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1. Introduction 

One says that a partial-differential equation defined in a connected domain has the 

unique continuation property (u.c.p.) if a solution of that equation that vanishes in a 
nonempty open set vanishes everywhere. 

The u.c.p, was studied in connection with the uniqueness of the Cauchy problem 
to which it is equivalent in some sense. Nowadays, one of the main interests in 
studying the u.c.p, consists in proving that Schr6dinger or Dirac operators do not 
have eigenvalues embedded in the continuous spectrum. The reader may consult 

[3, 6]. 
One says that a partial-differential equation has the stron9 unique continuation 

property (s.u.c.p.) in L p if a solution u of that equation which vanishes of infinite order 
in L p at a point Xo, i.e., 

[ luVdx = 0, VneN lira r -n  
r--*O . )  x - -  xOI <r 

vanishes also in a neighborhood of xo. 
Much effort has been made to prove the (s.)u.c.p. for the Laplacian plus lower- 

order terms with singular coefficients. If the equation 

Au + W" Vu + Vu = O 

has the s.u.c.p, for any We L~o~c and any V~ Lfo°c, then Pl ~> d and Po >~ d/2, where d 
is the dimension of the space. For  W = 0 the s.u.c.p, with optimal P0 (i.e., Po = d/2, 
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d ~> 3) was proved by Jerison and Kenig [9] and the u.c.p, with P0 = d/2 and pl = d, 
was proved by T. H. Wolff [11]. Recently, T. H. Wolff [12] constructed in any 
dimension d > 4 a C ~ function u ¢ 0, flat at origin, and a function We L e, such that 
]Aul ~< tWVu[, i.e., s.u.c.p, fails for Pl = d > 4. 

The method generally used in obtaining the unique continuation results is based 
on the so-called Carleman estimates, which take their name from T. Carleman who 
used them for the first time in proving uniqueness for a Cauchy problem [4]. 

Let P be a differential operator (in what follows, P will be the Dirac or Laplace 
operator) and let (P:f~l--*R be a smooth function, f~l open, f~l c f2. The in- 

equality 

II e~°f [I tq ~< C It e~q'Pf It z, ,  (1) 

where C remains bounded for a sequence of ~ --, oo and for all f s  C8°(~)  is called 
a Carleman estimate. Suppose V s L" with lip + 1/q = 1/r. Then, if a Carleman 
estimate holds for a sufficiently general class of functions (p, then the equation 
Pu + Vu = 0 (or the inequality Irul <~ I Vul) has the unique continuation property. 
The strong unique continuation property results in a similar way from some sharper 
Carleman estimates. 

The present Letter is in line with the results obtained by A. Boutet de Monvel and 
V. Georgescu [2], A. Boutet de Monvel [1] and Jerison [8], concerning the unique 
continuation property for the Dirac operator, i.e. the u.c.p, for (D + V)u = 0, where 
D is the Dirac operator. In [2], the u.c.p, is proved in dimension 3 for a potential V 
in L 5. In [1], the exponent is improved to 3.5 and it is shown that, for no smaller 
exponent, a Carleman inequality can hold. In [8], the same results are proved for 
arbitrary dimension d, i.e., the u.c.p, for a potential in I (3e-2)/2, and counterexamples 

are given showing that Carleman estimates cannot hold from L p to L q for 

lip - 1/q > 2/(3d - 2). 
Our results are the first stating strong u.c.p, and are based on an improvement of 

Carleman's method due to T. H. Wolff [10]. We are able to lower the exponent to 
max(d,(3d - 4)/2), which gives optimal results in dimensions 3 and 4. 

The problems of unique continuation for the inequalities IAul <~[WVul and 

[Dul <~]Vul are closely related to each other. The main point is that we are able to 
pass from the former to the latter, using a property of the fundamental solution. This 
property is expressed in (2) and (3) and amounts to the commutativity of taking 
derivatives and Taylor expansions. 

2. Conventions and Notations 

Let us introduce some notations. {ei}/ml will be the canonical basis in Em (or C"). 
A general convention will be to deal with vector-valued distributions ~ ' (~ ,  C m) with 
f~ open in R e, without explicitly mentioning the dimension m. 9 '  and #' are the 
Schwartz spaces of distributions and of distributions with compact support, respect- 
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ively. There is an abuse of notat ions which is often used, and which consists in using the 

same notat ions  for distributions as for functions, e.g. in writing (u, ~0) = ~u(x)~o(x) dx. 

For  a kernel, K(x,  y) ~ @'(fl~ x f~y) and  for the opera to r  which it defines, the nota t ion  

will be the same: K u ( x ) =  ~K(x, y)u(y)dy.  We will compose  opera tors  wi thout  

explicitly ment ioning  that  we are mult iplying matrices. For  example,  W V u  will have 

the meaning  of a mult ipl icat ion of a 1 x d matr ix  with a d x 1 matrix.  
Let P ( -  i0) be an elliptic cons tant  coefficient differential opera to r  (which, with the 

above  convention,  m a y  also mean  an elliptic system), 3 = (~/~xl . . . .  , O/~xd). Then  let 
E(x, y) = E(x - y) be a fundamenta l  solution of P. We define 

(x - xo) I~1 
E . . . .  (x, y) = e(x ,  y) - ~ ~ E ( X o ,  y) ~! 

I~l<n 

The Dirac  opera to r  in R e is D = c~. V = E~= 1 ~ ~k, where :~k are m x m skew- 

Hermi t i an  matr ices  satisfying the relations c~k~l + ~t~k = - 2 ~ k t .  We can choose 
m = 2 ~/2 for d even and m = 2 (e+~)/2 for d odd. 

T h r o u g h o u t  the Letter,  C and C '  will denote  generic positive constants,  which will 

bear  indexes showing on which da ta  of the p rob lem they depend. 

3. Results 

T H E O R E M .  Let d >1 3, and let r, p, p' be positive numbers satisfyin 9 l ip'  + l ip  = 1 

and l i p -  l i p ' =  1/r. I f  the (matrix-valued) potential V is in U, then the differential 
inequality in ~ :  

[Dul ~ I Vul with u e Wl,~, 

has 

(a) the stron 9 unique continuation property in L p' for r = max(d, (3d - 4)/2), 

(b) the unique continuation property for r = d, for u ~ W 1,~ with 1/r + 1/2 = 1/q. 

It  is a simple fact that  if unique cont inuat ion  holds for IDu] ~ I Vul, then the same 

will hold for [Aul ~< I WVul  for W in the same regulari ty class as V. 
In order  to prove  this, let u be a solution of IAul < IWVul which vanishes on a 

n o n e m p t y  open set. Let ~ = uyo, where Yo ~ N'~ is a vector  of n o r m  one. The vectors 
{c~iyo}~= i are linearly independent ,  because d Z i= l  xiei is a uni tary  matr ix  for 

x~ = 1. We can therefore choose the d x m matr ix  A such that  A % y  o = ej. Then 
take V = WA and the equali ty VD~t = W V u  holds. We know that  D 2 = - A ,  hence 

ID2~I = IAu[ and D~ satisfies the inequali ty IDD~l <~[VD~[. As this inequali ty has 
u.c.p, by hypothesis,  and D~7 vanishes in a n o n e m p t y  open set, we have D~ = 0, which 
implies fi analytic and finally zi = 0, so that  u -- 0. The p roof  is complete.  

In part icular,  the counte rexample  f rom [12] (see In t roduct ion)  provides a counter-  
example  for the Di rac  opera tor ;  namely,  in dimensions greater  than 4, the s.u.c.p. 

does not  hold for I Du[ <~ [gu], for a certain V s  L d. 
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Going in the opposite direction is not so easy because we obtain the unique 

continuation property only for functions in the image of the operator D. But in the 

case of the proof  of T. H. Wolff [10] of the strong unique continuation property for 

the inequality IAu[ ~< J WVu[, the strong unique continuation for ]Dul <~ ]Vul can be 
inferred due to the fact that the estimates are obtained for the integral operator 
which gives Vu in terms of Au. 

Let us remark first that a property of the operation of dropping out the Taylor sum of 

order < n from the kernel E can be viewed as a function of x. The Leibnitz rule gives 

a~(Eo,n)(x, y) = (JE)0,n-,~(X, y), (2) 

Jy(Eo,n)(X, y) = ( -  1)Jal(JE)o,n(x, y). (3) 

In particular, this implies that Eo,n(x, y) is a two-sided inverse for our starting 

operator P: 

Eo,~Pcp = PEo,nq) = cp, for any cp • g'(Ra\{0}). (4) 

From now on, let us fix P = A. Then E(x, y) = calx - yl 2-a will be the fundamental 
solution of A. Using D 2 = _ A, (4), and then (2) and (3), we obtain 

f. 
(p(x) = - JEo, , (x,  y )D2p(y )dy  = J(DxEo,,(x, y))Dq~(y)dy 

= - f (DxEo, ,+ l(x, y))D~o(y) dy for any p e g'(Ra\{O}). (5) 

We will restate the results of [10], to make the exposition self-contained. The 

statements are slightly modified but the proofs are the same. Let r denote ]x]/lyt, 
0 •  [0,~] denote the angle between the vectors x and y and I ,  = 

IxL-"t Y["+a-2Eo,,(x, Y). Checking the symmetry properties of I , ,  we see that it is a 
function of r and 0. 

P R O P O S I T I O N  1 (Proposition 1.1 of [10]). 

(i) IJx(I,(x, y) -[xl-nlyl~+a-ZE(x, Y))I 

<, Ca,ana-2+lalxl-lal for Ix - Yl/I Y[ <~ 1/n. 

(ii) We can write I,(x, y) = Re(a(r, 0) e in°) with a satisfying 

I~?Zoa(r, 0)l ~< Ca,k,tna/2-a(I sin 0[ + 1/n) ~-a/2-t-k(lsin 0l + I1 - r[) -1 

in the region I x -  Yl/IYl >1 1/n. 

We want to express the kernel appearing in (5) in terms of In and its derivatives in 
order to use the above proposit ion for estimates for D: 

DxEo,n+l = Dx(In+l[Xln+llyl-n-d+X) 

= Ix[nlyl-n-a+l(lxlOxln+l + na'xI~--1). 

Putting J .  = -- [x[Dxln+ 1 -- no~" xln+ 1 we obtain the following proposition. 
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P R O P O S I T I O N  2 (Proposition 1.2 of [10]). The above Jn satisfies 

89 

and 

(i) 
(ii) 

ixl-no(x) = f Jo(x, y)! yl-n-a+ ~Dcp(y) 

if Ix - Yl < l lYl/n, then IJn(x, Y)I ~ Ca[Yl a-~lx  - yl-a+~, 
if  Ix - y] > ]y[/n, then we can write In(X , y )  = Re(q(r, O)e i~°) with q satisfying 

[~?gq(r,O)l <<. ~d,k" tlsinOI + l/n)~-a/2-k(lsinOI + 11 r]) -1. 

Proposition 2, which is derived from Proposition 1, is intended to retain the 
properties of the kernel J ,  which ensure its continuity in the L p spaces. We have cut 

its domain into two pieces: in the places where Ix - y l / I  yL <<. 1/n, the term which 
dominates in d, is that which contains DE(x, y) and the continuity can be obtained 
via the Hardy-Lit t lewood-Sobolev theorem. In the complementary set Ix - y [/I Y l > 
1/n, the term which is polynomial in x is dominating in Eo.n (i.e., in In) but it has an 
oscillating behaviour which allowed T. H. Wolff to obtain Proposition 3 below, 
using only the 'variable coefficients Plancherel', i.e., theorem 1.1 from [-7]. We have 

to make first some additional notations. 

We pass from the kernel Jn to the kernel 

K~ = Ixl-(a-1)/e+PlYl-(a-x)/2-PJn(x, y) 

which has the property 

]xl-Vq~(x) = f K~(x, y)[ y]-~D~b(y). 

Here p is a number in [0, 1) and v = n + ( d -  1 ) / 2 - p  is the analogous of the 

parameter r used in (1). 
In dimensions greater than 4, the weight 0 ( x ) =  - l o g l x l  does not give optimal 

results and, therefore, we choose a function 0: N + ~ ~ in C ~ which satisfies the 
following conditions: there is a C > 0 such that C - 1 < O'(t) < C for all t, and for any 
6 > 0 there is a Co > 0 such that O"(t) >~ C6e -~.  Then the corresponding kernel is 

L,(x ,  y) = e x p ( -  v(O(t) - O(s) - O'(s)(t - s)))Kvo,~)(x, y), 

where s stands for - l o g j x ]  and t for - l o g l y l .  That is, L v satisfies 

eVO~s~o(x) = f L y ( x ,  y)e~O~°D~o(y)dy for any qo e 6~'(B(0, 1)\{0}). 

For  7 subset of N+, denote 

A(7) = {x E NI - log Ixl e 7). 
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Jl K II v~q will be the norm of the operator of kernel K from LP(B(0, 1)) to Lq(B(0, 1)), 
and 1A will be the operator of multiplication by the characteristic function of A. In 
what follows, we will suppose that v is a positive real number. 

P R O P O S I T I O N  3 (Corollary 3.1 of [10]). Let r = max{d, (3d - 4)/2} and 7 an inter- 
val in • + o f  length greater than 1/v. I f  d >~ 5, then 

[[ la<o-l~)L~ I[ p~p" ~ Cd(Y m i n ( v -  1/2 [•/))l/r. 

I f  d = 3 or 4 then 

II 1A(7)K~ II ~-~.' ~< Cd,~(v min(1, [y [))(d - 2)/2r 

where c~ > 0 is the distance f rom v to the set Z + (d - 1)/2. 

The main idea of [10-1 is to use the estimates of the parametrix truncated to the left 
as they appear above and to glue them to obtain a global assertion via the following 
lemma. 

LEMMA 1 (Corollary 4.1 of [10]). Suppose # is a positive measure on ~ without 
atoms and such that 

1 
lim ~ l o g # ( { x : l x l  > r } ) =  - oe. (6) 
T---r oo 

Define, for  k e ~, #k(B) = ~B e kx d#(x). Then there exists a constant C > 0 such that 

for  any v > 0 and any arithmetical progression of  ratio 2 e (0, v), namely {a + m2},,~z, 

there exist a natural number n, n numbers k l ,  k2 , . . . ,  k ,  E Iv, 2v-1 belonging to the given 

progression, and n disjoint intervals {Ij}j= 1 such that 

(i) #kj(Ij) i> #kj(e)/2, 
(ii) Z~=l max(ll j[-~,2) >~ Cv. 

Proof  of  the Theorem. There are the two cases d = 3, 4 and d ~> 5 but we will give a 
single proof making several conventions which make it possible to state Proposition 
3 above (and to make the proof) independently of the case which is being considered. 

For the case d ~> 5, we choose 0 satisfying the conditions stated before Proposition 
3. We choose 2 = v 1/2 and arbitrary a (these two numbers refer to the arithmetic 
progression in Lemma 1). In the case d = 3  or 4, we let O ( s ) = s  and 2 = 1 ,  
a = (d - 1)/2 + 1/2. Notice that, in this case,' we have L~ = K~, and the conclusion of 
Proposition 3 can be weakened to 

II lato-~7)L~ ]lv-*p' ~< Cd(V min()~ -1, I~1)) 1/~ (7) 

independently of the case under study. 
Let u be a solution of I Dul <<. I Vu[ with V ~ U,  u ~ ~ 'p W~oo. Suppose that 

r-" ["  l ul ~' = 0 for any n e 7/ (8) lim 
r-40 ,)B(0,r) 

and suppose that u does not vanish in any neighborhood of the origin. 
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Let us consider ~(x) = )/(x)u(x), where )/~ C~(B(O, 1)\{0}) will be chosen later, and 

the continuous measure defined by 

#(B) = ~ IVtilPdx. 
jA (0-  ~B) 

Applying Lemma 1 to/~, which has compact support and therefore satisfies the decay 
hypothesis (6), we obtain that for every v > 1 there are real numbers k { kj } j= 1 belonging 
to the set [v, 2v] ~ {a + m2: m ~ Z} and the disjoint intervals I~, I2 .. . . .  I ,  such that 

#kj(Ij) = II 1 / ( 0 - ' I j )  ekj'14s)gtt I[ ~ >I #k~(N)/2 = II e k~°(s) g~ II ~/2 (9) 

and 

• max([Ij1-1, 2)/> Cv. (10) 
j = l  

We can suppose that all the lengths of the 12 are greater than 1/v because otherwise 
we can drop all of them except one and enlarge it to the length 1/v. 

Then applying (7) for each of the operators 1A(~,-ib)Lk j and using the fact that 
v < kj < 2v, we obtain 

II 1A(o ,1j) ek~'C'(s)u II p' <<- Cd(kj min(2-1, I Ij [))l/r II egJO(S)D(~ IIp. (11) 

Let us suppose 

]lekJ0(S)D~llp -- IlekJ*(s)(ZDu + (Dz)u)[lp <<. 2llekJO(s)m~l[p Vj = 1, . . . ,n  (12) 

and finish the proof, and turn later to the choice of Z as to ensure (12). Combining (9), 

(11) and (12), we obtain 

I[ lA(q/-tl~) ek~O(s)~t H p' <<- Cd(v min(2- 1, i iji))l/r II 1A(O- 11j) e kjo(s) r~t II v 

from which we infer that 

[1 1A( o-  l/j)~suppfi r II r x Cd(v min(2-1, [/jl))l/r i> 1. 

Raising to the r th power, summing, and using (10), 

fs Irlr~> 1/v ~ max(2,[ljr -1) >~ Cal. (13) 
upp~ j=O 

To conclude, we will choose the truncation function Z in the definition of 5 and the 
number v so that (12) be satisfied and the relation (13) be impossible. 

To this end we choose )/1 ~ C~(B(O, 1)), Z~ = 1 in the neighbourhood of 0, with 
support so small that ~-ppz~ I VI ~ is smaller than the constant appearing in (13). 

We can suppose that Vu vanishes in no neighbourhood of 0. If it would not be so, 
Du = 0 in the neighbourhood of 0, and this implies that u is analytic there, and 
having a zero of infinite multiplicity, it must vanish in the neighbourhood of 0. Let 
ro > 0 be such that )/~ = 1 in B(0, ro) and 0 < rl < ro. Then 

II eg°(~)(Dz1)u 1[ p < C e c'v(l°g ro -logrl)II e ~*(~> V)/1 u I[ p, 
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because ~n(o,r~)J V u f  > 0. We can choose v so that  

l[ ekO(s)(Dz1) u [[ p ~ ½1[ ekq~(s) VXlU [[ p for all k ~ [v, 2v]. 

N o w  we have to choose x 2 ~ C  a, equal  to zero in the 
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(14) 

n eighbourhood of the 
origin, and equal to 1 outside a small ball B(0, rz) ,  r2 < ro, and to set Z = )~1Z2 = 

~1 + )~2 - -  1. Using H61der inequality, we obtain that Vu and u vanish of infinite 
order in L p at 0 (i.e., there are relations analogous to (9)). From the fact that )~2 can 
be chosen so that [DZzl <<. Cr~  1 it results that for r2 small enough we will have 

II egq'(S)(DZz)U lip + II ek0(s)( 1 - X 2 )  V u  lip ~ ½ I[ ek0(s) V•I u II p for all k ~ Iv, 2v].  (15) 

Summing (14) and (15), and using the triangle inequality and ]Dul <. [Vul, we obtain 
(12) (notice that DZ = D X I  - D X 2 ) .  The proof is complete. 

The u.c.p, stated in (b) is a consequence of theorem 2 in [11] which we state below 

T H E O R E M .  Suppose M is a d-dimensional manifold, d >>. 3, 1/q - ½ = 1/d and co is a 

differential form on M with Wl1~,~ coefficients such that ]dcol + Id*co[ ~ Vlco] with 
V e  Lfo c. Then if [col vanishes in an open set, it vanishes identically. 

We may apply the theorem in our case, since Dirac operators can be represented as 
d + d*, where d is the exterior differentiation of forms in R e and d* its adjoint with 
respect to the usual metric. This is done in [-5J, chapter 12. 

References 

1. Boutet de Monvel, A., An optimal Carleman-type inequality for the Dirac operator, Stochastic 
Processes and their Applications in Mathematics and Physics, Conference in Bielefeld, 1985, Kluwer 
Acad. Publ., Dordrecht, 1990, pp. 71-94. 

2. Boutet de Monvel, A. and Georgescu, V., Sur la propribt6 de prolongement unique pour l'op6rateur 
de Dirac, CR Acad. Sci., S~rie A 291(11) (1980), 603-606. 

3. Boutet de Monvel, A. and Georgescu, V., On the point spectrum of Dirac operators, J. Funct. Anal., 
71(2), 309-338 (1987). 

4. Carleman, T., Sur un probl6me d'unicit6 pour les systbmes d'6quations aux d~riv6es partielles/t deux 
variables ind6pendantes, Arkiv Mat., Astron. Fysik, 26B(17), 1-9 (1938). 

5. Cycon, H. L., Froese, R. G., Kirsch, W., and Simon, B., Schr6dinger Operators, Springer-Verlag, 
Berlin, 1988. 

6. H6rmander, L., Uniqueness theorems for second order elliptic differential equations, Comm. Partial 
Differential Equations 8(1), 21-64 (1983). 

7. H6rmander, L., Oscillatory integrals and multipliers of FL p, Arkiv Mat. 11, 1-11 (1971). 
8. Jerison, D., Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. 

Math. 62, 118-134 (1986). 
9. Jerison, D. and Kenig, C. E., Unique continuation and absence of positive eigenvalues for Schr6- 

dinger operators, Ann. of Math. 121, 463-488 (1985). 
10. Wolff, T. H., Unique continuation for IAu[ ~< V[Vu[ and related problems, Rev. Mat. lberoamericana 

6(3,4), 155-200 (1990). 
11. Wolff, T. H., A property of measures in EN and an application to unique continuation, Geom. Funct. 

Anal. 2(2), 225-284 (1992). 
12. Wolff, T. H., A counterexample in a unique continuation problem, submitted to Comm. Anal. Geom. 


