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Abstract. We discuss the parametrization of real finite-gap solutions of an integrable equation by 
frequency and wavenumber vectors. This parametrization underlies perturbation and averaging theories 
for the finite-gap solutions. Out of the framework of integrable equations, the parametrization gives a 
convenient coordinate system on the corresponding manifold of Riemann curves. 

Mathematics Subject Classifications (1991). 35Q53, 35A30. 

The parametrization of finite-gap solutions of an integrable equation by the 
frequency and wavenumber vectors (and, possibly, by some extra scalar parameters), 
underlies, sometimes implicitly, perturbation theories for finite-gap solutions, in 
particular, the Whitham averaging theory [1-51, Bogoliubov-Krylov-like averaging 
[6, 7], and KAM-like theory E6, 8, 9] (see also in these references and in [10-1, the 
nonreasonance conditions which are important for the last two theories). 

Here we discuss the parametrization for the Korteweg-de Vries equation 

u~(t, x) = 6uux + uxxx. (KdV) 

A real n-gap solution of the equation depends on a hyperelliptic Riemannian surface 
F (the spectral curve of the solution) with 2n + 2 real branching points 

E1 < E2 < ""  < E 2 n + l  < Ezn+2 = 09 

which is given by the Its-Matveev formula 

2 ~  log ®(i(Vx + Wt + D)) + c. (1) 

Here ® is the theta function with the period matrix (27ril, B) (B is the Riemann 
matrix of F), c is a real number, and V, W, D e ~". The vector (V, W, c) ~ R 2" + 1 is 
defined by the curve F and the n-vector D (the phase-vector of the solution) is a free 
parameter, actually varying in the n-torus [~"/2rcZ n by the periodicity of the theta 
function. 

For the KdV equation, the parametrization under discussion is justified by the 
following statement. 
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THEOREM. The analytic map 

E = (El < E2 < ... < Ezn+l) ~ ( V , W , c ) s  ~2n+1 (2) 

is nondegenerate everywhere. 

This result was stated by I. Krichever in [7, pp. 26, 27], with a scheme of a proof 
given. Unfortunately, we were unable to restore the proof strictly within the 
framework of [7]. In this Letter, we present our restoration of the proof, which 
makes use of some new ideas in addition to ones of [7]. 

We note that a weaker form of the theorem's statement - the map (2) is 
nondegenerate almost everywhere - was known before [11]. This statement can be 
checked by direct calculations at the limiting point 

E = (El = 0 < E2 = E3 < " '"  < E 2 n  : E2n+l), 

corresponding to the zero solution. It should also be noted that the natural question 
about whether or not the map (2) defines a global diffeomorphism is still open. The 
supposed answer is affirmative. 

We finish the introduction with the remark that out of the framework of finite- 
gap solutions, the subject of this Letter may be treated as the parametrization of 
hyperelliptic curves by the b-periods of two normalized Abel differentials (and, 
possibly, by some additional constants expressed in terms of the Laurent coefficients 
of the corresponding Abel integrals in the singular points of the differentials). The 
theorem stated above gives the parametrization for the curves with an odd number 
of real branching points and the branching point at infinity. 

1. Preliminaries 

The Riemannian surface F is a hyperelliptic curve defined by the equation 

2n+1 

z 2=R()L)= [I  (2--Ei) ,  (2, z ) = P E F .  
i = l  

We denote by a the hyperelliptic involution () . ,z)~ (2 , - z )  and denote by (ai, bi), 
i =  1, . . . ,  n the canonical basis of cycles (the cycle a~ lies in F above the segment 
[Ezi, Eei+ 1] of 2-plane). 

The vectors of 'frequencies' W and of 'wavenumbers' V are the b-periods of the 
standard Abel differentials df~l, dO2: 

V~= ; df~l, W j =  f aft2. (1.1) 
bj bj 
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The Abel differentials have the form 

n - 1  

(1.2) 

where 

I = E1 + . . .  + E2.+1 

and the real constants ai,fli are defined from the normalization conditions 

f d f l i = 0 ,  j =  1 , . . . , n ,  = i 1, 2. (1.3) 
J 

At infinity, the differentials have the asymptotics 

d~ l  = - ( u  -2 + Kc + O(]u]2)) du, df~2= - 3 ( u  -4 + O(1)) du, (1.4) 

where u = 2-1/2, c is the same as in (1), (2) (i.e., the x-mean value of solution (1)) and 

K is a F-independent constant. For the first relation in (1.4), known as the trace formula 
for the KdV equation, see [7] and references therein. 

Our proof makes use of the following properties of the zeroes of the differentials 

d~x, df~z. 

P R O P O S I T I O N  1. (1) All zeroes of the differential dg~a lie outside the branching 
points of F; (2) at least 2n zeroes of dye2 lie outside the branching points; (3) the zeroes 
of the differential d ~  lie outside the zeroes of dye2. 

We repeat below a simple proof of these statements given in [5, 12]. 

Proof By (1.2), (1.3) each interval Ai = ]E2i, E2i+ 1[, i = 1, . . . ,  n contains a zero 2~ 
of dye1(2). Let z 2 = R(2i). Then (21, +zl)~ al are zeroes of dg~1(P). So all 2n zeroes of 
df~x are localized and lie outside the branching points. 

By the same reasons, each interval A~ contains a zero of dye2(2), thus proving the 
second assertion. 

To prove the last one, suppose that some zero Pi of d~l  (P) coincides with one of 
d£~2 (P). Then there exists a real constant 4, such that the differential 

d•(P) = (~dfla + d•2)(P) 

has double zeroes at 

P= (Ai ,  zi) and P = ( 2 i - z i ) ,  2iEAi. 
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Again, due to (1.2), (1.3), d~(2) has zeroes in each interval Aj,j = 1 . . . .  , n. So all 

2n + 2 zeroes of d~(P) in F are localized, and d~(2) has no other zeroes (except 2i) 
in Ai. But in such a case 

A, dfi(2) O, 

which contradicts to the normalization 

f d f i = O .  [] 
i 

2. Proof of the Theorem 

If the map M is degenerate at a point E = (El . . . .  , E2n+ 1), then we can construct an 
analytic deformation F(r) of the initial curve F (i.e. F(0) = F), such that for the 
vectors V(z), W(z), c(z), we have 

V(z) = V + O(~2), W(~) = W + O(~2), 

(2.1) 
c(~) = c + O(~2), 

and the vector of the branching points E(r) has a nonzero z-derivative at r = 0. 
Below, we prove that such a deformation F(z) cannot exist: the relations (2.1) imply 

that (3/Or)E(0) = 0. 
We define Abel integrals flj(P, z), j = 1, 2 as follows. Let 7P be any path in F(z) 

from o-P to P. We set 

~j(P, z) = ½ fy df~j(P, z), j 1, 2. 

Each integral f~j is multivalued, is defined up to half-periods of the differential dflj, and 

f~j(Er(z),z)~ 0 Vj = 1,2, Vr = 1, . . . ,  2n + 1. (2.2) 

Let E ,  be any finite branching point of F(z) and 70 be a path from E ,  to P. We can 
take 7e = - aTo w Yo. As the differentials df~j are odd with respect to the involution 

a, we have 

~j(P,'c)- (leo f~,o) da~ fTo d~j" (2.3) 

In particular, the differential of Oj is really equal to d~j. 
Suppose that a point P = (2, z) e F lies outside the branching points. Then we can 

identify P with its projection 2. For  z small enough, the point 2 also lies outside the 
set  {EI(T),  . . . ,  E2n+l(-c)}. So we can define the functions 

~,f~j(2, r)l~=o, j = 1, 2. 
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L E M M A  1. The functions 

r ~  P = (2, z) ~ O~f~j(P).'= cg~)(Z, ~)1,=o, J = 1, 2, 

may be extended to meromorphic functions on the curve 
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(2.4) 

F. These functions are 

reoular out of  the finite branchin9 points E l ,  . . . ,  E2,+i ,  where they have first-order 

poles with 

R e s e = e , c ~ j ( P )  = X~_l(m)8~E,,(O), j = 1,2, m = 1, . . . ,  2n + 1, 

and xi_ l (m), m = 1 . . . .  , 2n  + 1, are nonzero constants. The functions (2.4) are regular 

at infinity and vanish there. Moreover, for j = 1, the function (2.4) is O(lul 3) as 
u = 2-~/2 tends to zero. 

Proof  Due to (1.3) and (2.1), the a- and b-periods of the differentials dflj(P, ~), 
j = 1, 2, are constant  up to O(z2). So different branches of the Abel integral flj(P, ~) 
differ by const + O(z2), hence the functions (2.4) are well-defined and analytic out of 
the branching points. 

Near  a finite branching point Era, we have 

df~j(Z, r) = L (2 - E,,)k/2xJ(Em, ~) dZ, j = 1, 2. (2.5) 
k =  - 1  

Note that, due to the first statement of Proposit ion 1, the coefficients xl_l(Em, 0), 
m = 1 . . . .  , 2n + 1, are nonzero. From (2.3), (2.5), we obtain that  in the vicinity of 
P = Em 

The right-hand side of the last formula defines a meromorphic  function in a 
neighborhood of E,, with a first-order pole at 2 = Era. 

For  P = (2, z) with 2 large enough, for a contour 7e we can take the lift to F(z) of 
the circle in Ca of the radius 12 [, cut at the point 2. At near infinity, 

d f ~ 2 = - 3 u - 4 d u + d f l  °, u = 2  - i /z ,  

where the differential df]°(u, z) is regular for u, r small enough (see (1.2), (1.4)), then 

f d o  C~;(P,r) = u -3 + ½ fa2(u, "c). 
P 

Hence, the function 

~ n 2 ( P )  = 1 (  0~dnO(u, 0) 
dr P 

is analytic in F near infinity and vanish at infinity. 
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For j = 1, we have by (1.4) 

f~l(P, r) = u -1 + Kcu + O(]ul3), 

so 0~f~l = O(lul 3) by (2.1) and the lemma is proven. [] 

As the numbers xLl(m) are nonzero, we have a consequence of the lemma: 

COROLLARY 1. To prove the theorem, it is enough to check that 

~z~'~l (P) ~ 0. (2.7) 

To prove (2.7), we construct, following 1-7], a function ~a~ 2 equal to the '>derivative 
of ~'~2 and ~1 fixed'. To do it, fix a point P c  F such that 

df~l (P, 0) ~ 0, (2.8) 

and consider the following equation for a point P(z)E F(r): 

~1 (P(r), T) = ~'~1 (P, 0). (2.9) 

Due to (2.8) and the implicit function theorem, Equation (2.9) may be uniquely 
solved for small ~. 

We define the function f)2: 

•2(P) .'= d ~'~2 (P(r), r)It = o- (2.10) 

Due to the theorem's assumptions, replacement of the branch of the integral f~l, used 
in (2.9), will change the curve P(z) by O(~2), and replacement of the branch of ~'~2 in 
(2.10) will change f*2(P(z),z) by const + O(r 2) and will not change the right-hand 
side in (2.10). So the function ~'~2 is single-valued. 

LEMMA 2. The function ~22 can be extended to a meromorphic function on F. 
Proof If P = (2, z) lies outside the branching points of F, then for P(z)= 

()~(r), z(z)), we have 

~3, 2(0) = - at f~, (2, 0)/0 z f2~ (2, 0) (2.11) 

(we write here df~, as Ozf~l d2). Hence, we find from (2.10) that 

df~2 (P, 0) (2.12) 
fi2(P) = 3~nz(P) -- ~vn 1 (P) d~.21(p, 0)' 

Thus, by Lemma 1, ~2(P) may be extended to a meromorphic function. [] 

By assertion 1 of Proposition 1, (2.8) holds at the points Ej,j = 1, .. . ,  2n + 1. By 
(2.2), the solution P(v) of (2.9) with P = Ej is P(z) = Ej(z) and ~ ' ~ 2 ( E j ( ' C ) ,  "c) = 0. So we 
have 

f~z(Ej, 0) = 0 Vj = 1 . . . . .  2n + 1, (2.13) 

and the function ~'~2 has the 2n + 1 zeroes in the finite branching points of F. 
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By (2.12), (2.13), the only possible finite poles of ~'~2 lie in 2n zeroes of d~l .  To 
study ~2 near infinity, let us observe that 

~ 2  = o([~1),  ~ 1  = O(lu]3) ,  

by Lemma 1 and 

df]2/d['l 1 : O(lu1-2) 

by (1.4). So fi2(oo) = 0. Altogether, the function fi2 has at least 2n + 2 zeroes and no 
more than 2n poles. Hence, fi2 = 0 and 

0~f~2 d~ l  = 0~f~l df~z. (2.14) 

All the poles of ~?~fll lie in the finite branching points. So by statement (2) of 
Proposition 1, the right-hand side of (2.14) has at least 2n zeroes outside the 
branching points. The differential df]2()~) has one more zero 2,+1 e C. To complete 
the proof, we should distinguish two cases: 

(a) 2,+i lies outside the branching points. Then the right-hand side in (2.14) 
has 2n +'2 zeroes in F\{E1, . . . ,  E2n+l}. The zeroes of d['l 1 lie outside them 
by statement (3) of the proposition. Thus, the function 0,f~2 vanishes at these 
points. So 0~f~2 has 2n + 2 finite zeroes, the zero at infinity and no more than 
2n + 1 poles. Hence, it vanishes identically, 8~f~1 = 0 by (2.14) and the theorem is 
proven. 

(b)),, + 1 = E j, for some 1 ~< j ,  ~< 2n + 1. Then the right-hand side is regular in Ej,. 
As d~ l  (Ej,) ¢ 0, then the function 0 ~ 2  also is regular in E;,. So it has no more than 
2n poles. This function vanishes at the first 2n zeroes of dff2~ and at infinity. Thus, 
~'~2 ~ 0~ ~'~1 ~ 0 by (2.14) and the proof is completed. 

3. Final Remarks 

The scheme to prove the parametrization theorem presented above is rather general*. 
We do not go into details but just mention that if, for a given integrable equation 
and its finite-gap solution, we take the statements of Proposition 1 for granted, we 
can proceed just as above to construct the functions 8 ~ 1 ,  0~ff22, and ~'~2 which are 
meromorphic on the spectral curve of the solution. If the vector of additional 
parameters c(v) is chosen in such a way that the function ~'~2 vanishes at the infinite 
points of the spectral curve provided that (2.1) holds, then the vector (V, W, c) gives 
the parametrization we are looking for. (Observe that in the given proof, the function 
~'~2 vanishes at infinity due to the last statement of Lemma 1 and, finally, due to the 
'clever' choice of the parameter c.) 

The statements of Proposition 1 hold if the spectral curve has only real branching 
points (with the same proof), or if the branching points are complex but the spectral 

*For example, in [13] some parametrization theorems for the nonlinear Schr6dinger equation were obtained. 
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bands (equal to possible cuts of the curve) are small enough. In the latter case, the 
statements we need essentially results from the localization of zeroes of the Abel 
differentials, available via perturbation techniques. 
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