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RC*-FIELDS
Yu. L. Ershov UDC 518.5

It is stated that if @ Boolean family W of valuation rings of ¢ field F' satisfies the block approz-
imation property (BAP) and a global analog of the Hensel-Rychlick property (THR), in which
case (F,W) is called an RC*-field, then F 1is regularly closed with respect to the family W. (The-
orem 1). It is proved that every pair (F, W), where W is ¢ weakly Boolean family of valuation
rings of a field F, is embedded in the RC*-field (Fo, W) in such a manner that Ry — RoN F,
Ry € Wy is a continuous map, Wy is homeomorphic over W to a given Boolean space, and Ry
is ¢ supersiructure of Ry N F for every Ry € Wy (Theorem 2).

In the present paper we prove most of the statements announced in [1].

For definitions of the basic notions in valued field theory, we ask the reader to consult Chap. 4 in
[2]. If R is a valuation ring of a field F, then m(R) is the maximal ideal of R, vg is the corresponding
valuation, Fr = R/m(R) is a residue class field, Ty is a value group, R® is the Henselization of R, and
Hp(F) = q(R*) < F is the field of fractions of R*; moreover, Hg(F) = (Hg(F), R).

1. Let W be some family of pairwise incomparable (w.r.t. inclusion) valuation rings of a field F. A
canonical topology on W is one defined via the subbase of subsets of the form V, = {R|R € W, a € R},

a € F* = F\{0};if A C F* is a finite nonempty subset, then V4 = [ V,.
a€A
We call W a weakly Boolean family of valuation rings if W endowed with the canonical topology becomes

a Boolean space, and V is closed-open for every finite A, @ # A C F*. A weakly Boolean family W is
Boolean if all closed-open subsets of W are of the form V,, a € F*. In [3], it was established that W is a
Boolean family iff F' is the field of fractions of the ring Ry, defined by W as follows: Ry = N{R|R ¢ W},
Ry is a regular Priifer ring, and W = {(Rw )n| m is a maximal ideal of Rw}. If W is a (weakly) Boolean
family of valuation rings of F, Fy is an algebraic extension of F, and Wy = {Ro|Ro is a valuation ring of a
field Fy and Ry N F € W}, then W, is a (weakly) Boolean family (Theorems 1 and 2 in [3]).

Let W be a weakly Boolean family of valuation rings of a field F. We say that W possesses the block
approzimation property (BAP) if, for every partition [Vp, ..., V,] of W, i.e., for a family V4, ..., V, of closed-
open subsets of W such that W = |J V; and V,NV; = @ for 0 < i < j < n, for all ag,...,a, € F and

i<n
€0s-+.16n € F*(= F\{0}), there exists an element a € F for which vg(a — a;) > vr(e;) with all R € V;,
1< n.

Proposition 1. If a Boolean family W has BAP, then W is Boolean.

Note that for every partition [Vy,...,V,], there exists a finer partition [Voo,..., Vory,-- -
Vnos-++» Vak,) such that for every V;;, there is an element €ij # 0 satisfying vg(ei;) > 0 for all R € V.
This follows from the fact that a family of closed-open subsets of the form V* = V,\V,-1, ¢ € F*, covers
W. Let V be closed-open and let [Vq,. .., V,] be a refinement of the partition [V, W\V] such that for some
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€0,..-,6n € F*, we have vp(e;) > O withall R€ V;, i <n. Puta; =1 V; CV,and a; = 0if V; C W\V,
1< n;if a € F is such that vg(a — a;) > vp(e;) for REV,, i < n, then V = V,_:.

If W is known to be Boolean, then the block approximation property for W is reworded as follows: ¥
Qg, ..., 0y € F* determines the partition V,,,...,V,, of the space W (in this case we say that [, ..., an)
is a partition), ao,...,a, € F, and 0 # ¢ € Ry, then there exists an element o € F such that vg(a —a;) >
vg(e) for any R € V,,, i < n.

Proposition 2. If W is a Boolean family of valuation rings of a field F, then the pairs (F, Ry ) such
that W has BAP are expressed via a system of axioms in the signature o5 U (R).

The proposition follows from the following facts:

(1) For every a € F, there exists an a € Ry such that V;, = V,-..

Since Ry is a Priifer ring, there exists a § € F such that aRw + Rw = SRw. It is easy to see that
a=p1te Ry and V, = Vp = Va-1. The elements a and « are connected via relations o € Ry and
Jre, 1 € Ry (aarg+ ary = 1), which follow from the condition of aRw + Rw = SRw being equivalent to
acRy + aRw = Rw.

(2) @, B € Ry and off # 0, then V-1 N Vp-1 = Vigpy-1.

Indeed, R € V-1 NV3-: = a, f € RA\M(R) = aff € R\m(R) = R € Vup)-» R € Viqp-» = a7 =
B(aB) '€ R, and B~ =a(af) ' €ER= RE Vpus NVpu.

(3) If & € Rw, then V-1 = @ iff o belongs to the Jacobson radical J(Rw) of the ring Ry .

Let Vo1 = @; if m is a maximal ideal of Ry, then (Rw)n € W. We have o=t ¢ (Rw), and
a € M{(Rw )w) N Ry = m, i.e.,, a € N{m|m is a maximal ideal of Ry } = J(Rw ).

Conversely, let a € J(Rw); then for R € W, m(R) N Ry is a maximal ideal of Ry, and m{R) N Ry D
J(Rw) holds; hence & € m(R), and so o~} ¢ R, ie., Vo1 = 2.

(4) If @ € Rw, then a € J(Rw) iff Ry = VzIy((1 + az)y = 1).

See, for instance, Proposition 1.9 in [4].

Let 0 #a € Ry and R, = N{R|Rc W, a" ' € R}.

(5) Ha € F and 0 # € € Ry, then the fact that vg(a) > vg(e) for all R € V,-: is equivalent to the
relation ae~! € R,.

We have vg(a) > vr(e) © vr(ae™') > 0 ac™! € R.

(6) If0 # & € Rw and a, € Rw is such that V,-1NV, -2 = @ and V-1 UV, -1 = W, then B, = {ad™q,
bERw,b#0, V- UV -1 = wi.

Indeed, V3-:1 U Va:l = W implies that V,-: C V;-1, and so b~! € R for all R € V,-:; then we have
b e n{R|R € Vy-1} = R,, and Rw < R, implies ab~! € R, for every a € Ry.

Let a € R, and B € F be such that aRw + Rw = BRw; then it is obvious that V,,-. C V, C V. Thus,
B! € Ry, and a = rf3 for a suitable » € Ry .

(7) Let ag,...,an € Rw\{0}. Then |J V-1 = Wiff (ag,...,an) = Rw [here (ao,...,a,) is the ideal

i<n

of Ry generated by elements ao,. .. ,an]_and (a0y..1an) = Rw © 3B0,-..,0n € Rw (Y cifs; = 1).

i<n
If (eg,...,0n) # Rw, then there exists a maximal ideal m > (ay,...,ay), in which case ayp,...,a, €
R = (Rw)n € Wand Re W\ |J V.. Butif (ap,...,a,) = Rw and R € W, then 1 ¢ m(R) and
i<n
a; ¢ m(R) for some i < n, from which it follows that R€ V- and W = {J V_-..
k3 isn k)

Now, for every n > 1 we can write the BAP,, sentence in the signature o U (R) to express the following
property: For all ag,...,an, ao,.-.,0, € F and 0 # ¢ € Rw, let Bo,...,0, € Rw\{0} be such that
Va; = Vgo1, i <y and Vg-u NVgoa = @ for 0 < 4 < j < n [which is equivalent to the condition
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BiB; € J(Rw), 0<i< j<nland |JV, o= W [which is equivalent to the condition (fo,...,0,) = Rw].

i<n

Then there exists an a € F satisfying (@ — a;)e™! € Rg,, i < n.
The collection of axioms BAP,,, n > 1, does axiomatize BAP.

LEMMA 1. If W is a Boolean family of valuation 1ings of a field F such that W # {F}, then

J(Rw) # {0}.

If J(Rw) = {0}, then Rw is a subdirect product of fields: Ry < Il Fgr. Since Ry has no zero
RewW
divisors, it follows that |W| = 1 and Ry = Fpg for R such that W = {R}, which is possible only in the case

R=F.

We call the family W of valuation rings independent if any two distinct valuation rings, R and R, in W
are independent, i.e., RR' = F

Proposition 3. For W a Boolean family of valuation rings of a field F, the following conditions are
equivalent:

(2) (F,W) € BAP;

(b) W is independent.

Let (F,W) € BAP, assuming that there exist Ry # Ry € W such that R = RoR; # F. Let a; € F*,
i=0,1, be such that Ry € V,,, Ry € V,,, Vo, NV,, = &, and V5, UV,, = W, let R be a valuation ring, and
let m(R) = m(Ro)Nm(R;) > J(Rw ). Take 0 # by € J(Rw ), which we can do since J(Ry) # {0} by Lemma
1. Let b, € F\R;. By BAP for ¢ = b2, we can find an element b for which, in particular, vg,(b—bo) > vg,(¢)
and vg, (b — b1) > vg,(¢). The first condition implies that b— by € J(Rw), b € J(Rw) < m(R) < m(Ry),
and wg, (b) > 0; it follows from the second condition that vz, (b) = vr, (b1) < 0. Contradiction. Thus, (a)
implies (b). l

In order to prove that (b)=-(a), we need the following:

LEMMA 2. If W is an independent Boolean family and if a, 8 € F are such that V, NVg = @ and
Vo UV = W, then for every 0 # ¢ € Ry, there exists an element a for which vp(1 —a) > vgp(e) if R €V,
and vg(a) > vr(e) if R € Vj.

There is no loss of generality in assuming that V, # &, V3 # &, and ¢ € J(Rw). Let Ry € V;; then
for every Ry € Vp the equality RoR; = F implies the existence of an ap, satisfying vg,(1 — ag,) > vr,(¢)
and vg,(agr,) > vr,(g). Let Vg, = V,, -1 N Vp; then Ry € Vo, C Vg and Vg = |J Vg,. Since Vp

R1€Vﬁ
$
is compact, there exist Ry,..., R, € Vg such that Vg = |J Vg,. If a = H ag;, then vg(a) > vg(e) for
i=1 i=1
R € V3, and vg,(1 — a) > vg,(¢) [the latter is implied by the following: 1 —a = (1 — ag,) + agr, (1 —
ar,)+...+agr, ... -ar,_,(1 —ag,); vr,(1 — ar,) > vgr,(¢) and vp,(ar,) = 0,7 =1,...,s]. Thus, for

every Ry € Vg, there exists an ep, = a € F* for which vg,(1 — er,) > vr,(¢) and vr(er,) > vr(e) for
all R € V3. That element eg, is such that for every Rj € Vg, = Via-eny)e-r N Vay the condition that
vp: (1 - eRr,) > vri(¢) and vr(er,) > vg(e) is satisfied also for all R € V3. Therefore, Ry € Vg, C Vq

and V, = |J Vg. Since V, is compact, there exist Ry,...,Rr € V4 such that V, = |J Vg,. Let
ReVq i<k

e= Y ep,— Y €ERrer,+ eRieRJ.eRl+...+(——1)’°eRU-...-eR,.. It is not hard to verify (e.g.,
i<k 0<i<i<k 0<i<j<I<k

for the case k = 1) that vg(1 —e) > vg(e) if R € V,, and vg(e) > vr(e) if R € V3.
Now, let [ao,...,a,] be a partition, aq,...,a, € F, and 0 # ¢ € Ry . For each a;, we will find b; such
that a; Rw + Rw = b;Rw, ¢ < n. Note that ¢; = b 1 € Ry and a;c; € Rw, i < n. Choose £’ # 0in J(Ry )

and put gg = ¢-¢'- [| ¢. By Lemma 2, we can find elements eo, ..., e, (€ Rw) such that vg(1—e;) > vr(eo)
i<n
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if R € V,,, and vrle;) > vrleg) if R € W\V,,. Therefore, the element a = Y a;e; satisfies the condition
7 1K
vr{a — a;) > vr{e) f R € Va,, i < n. Indeed, if R € V,,, then a — a; = as{es — 1) + 3} aje;. We have
3
vg(ai(e; — 1)) = vrla:)+vr{ei — 1) > vrla;) +vrleo) > vrlai) +vric) +vrie) = vrlae)+ vrie) > vale)
since vg(aic;) > 0. Further, vr{aje;) = vrla;) + vr(e;) > vrla;) + vrleo) = vr{es) + vricy) + vale) =
vr{aje;) + vr(e) > vr(e). Hence vp(a — a;) > vgle).

COROLLARY. If W is an independent Boolean family of valuation rings of the field F, Fy > F is
an algebraic extension of F, and Wy = {Ro|Ry is a valuation ring of the field Fy, and RoN F € W}, then
<F0, Wg) € BAP.

Indeed, if W is independent, then so is Wy.

2. Let us recall a number of basic definitions from [5].

Let F < Fy be a field extension. The field Fy is a I-eztension of F (F<1Fy) if, for every finite subset
C C F,, there exists an F-homomorphism ¢ of the ring F[C] into F.

For W a Boolean family of valuation rings of the field F, F is said to be regularly closed with respeci
to W, and we write F € RC(W) or (F,W) € RC, if for every regular extension Fy of F the fact that
Hp(F)<{Hgp(F)F, for all R € W implies that F<, F,.

If F < Fy and Ry is a valuation ring of the field Fy, we say that F is dense in the valued field (Fg, Ro}
if, for any ag € Fy and 7o € T'p,, there exists an a € F such that vg,(a — ao) > 7.

COROLLARY. If Ris a valuation ring of the field F dense in Hp(F) = (Hg(F), R*} and f R < By <
F and R = Rg o R for a suitable valuation ring R of the field Fr,, then R is Henselian.

Proposition 4. If (F,W) is an RC-field, W is independent, and R € W, then F is dense in Hg(F) =
(Hr(F), RM).

As in the proof of Theorem 3 in [5], we argue that the property of being dense is a consequence of the
following property shared by RC- fields (F, W) possessing BAP.

If g € Rw[z] is a unitary polynomial and a € Ry is such that g(a) € J(Rw) and ¢'(a)”! € Rw, then
for every ¢ € J(Rw)\{0} the polynomial g(z) - 9(y) — ¢* € Rw|z,y] has a root in F.

This property is proved in exactly the same way as (%) for RC,-fields.

We proceed to formulate the THR property for (F, Rw) ((F,W)).

Let F be the field of fractions of a regular Priifer ring Ry,. Then, for every absolutely irreducible
polynomial f € Rw[z, %) (¥ = vo,.-.,¥s) unitary in ¢ and for all a, b, 0 # ¢ € Ry such that

fi(a,B) #0, f(a,8)f;(a,b)~* € J(Rw),
there exist ¢, d € Ry satisfying
fle, J) =0; (b;— d,-)e"1 € J(Rw), i<m;

(a - c)—lf(a,, l;)f;(a, E)—l» (a. - c)f(a, B)“lf;(a, E) € Ry.
A pair (F,W) ({F,Rw)) is called an RC*-field if W is a Boolean family of valuation rings of the field
F, and (F, W) satisfies BAP and THR.

Proposition 5. If (F, W) is an RC*-field, then F is dense in Hg(F) for every R € W.

Suppose that ¢ € Rw[z] is a unitary polynomial for which there exists an a. € Rw such that g{a) &
J(Rw) and g'(a)"! € Rw. We show that for every ¢ € J(Rw)\{0}, we can find o, € Rw for which
g(ac)e™! € Rw.
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Let h(z,y) = g(z) + y. The polynomial h is absolutely irreducible, h{a,e). = g(a) + ¢ € J(Rw),
and hl(a,e) = g'(a) is invertible in Ry. By THR, there exist ¢, d € Ry such that h(c,d) = 0 and
(e —d)e™! € J(Rw), and so we have g(c) +d =0, g(c) = —d and g(c)e ™! = —de™! = (e —d)e"! - 1€ Rw.

Now the conclusion of our proposition follows from this property and Proposition 7 in [6, Sec. 1],

reasoning in the same way as in the proof of Theorem 3 in [5].

THEOREM 1. If (F, Ry) ((F,W)) is an RC*-field, then (F, Rw) is an RC-field.

Suppose that (F, W) satisfies BAP and THR and let Fy; > F be a finitely generated regular extension
of F such that Hp(F)<1Hp(F)Fyforal Re W.

Let b, a be an Ry -special system of generators of the field Fy over F (see [5, p. 595]), let f € R [z, 7]
be the corresponding absolutely irreducible polynomial, and let 0 # h € Ry [g]. For every R € W, the
fact that Hg(F)<; Hr(F)Fo implies that there exist agr, bp € R such that f(ag,br) =0, f.(ar,br) #
0, and h(bg) # 0. Since F is dense in Hg(F), there exist ar, Br € R for which f!(ag,Br) # 0,
flar,Br)fi(ar,fr)~% € m(R), h(Br) # 0, f(ar,Br) # 0, and f(ar,Br)R(Br)™* € m(R). Then R €
Ve = (MV5,) N Var N (Vf(amﬁn)h(ﬁn)‘l\Vh(én)f(axyﬁn)“) n (Vf(amén)fé(an,ﬁn)‘z\vfé(amﬁn)zf(anﬁn)‘l)

and W = |J Vg. Let 0 # eg € Ry be such that vg:/(f(ar,Br)) < vri(cr) for all R’ € Vi. Such ¢ can
ReW

well be chosen in view of the following: If 5 € F satisfies the condition that f(ag, ,BR)RW + Rw = nRw,
then 7! € Rw and #~f(ar,Br) € Rw, and we put eg = 7~ f(ar,Br). Since W is compact, there
exist Ro,..., R, € W such that W = |J Vg,. Since W is Boolean, there exists a partition [ag, ..., a,]
i<n
with V,, C Vg, i < n. Let e = ] ;Re and choose v, § € F such that vg(y — ar,) > vr(c) and
i<n

vr(6 — Br,) > vr(e) for RE€V,,, i < n; the choices are possible in view of BAP. Now it is easy to verify
that v,8 € Rw, fi(v,8) # 0, and f(v,8)f.(7,8)"% € J(Rw). If, by THR, v/, §' € Ry are chosen in such
a way that (6 — §')e™! € J(Rw) and f(v/,8') = 0, we also have h(8’) # 0. Indeed, let R € V,,; then
vr(h(Br.)) < ve(f(ar.,Br.)) < va(er,) < vr(e). Also vr(h(Br.)~h(&')) 2 vr(Br,~§') > vr(c). Finally,
vr(h(Br,)) = vr(h(8")). Hence F <; Fy and (F, W) € RC.

Remark. THR can obviously be expressed via a system of axioms in the signature oy U (R), so that
the property of being an RC*-field for a pair (F, Rw) is axiomatizable.

3. In this section we argue to show that the class of RC*-fields is sufficiently broad.

Let F < Fy, let Ry be a valuation ring of the field Fy, and let R = REoN F. We call Ry a supersiructure
of R if Hp(F)<; Hg,(Fo) and there exists a decomposition Ry = Rj o R, where R > R, is a valuation
ring of Fy, R is a valuation ring of Fpi, and Rjo R = {ala € R, a + m(R}) € R}, such that F < R,
R(~ R+ m(Rp)/m(Rh)) < R < R*, and Tg; is a divisible group.

THEOREM 2. If W is a weakly Boolean family of valuation rings of the field Fand v: X — W
is a continuous surjective map of Boolean spaces, then there exist a regular extension Fy of the field F, a
Boolean family Wy of valuation rings of F, and 2 homeomorphism ¢: Wy = X such that (Fo, W) is an
RC*-field, and for every Ro € Wy, 7e(Ro) = RoN F and Ry is the superstructure of Ry N F.

In [1}, a proof of the theorem was sketched for the case where W is Boolean and = is a homeomorphism.
Proposition 1 shows that the case where W is a weakly Boolean family can be proved following essentially
the same line. We thus need the following:

Proposition 6. If W is a weakly Boolean family of valuation rings of a field F and ff »: X — W
is a continuous surjective map of Boolean spaces, then there exist a regular extension F, of the field F, a
weakly Boolean family W, of valuation rings of F,, and a homeomorphism ¢: W, = X such that for every
R, € W, ne(R.) = R.N F and R, is the superstructure of R, N F.
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In order to prove this, we need a number of auxiliary facts concerning maps of Boolean spaces. The
facts laid out below are probably well known. It is difficult, however, to point out a convenient source, and
so we cite them to make our treatment self-contained.

A surjective continuous map 7: X — Y of Boolean spaces is called {wo-sheeied if there exists a closed-
open subspace V C X such that 7 [ V and = | (X'\V) are one-to-one.

Every surjective continuous map 7: X — Y of Boolean spaces proves to be an inverse limit of two-sheeted
maps.

Let 7: X — Y be a surjective continuous map of Boolean spaces and let ¥V C X be closed-open. Denote
by (Y)v a subspace of the Boolean space Y x {V, X\V} (the latter two-element space is endowed with
discrete topology), consisting of elements of the form (n,V), n € n(V), and of the form {n, X\V), 7 €
7(X\V). Now, (Y )y is closed and, hence, Boolean. The projection ey : (Y)y — Y on the first coordinate
is a two-sheeted map and 7y : X — (Y)v is a continuous map defined as follows: xv(£) = (#(¢),V) if
£eV,and my(€) = (v(£), X\V)if £ € X\V.

Let a surjective continuous map #: X — Y of the Boolean spaces X and ¥ be defined.

Suppose that B(X) refers to a family of all closed-open subsets of X. Denote by |B{X)| the cardinality
of the set B(X) and assume that {V,|a < |B(X)|} = B(X) is some well-ordering of B(X).

For every ordinal o < |B(X)|, a Boolean space Y, anrd surjective continuous maps 7y : X — Y, and
€a,p: Ya — Yp, B < o, are defined as follows:

Yo = Y, o — T, and £€0,0 = idy.

Let Yo, 7q : X — Yg, and €ap : Yo — Y3, B < o, be defined. We then put Yoy = (Yalv,,
Tat1 = (Ta)v,, and €q41,041 = idy, 11 €atla = €V, Yap1 = (Ya)v, — Yo, letting eqy3 5 = €a,8'€atlar
BLa

Suppose that Yy, 74, and €4 5 are defined for all f < a <y < |B(X)| and let v be a limit ordinal.

By induction we can assume that for § < 8 < a < v, we have Tg = €4 %o, €a,5 = €3,5 * €a,8, and
€a,a = idy,. Then {Yg|es 8, § < B < a} forms an inverse spectrum, and for limit « < v Yy, is isomorphic,
by assumption, to Hin{Yﬁ |8 < a} (with projections €4 5: Yy — Y3, 8 < a). Hence, we can assume that
Y, = lim{Y,|a < v}, €1,0: Yy — Y, are the corresponding projections, and that 7,: X — Y, is uniquely
determined from Ey,afy = Mgy @ < Y.

It is not hard to verify that X is isomorphic to lim{Y,|a < |B(X)|}.

We turn to the case where 7: X — W is two-sheeted. Let V be a closed-open subset of X such that = | V
and 7 [ (X\V) are one-to-one. Let Fy = F(t) be a field of rational functions in the variable ¢ over ¥ and
let Fy = F(t* ',n > 1). Suppose that R} is the valuation ring of F; such that F' < R}, and m(Rp) = tR},
and that R} is the valuation ring of F; such that F < R} and m(R}) = ¢t"'R}. These are the conditions
by which R} and R} are defined uniquely. There exist valuation rings R, and R; of F, which are uniguely
defined by R; N Fy = R}, i = 0,1. Let Wy = {Roo R|R € m(V)} and Wx\y = {Ri10 R|R € #(X\V)};
then Wy, being a space, is homeomorphic to V, and so to 7(V); Wx\v is homeomorphic to X\V, and so
to 7(X\V); and Wy, Wx\v are weakly Boolean families of valuation rings for Fo.

LEMMA 3. If Wy and W; are weakly Boolean families of valuation rings of a field #, W = Wy nW;
is Hausdorff, and Wy and W, are closed in W, then W is also a weakly Boolean family of valuation rings
of F.

The family W is obviously compact. It suffices to show that Vy is closed in W for every finite A C F. Let
R € W\Vy; then R € W; with ¢ = 0 or 1. Since W, is weakly Boolean, there exists a finite B C F such that
R € Vg and Vg NW,; C W;\V4. In addition, if R € W,_;, there exists a finite C C F such that B € Vi and
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VenW;.; C W1_,'\VA. Then Re VgnVe C W\VA. But if R é Wi.;, then R€ Vp ﬂ(W\Wl_,’) - W\VA
and Vg N (W\Wi_;) is open.

It is not hard to verify that Wy and Wy\v satisfy the conditions of the lemma, so that Wy = Wy UWx\v
is a weakly Boolean family of valuation rings of the field Fy, and there exists a homeomorphism ¢: Wy — X
such that 7¢(R) = RN F holds for every R € W;. Moreover, R is the superstructure of R N F since
R=Roo(RNF)or R=Ryo(RNF), and Tg,, I'g, are divisible groups.

LEMMA 4. Let (F;,W;), 7 € I, be the family of fields with weakly Boolean families of valuation rings
for which {F;|i € I} is directed by inclusion, and for all ¢, j € I, if F; < Fj, then the map of W; onto W; is
defined by the rule R — RN F;, R € W;. Therefore, the field F, = |J F; contains a weakly Boolean family
of valuation rings W, such that RN F; € W; holds for every R € Y;IE*I, 1 € I, and for every R’ € W, there
exists an R € W, for which R = RN F,.

Put W, = {R|R is the valuation ring of F,, and RN F; € W; for all i € I'}. The conditions of the lemma
imply that {W;|x; ;: W; — W;, F; < F; (r;;(R) = RN F;, R € W;)} is an inverse spectrum of Boolean
spaces with continuous maps onto. If X = lim W;, then X is nonempty and, moreover, the projections
mi: X — W; are onto. For each ¢ € X, let R, ; U{m;(€){¢ € I}. It is easy to see that R, € W.. Conversely,
if R € W,, then the family R; = RN F;, i € I, satisfies the condition that m;;(R;) = R; N F; = R, for all
i, j € I such that F; < F;. The family R;, i € I, uniquely defines the point £ € X for which R; = m;(¢),
1€ 1.

Thus, there does exist a one-to-one correspondence between X and W,, which, as is easy to check,is a
homeomorphism of these spaces.

For W, in the conclusion of the lemma, we write im W;.

We are now in a position to prove the proposition‘._ For 7: X — W, we will find an inverse spectrum
{Yala < |B(X)|} of Boolean spaces such that Yo — Y, is two-sheeted with all « < |B(X)|, and
Yo = hﬁl Yp with all limit « < |B(X)|. Define the sequence (Fo, W,), o < |B(X)]|, of fields with weakly

B<a
Boolean families W, so that Fy = F and Wy = W. If (F,, W,) is already defined, let F, ., = Fa(tzwl,
n > 1). Assume that Wy, is obtained from Wy, and ma41(Va) [a closed-open subset of Yo 41 = waq1(X)],
as was done in the case where 7: X — W is two-sheeted, considered above. If o < |B(X)| is limit and
(Fg,Wps) are defined for all B < «, we put F; = ﬁ[(J Fg and W, = ]g—n W, in which case F, = F|p(xy
a
and W. = W|p(x) are, respectively, the required extension of F andﬁ:}re required weakly Boolean family
of valuation rings of F,.
Indeed, for every a < |B(X)| there exists a natural homeomorphism e, : Wy — Y, which induces the
homeomorphism
e: Wy = Wipx) — im Wy~ lm Y,=xX,
a<|B(X)| a<|B(X)|
from which we can readily verify that 7e(R.) = R,NF holds for every R. € W,, and R, is the superstructure
of R.NF.

To conclude this section, we point out yet another result related to the above considerations.

LEMMA 5. f F < Fy is a field extension, Wy is a weakly Boolean family of valuation rings of Fy, and
W = {RyN F|Ry € Wy} is Hausdorfl, then W is also weakly Boolean.

Since W is an image of the compact space under the continuous mapping, W is compact, in which case we
need only establish that VI C W, where A is a finite subset of F closed in W. Further, Vf ° = {Ry|Ro € W,
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A C Ro} is closed-open in Wy, and V¥ = w(Vf °), where 7(Rg) = Ro N F, Ry € Wo; consequenily, Vi,
being an image of the closed subset, is also closed.

Remark. If, in the conditions of the lemma, Wy is Boolean, we cannot generally state that W is also.
This is illustrated by the following example. Let W be a weakly Boolean family of valuation rings of the field
F and let Fy = F(t) be the field of rational functions in ¢ over F. Suppose Wy = {R;|R € W}, where the
valuation ring R; of Fy is uniquely determined from R, using the conditions that R < R;, t € R,\m(R,)}, and
t+m(R;) is transcendental over Fr = R/m(R) < R;/m(R;). Then W, is weakly Boolean and homeomorphic
to W under the map R; +~ R,NF(= R), R € W. But if the polynomial z* —# is taken as f,{z), the reasons
for W to be Boolean are provided by the corollary to Proposition 2 in [7].

4. Using Theorem 2, we show that Theorem 1 admits reversion in some cases.
A valuation ring R is called distinguished if at least one of the following conditions is met:
(0) the field Fjp is not separably closed;
(n) the formula
b, =VedgVz(e >0 0<y<zA(n+1)z£y), n>0,

is satisfied in T'g.

COROLLARY 1. If R is a distinguished valuation ring of F, and R < R’ < F, then R’ also has this
property, and so does R provided R < R' and R= R o R.

COROLLARY 2. If R is distinguished, then Hp(F) is not separably closed.
LEMMA 6. If Ry and R; are distinguished valuation rings of a field # and if Ry is Henselian, then

Ry and R, are comparable with respect to inclusion.

Assume on the contrary that Ryo £ R; and Ry £ Ro; then R = RoRy > Ro,R;. f R = F, then R and
R; are independent, and since Rp is Henselian, Hg, (F) should be separably closed (see, e.g., the corollary
to Prop. 4 in [6, Sec. 3]), which it is not because R, is distinguished. If R # F, then Ry = Ro Ry and
Ry = Ro R, for suitable nontrivial valuation rings Ry and R; of the field Fr. But then Ry and R; are
distinguished and independent rings, and R is Henselian, an impossibility.

We call a Boolean family W of valuation rings of a field F' distinguished if, for every elementary extension
(F1,R1) = (F,Rw) and for every R € Wg, (= {(R1)m |m is a maximal ideal in R;}), the conditions
R' = R*F and R* = R’ o R for a suitable valuation ring R of Fps imply that RnFn Fpr is a distinguished
ring.

COROLLARY. If W is distinguished, R€¢ Wg,, R< R' < F1, F < R',and R = R'oR, then Hy{Fps)
is not separably closed.

Remark. If W is finite, then it is distinguished iff every R in W is.

Nonrigid sufficient conditions for a family W to be distinguished are given below.

THEOREM 3. If (F,W) is an RC-field and W is distinguished, then {F, W) is an RC*-field.

By Theorem 2, there exists an RC*-field (Fo, Wp) such that Fy is a regular extension of F, the map
Rog — RoN F, Ry € Wy, is the homeomorphism of W and W, and R, is the supersiructure of Bg N F
for all Rg € Wp. Then Hg,nr(F) <1 Hg,(Fo) for all Ry € Wy, and the fact that (F, W) is an RC-field
implies that F <{ Fy. Therefore, there exists an ultrapower Fy == F/D of F for which one can find an
F-embedding ¢ : Fo — Fj. In what follows we identify Fy with ©(Fp), i.e., assume that Fy < Fy. Let
Ry = RL,/D; then (F, Rw) < (Fi1, R;). We argue that Ry, = Ry N Fy, for which it suffices to show that
for every R € Wg,, the ring Ry = RN F, is in Wy,
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We show that Hp, (Fy) is not separably closed. We have Hp,(Fo) < Hr(F,). Let F§ be an algebraic
closure of Fyy in Hr(Fy) [Hg,(Fo) < Fj] and let R’ = RMF and R = R' N F}. We have R" = R’ o R and
Ry = R} o Ry for suitable valuation rings R and R of the fields Fg: and F Ry respectively. Suppose that
F' is an algebraic closure of the field F (< R') in Fgs. By the definition of being distinguished for W, the
ring RN F' is also distinguished, and so F’ is not separably closed. Further, F < Fp; < F' and F'N Fpy
is algebraically closed in Fpy, but it is not separably closed, and hence also Fg; is not. If R} = R:F and
RE = R{jo Ry, then F < Fgy < Fp: and Fgy is not separably closed, hence also Hp, (Fo) = q(RY) = q(RY)
is not.

In view of the corollary to Proposition 4 in [5], there exists an R} € Wy such that R’ = RoRf # Fo.
If F < R, then R > Rq, R, since RoN F, RyNF € W; consequently, Ry > F and Ry > F. Let
Ro = R'o Ry and R}, = R' o R); then R and R} are nontrivial independent valuation rings of Fg:. But
Rl is Henselian, and hence Hj (Fr:) should be separably closed, which contradicts the definition of being
distinguished for W. If F £ R', let R = R'F. We have R = R)F = RoF (since R, < R, R, < RyF,
and RyF £ R, it follows that R’ < R{F; R’ < RoF is obtained similarly). The fact that Rj is the
superstructure of Ry N F € W implies that there exists a decomposition R, = R" o Rjj such that F < R”
and RyNF < Ry < (Ryn F)*. Since F < R", we have R = RLF < R", but Fg« = g(Ry) is an algebraic
extension of F; consequently, R” = R and Fr = Fg« is an algebraic extension of F also. The family
W and, hence, the ring Ry N Fn Fr = Ry N Fr = Ry are distingunished by definition, and Ry is defined
via the relation Ry = Ro Ry. If R) = Ro Rl), then R} is distinguished because R} is. Thus, Ry and
R}, are distinguished valuation rings of F; moreover, R}, is Henselian [since R > R{ and Fy is dense in
Hp; (Fo)l. Then we have Ry < R or Rf, < Ry by Lemma 6, from which it follows that RN F < Bj N F
or RAAF < RyNF. But ReNF =RyNFeWand ByNF=Ry,NF €W, andso RonF = RyN F,
Ro = R), but Ry = R),.

We have thus established that Ry, = Ry N Fy, from which it is easy to infer the following:

If R € Wg, = {(R1)m|mis a maximal ideal in R}, R = R'NF, and Ry is that unique valuation ring
in Wy for which Ry N F = R, then R' N Fp = Ry,.

Now we show that (F, Ry) € RC*. Let R' # R" € W and let R} = R'//D and R} = R"'/D € Wh,.
Then (F,R',R") < (Fl, 1, RY). Since R{) = R\ NFy, # R = R{ N Fy, and Wy is independent, it
follows that Fo = RyRj, F < RyR) < R\ R/, and the fact that (F, R', R") < (Fy, R}, RY) is an elementary
embedding implies that F < R'R", ie, F = R'R". Hence, the rings R’ and R” are independent, and so
(F,W) satisfies BAP.

Let f € Rw [z, 7] be an absolutely irreducible polynomial unitary in z. Suppose that a, b, 0#¢ € Ry
are such that

fa(a,B) #0, f(a,b)fz(a,0)7% € J(Rw).

Since J(Rw) = J(Rw,) N F (which is easily checked) and (Fy, W) € RC”, there exist ¢,d € Rw,
satisfying f(c,d) = 0, (b; —d;)e™! € J(Rw,), ¢ < n, and (a—c)" ! f(a, ) fL(a,3)7, (a—c)f(a,b) " fi(a,b) €
Rw,.

It is easy to verify that J(R;) N Fy = J(Rw,), from which we can see that ¢, d € Ry, (b; — d;)e™! €
J(Ry1), i< n,and (a—c)"'f(a,b)fi(a,b)72, (a— c)f(a,b) " fi(a,b) € Ry.

Since (F, Rw) < (Fy, Ry), there exist ¢/, ' € Ry such that f(c,d') =0, fi(c',d') # 0, (b; —di)e"t €
J(Rw), i < n, and (a — ')~ 1f(a,b)f.(a,0)7 2, (a — ') f(a,b) "1 fL(a,b) € Rw.

Consequently, (F, W) satisfies THR, proving that (F, W) is an RC*-field.

Remark. In Proposition 2 [1], a stronger statement is formulated, which, however, is still not proved.
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What we can prove is a part of the statement concerning BAP.

Proposition 7. Let W be a Boolean family of valuation rings of a field ¥, suppose that {F, W) € RC,
and assume that the rings in W are all distinguished. Then W is independent.

Assume the contrary. Let Ry # Ry € W, R = RoR; # F, and Fy = Hg(F); Rj and R} are
the valuation rings of Fy such that Rg < R) < RE, R; < R} < R}, and RyR| = R"*. Using Zom’s
lemma, we can find a maximal algebraic extension Fy of Fy such that in Fy, there exist valuation rings
R} and Rj satisfying the conditions R, < R < R} and R} < R} < R}. Note that R)R; dominates R"
(RyR; N Fo = R"), and hence R R} # Fy, ie., Ry and R} are dependent.

We argue that F is regularly closed with respect to the family {Rj, Rj}. Let W, be the family of all
valuation rings R* of the field Fy such that R* N F € W. By Proposition 4 in [5], F; is then regulaily
closed with respect to Wi, and R, R} € W1. We can show that for every R* € Wy, there exists either an
F-embedding Hp; (F1) in Hp.(F1) or an F-embedding Hp: (F1) in Hg(Fy). Hence F; will be regularly
closed with respect to {Rj, R}}. Let R* € Wy. If R* is independent of R} and R}, then by the corollary to
Proposition 4 in [5], Hgr+(F1) is separably closed, i.e., it is a separable closure of Fy, and hence H rr(F1),
Hp:(F1) < Hg+(F1). Let R* be such that R’ = RGR" # Fi. Since Rj, R* € Wi, we have R £ R*
and R* £ Ry; hence, there exist representations R = R o Ry and R* = R’ o R for suitable nentrivial
independent valuation rings Ro and R of the field Fg:. In view of the maximality of Fy, it is not hard to
show that Ry is Henselian, from which it will follow that Hz(Fr:) is separably closed, and so we can assume
that Hgs(F1) < Hg+(F1). Similarly we argue for the case where R{R* # F; [and so Hp:(F1) < Hg-{F1)].

We have thus proved that (Fi,{Rj, R;}) € RC. But (R§)* = RE, (B})" = R%, and so the rings R},
R and the family {R}j, R;} are distinguished. By Theorem 3, (F, {R}, R%}) is an RC*-field and R}, and.
R} should be distinguished, which they are not by construction. This is a contradiction, which proves the
proposition.

A Boolean family W is called a family of the first kind if there exists a unitary polynomial f € Ry [z]
such that for every R € W, its reduction f € Fr[z] is a separable polynomial without roots in Fg.

A Boolean family W is called a family of the second kind if there exists an n > 0 such that for every
R € W we have T'g |= @, and for every a € m(R), there exist a b € m(R)\{0} and a neighborhood W/ C W
of the ring R such that for every R’ € W’ we have b € m(R'), vr/(b) < vri(a), and vg/(b) is not divisible
by (n + 1) in ['pr.

Proposition 8. If, for every R in the Boolean family W, there exists a closed-open neighborhood of
the first (second) kind, then W is distinguished.

It suffices to prove the proposition for the case where W is itself a family of the first (second) kind.

Suppose that W is a family of the first kind and f € Ry [z] is a unitary polynomial such that for every
R € W, its reduction f € Fg[z] is a separable polynomial without roots in Fr. This condition is equivalent
to stating that the following elementary sentence is valid on Rw:

Va3b(f(a)-b=1).

Hence, if (F, Ry} < (F1, Ry), then
Ry k= Va3b(f(a) - b = 1),

and so for every R € Wg,, the reduction f € Fg[z] has no roots in Fg. If R = R"F and R* = R'c R, then

FR = FR 2 FRNEF\FRI
F-

RAFnFg, is not separably closed and RN Fn Fps is a distinguished ring.

> Fpar. The polynomial f is in Frnp[z] and has no toots in Fg. Consequently,
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Let W be a family of the second kind and let » > 0 be the number satisfying the definition., Suppose
that (F, Rw) X (F,R{), RE W, R' = R*F, and R* = R’ ¢ R for a suitable valuation ring R of the field
Fgi. Let Fy be an algebraic closure of F' in Fr/ and let Ry = RN Fy. We need to verify that I'r, = @.,.
Since (F, RN F) < (Fo, Ro) and Fy is the algebraic closure of F, it follows that for every ap € m(Rg), there
exists an @ € m(RN F) such that (0 <)vg,(a) < vg,(ac). Since RN F € W, there exist a neighborhood (of
the form V2., o € Ry) of the ring RN F and an element b € m(RN F)\{0} such that for every R’ € V,,-:
we have b € m(R'), vg/{b) < vgr(a), and vr:(b) is not divisible by (n + 1) in Tr.

Let R, = N{R'|R' € W, a~! € R'}; then the conditions formulated for a and b above can be represented
as follows:

be J(R)\{0}, ab™ ! € Ry,

and
Ve € Ro(be™ "1 € Ry — b= ™tV € J(R,)).

These are the elementary conditions imposed on «, a, and b; consequently, they also hold in {F1, Ry}. In
particular, every R' € V7, satisfies the following: b € m(R'), ab™! € R’ [i.e., vr/(b) < vg(a)], and vg:(b)
is not divisible by (n+ 1) in I'p/. We have R € Vf; because RNF € Vf.l, and so 0 < vr(b) < vgr(a) and
vp(b) is not divisible by (n + 1) in T'g = I'za. Further, T'z is isomorphic to a convex subgroup I'; of T'ga.
Consequently, T'; is a pure subgroup in I'p. and vg(b) € T is not divisible by (n 4+ 1) in I';, and so in
T's. Therefore, vg(b) € Tr, < I'p is not divisible by (n + 1) in I'g,. Moreover, vr(b) = vg,{(b) < vr,(a) <
vR,(ao), and since ag is an arbitrary element in m({Ro)\{0} (see above), it follows that I'p, = &, and R,
is a distinguished ring.

COROLLARY. If, for 2 Boolean family W # @ of valuation 1ings of the field F, there exist 7 € F
and n > 0 such that R € W is a (m,n)-valuation ring, i.e., W C Wy, (see [1]), then W is distinguished.

Under the conditions of the corollary, W is a family of the second kind.
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