, Sec. 3]), which it is not because Ri is distinguished. If R # F, then Ro = R o R0 and 

R1 = R o/~i for suitable nontriv~al valuation rings /~o and/~i  of the field F/~. But then /~o and Ri are 

distinguished and independent rings, and/~o is Henselian, an impossibility. 

We call a Boolean family W of valuation rings of a field F distinguished if, for every elementary extension 

(Fi, Ri) >'- (F, Rw) and for every R E Wa~(= {(R1)m ]m is a maximal ideal in Ri}), the conditions 

R' ~ RhF and R h = R' o R for a suitable valuation ring/~ of Fa, imply that /~ f3 F A Fa, is a d~tinguished 

ring. 

COROLLARY.  If W is distinguished, R E WR,, R < R' < Fi, F < R', and R R~o k,  then H~(FR,) 
is not separably closed. 

Remark .  If W is finite, then it is distinguished iff every R in W is. 

Nonrigid sufficient conditions for a family W to be distinguished are given below. 

T H E O R E M  3. If (F, W) is an RC-field and W is distinguished, then (F, W) is an RC*-field. 

By Theorem 2, there exists an RC*-field (Fo, W0) such that F0 is a regular extension of F,  ~he map 

Ro ~-* Ro A F, Ro E W0, is the homeomorphism of Wo and W, and Ro is the superstructure of P~o A F 

for all Ro E Wo. Then ]EaonF(f) <i]ERo(F0) for all R0 E W0, and the fact that (F,W) is an RC-fidd 

implies that F <i  Fo. Therefore, there exists an ultrapower F1 ~- Fz/D of F for which one can find an 

F-embedding ~v : F0 ---* Fi. In what follows we identify Fo with ~(Fo), i.e., assume that Fo < Fi~ Let 

R1 ~--- R~v/2~; then (F, Rw) -~ (Fi, Ri). We argue that Rwo = Ri ;q Fo, for which it suffices to show that 

for every R E WR~, the ring Ro ~- R rq Fo is in Wo. 
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We show that Hno(FO) is not separably closed. We have Hno(FO) <_ HR(F1). Let F~ be an algebraic 

closure of Fo in Hn(F1) [HRo(Fo) _< F~] and let R' ~--- RhF  and R 5 ~- R ~ n F~. We have R h = R' o .~ and 

Ro -- R5 o/%o for suitable valuation rings k and /%0 of the fields FR, and FR,o, respectively. Suppose that 
F '  is an algebraic closure of the field F (< R') in FR,. By the definition of being distinguished for W, the 

r ing/~ N F '  is also distinguished, and so F '  is not separably closed. Further, F < FR~ < F '  and F '  ,~ Fn~ 

is algebraically closed in F/~,  but it is not separably closed, and hence also FR, ° is not. If R'~ ~ RhF  and 

R h = R~ o/%~, then f < FR~, < F i t  and FR, o, is not separably closed, hence also HRo(Fo) = q(R h) -- q(R~) 

is not. 
In view of the corollary to Proposition 4 in [5], there exists an R 5 6 Wo such that R' ~ RoR 5 5/= Fo. 

If F < R', then R' > Ro, R~ since Ro N F, R 5 ;3 F 6 W; consequently, Ro > F and R 5 >_ F.  Let 

Ro = R'  o t%o and R~ = R' o / ~ ;  then /%0 and k 5 are nontrivial independent valuation rings of FR,. But 

/%5 is Henselian, and hence HRo(FR,) should be separably closed, which contradicts the definition of being 

distinguished for W. If F ~ R', let R .~- R 'F.  We have R = R'oF = RoE (since R' o <_ R',  R' o <_ R'oF, 
and RbF ~ R', it follows that R' < RbF; R' < RoF is obtained similarly). The fact that  R 5 is the 

superstructure of R 5 N F E W implies that there exists a decomposition R~ = R" o/%~ such that F < R" 

and R 5 ;3 F <_ ft~ <_ (R 5 ~ F) h. Since F < R", we have R = RbF <_ R", but FR,, = q(/%~) is an algebraic 

extension of F;  consequently, R" = R and FR = FR,, is an algebraic extension of F also. The family 

W and, hence, the ring/%o M ff  N FR = /%0 M FR = /%0 are distinguished by definition, and/%o is defined 

via the relation Ro = R o/%0- If R~ = R o / ~ ,  then /%~ is distinguished because R 5 is. Thus, /~o and 

/%5 are distinguished valuation rings of F;  moreover, /%5 is Henselian [since R > R~ and Fo is dense in 

IER~(Fo)]. Then we have/~o < /%~ or/~5 - /%0 by Lemma 6, from which it follows that t%o n F < /%5 n F 

or /%5¢3F < /%o;3F. But /%oNE = R o n F C  W a n d  /%'oC~F = R ' o A F  E W,  andso  / % o N F =  /%bNF, 

/%0 =/%5, but Ro = Rb. 
We have thus established that Rwo = R1 f3 Fo, from which it is easy to infer the following: 

If R'  E WR~ = {(R~)~lm is a maximal ideal in Rt}, R ~- R' M F, and R0 is that unique valuation ring 

in W0 for which Ro N F = R, then R' N Fo -- Ro. 

Now we show that iF, R w )  E Re* .  Let R' # R" 6 W and let R' 1 ~ R'I /I~ and R' 1' ~ R"X /l:) 6 WRy. 

Then (F, R', R '~) _'~ (El, ~t,r" ~q/'r'"\ Since R 5 ,----- R~ ;3 Fo # R~ = R~' ;3 Fo, and Wo is independent, it 

follows t h a t F 0 =  ' " P " ' " RoR0, F <_ RoR o <_ R1R1, and the fact that (F, R', R") ~ (F1, R~I, R"\I/is an elementary 

embedding implies that F < R 'R" ,  i.e., F = R'R".  Hence, the rings R' and R" are independent, and so 

(F, W)  satisfies BAP. 

Let f E Rw[z,~3] be an absolutely irreducible polynomial unitary in z. Suppose that a, b, 0 :fi¢ E R w  
are such that 

f ' (a ,b)  # O, f (a ,b ) f ' (a ,b )  -2 E J ( R w ) .  

Since J ( R w )  = J(Rwo)  ;3 F (which is easily checked) and (Fo, Wo) C RC*, there exist c ,d  E RWo 

satisfying f (c ,  d) = 0, (b i -d i )¢  -~ E J( Rwo), i < n, and ( a - c ) - ~  f(a,  t,)f'~(a, b) -~, ( a - c ) f ( a ,  b)- t  f~(a, b) 

Rwo . 
It is easy to verify that J(R~) ;3 Fo = J(Rwo),  from which we can see that c, d ~ R~, (b~ - d~)z -~ 

J (Rt ) ,  i < n, and (a - c)- t f (a,b) f '~(a,b)  -~, (a - c ) f ( a ,b ) - t f ' ( a , b )  E R~. 
Since (F, R w )  "< (Ft, R~), there exist c', d' E R w  such that f (c ' ,d ' )  = O, f ' ( c ' ,d ' )  # O, (b~ -d~ ) z  -~ E 

J ( R w ) ,  i < n, and (a - c ' ) -~f(a,b) f~(a,b)  -~, (a - c ' ) f (a ,b) -~ f ' (a ,b)  ~ R w .  
Consequently, (F, W) satisfies THR,  proving that (F, W) is an RC*-field. 

R e m a r k .  In Proposition 2 [1], a stronger statement is formulated, which, however, is still not proved. 
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What  we can prove is a part of the statement concerning BAP. 

P r o p o s i t i o n  7. Let W be a Boolean family of valuation rings of a field 27, suppose that  (F, V¢-) E RC, 
and assume that  the rings in W are all distinguished. Then W is independent. 

Assume the contrary. Let Ro ~ Ri E W, R ,-~ FoR1 :/= F, and F0 ------ HR(F);  R~ and R~ are 

the valuation rings o f F 0  such that  R0 < . . . .  R~ < R0 h, Ri < R~ < R h, and R'0 Rp~ = R h. Using Zorn~s 

lemma, we can find a maximal algebraic extension Fi of F0 such that in Fi,  there exist valuation rings 

R~ and R~ satisfying the conditions R~ < R~ < R0 h and R~ < R~ _< R~'. Note that R~)R] dominates R ~ 

(R~R~ n Fo - Rh), and hence R~)R~ 5£ Fi, i.e., R~) and R~ are dependent. 

We argue that  Fi is regularly closed with respect to the family {R~), R~). Let W~ be the family of all 

valuation rings R* of the field Fi such that R* N F E W. By Proposition 4 in [5], Fi is then regularly 

closed with respect to Wi, and R~, R~ E Wi. We can show that  for every R* E Wi, there exists eithe~ an 

F-embedding HR;(Fi) in H2~.(Fi) or an F-embedding HR~(Fi) in HR*(F1). Hence F~ will be regularly 

closed with respect to {R~, R~}. Let R* E W1. If R* is independent of R~ and R~, then by the corollary to 

Proposition 4 in [5], Ha* (Fi) is separably closed, i.e., it is a separable closure of Fi,  and hence H~; (Fi), 

HR.~(Fi) < HR*(F1). Let R* be such that R' ~- R~)R* # F1. Since R~, R* E W1, we have R~ ~ R ~ 

and R* ~ R~; hence, there exist representations R~) = R' o/~0 and R * = R' o/~ for suitable nontriviat 

independent valuation rings /~0 and R of the field FR,. In view of the maximality of F1, it is not hard to 

show that /~o is Henselian, from which it will follow that H£~(FR,) is separably closed, and so we can assume 

that HR;(F1) < HR*(Fi). Similarly we argue for the case where R~R ~ # Fi [and so H2~(Fi) <_ HR*(Fi)]. 

We have thus proved that (El, {R~, R~)) E RC. But (R~) u = R h, (R;) h = R~i, and so the rings R~, 

R~ and the family {R;,  R~} are distinguished. By Theorem 3, (F, {R~, R~}) is an RC*-field and R;  and 

R~ should be distinguished, which they are not by construction. This is a contradiction, which proves the 

proposition. 

A Boolean family W is called a family of the first kind if there exists a unitary polynomial f E Rw [~ ] 
such that  for every R E W, its reduction f E F~[z] is a separable polynomial without roots in F~. 

A Boolean family W is called a family of the second kind if there exists an n > 0 such tha~ for every 

R E W we have r a  ~ ~,~, and for every a E re(R), there exist a b E re(R)\{0} and a neighborhood W' C W 

of the ring R such that  for every R' E W' we have b E m(R'), va,(b) < vn,(a), and va,(b) is not divisible 

by (n + 1) in r~ , .  

P r o p o s i t i o n  8. If, for every R in the Boolean family W, there exists a closed-open neighborhood of 

the first (second) kind, then W is distinguished. 

It suffices to prove the proposition for the case where W is itself a family of the first (second) kind. 

Suppose that  W is a family of the first kind and f E Rw [z] is a unitary polynomial such that  for every 

R E W, its reduction f E FR[Z] is a separable polynomial without roots in FR. This condition is equivalent 

to stating that  the following elementary sentence is valid on Rw: 

 ence, if (F, aw) (F1, then 

Va3b(f(a). b = 1). 

R1 Va3b(f( ). b = 1), 

and so for every R E WR1, the reduction f E FR[x] has no roots in FR. If R r ~--- RhF and R n = Re o_R, then 

F£~ = FR > F~nYnFn ' > FRnF. The polynomial f is in FRnF[~] and has no roots in F~. Consequently, 

Fkn.~nFa, is not separably closed and R n F M F/z, is a distinguished ring. 
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Let W be a family of the second kind and let n > 0 be the number satisfying the definition. Suppose 

that (F, Rw) '~ (F~, R~}, R E WRy, R' ~ RhF, and R h = R' o R for a suitable valuation ring/~ of the field 

FR,. Let F0 be an algebraic closure of F in FR, and let Ro ~--/~ n Fo. We need to verify that FRo ~ On. 

Since (F, RM F / < (Fo, R0) and F0 is the algebraic closure of F, it follows that for every ao E m(Ro), there 

exists an a E m(R fq F) such that (0 <)VRo (a) < VRo(ao). Since R N F E W, there exist a neighborhood (of 

the form VaF_~ , a E Rw) of the ring RN F and an element b E m(Rfq F)\{0} such that for every R' E Va-I 

we have b E m(R'), vR, (b) < VR, (a), and vR, (b) is not divisible by (n + 1) in FR,. 

Let Ra = O{R~IR ~ E W, a -1 E R'}; then the conditions formulated for a and b above can be represented 

as follows: 
b ~ J(a~) \{0} ,  ~b -~ ~ a~, 

and 

vc ~ a~(bc -(~÷~) ~ R~ -~ b~ -(~+~) E ](R~)),  

These are the elementary conditions imposed on a, a, and b; consequently, they also hold in (F1, R1}. In 

particular, every R' E V F1 satisfies the following: b E m(R'), ab -1 E R' [i.e., vR,(b) < vR,(a)], and vR,(b) Or--1 

is not divisible by ( n +  1)in PR,. We have R E V ~  because R n F  E VF-1, and so 0 < vR(b) <_ vR(a) and 

vR(b) is not divisible by (n + 1) in PR = rR~. Further, F~ is isomorphic to a convex subgroup F~ of FRh. 

Consequently, r~  is a pure subgroup in rR~ and vR(b) e rh is not divisible by (n + 1) in r~,  and so in 
F~. Therefore, vR(b) E FRo < P.~ is not divisible by (n + 1) in FRo. Moreover, vR(b) = VRo(b) < VRo(a) <_ 
VRo(a0), and since ao is an arbitrary element in re(R0)\{0} (see above), it follows that FRo ~ V,~ and Ro 

is a distinguished ring. 

C O R O L L A R Y .  If, for a Boolean family W ¢ g of valuation rings of the field F, there exist r E F 

and n > 0 such that R E W is a (r,n)-valuation ring, i.e., W C_ Wr,,~ (see [1]), then W is distinguished. 

Under the conditions of the corollary, W is a family of the second kind. 
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