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Abstract. The main perpose of this letter is to give a topological classification of stable nondegenerate 
singularities of smooth integrable Hamiltonian systems. Namely, we show that all such singularities can 
be decomposed diffeomorphically, after a finite covering, to the direct product of simplest (codimension 
1 and codimension 2 focus-focus) singularities. 
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1. Introduct ion 

Integrable Hamiltonian systems met in classical mechanics and physics always 

have singularities, and most often these singularities are nondegenerate in a 

natural sense. Thus, the study of nondegenerate singularities is one of the main 

steps toward understanding topological structure of general integrable Hamiltonian 

systems. 

The local structure of nondegenerate singularities has been known for some time 

(cf. [3, 4, 8] and references therein), although the semi-local structure of them has to 

date been unknown, except for the case of codimension 1 (el. [5, 11]) and some 

particular cases of codimension 2 (cf. [6, 7, 2, 11]). 
This letter is devoted to nondegenerate singularities of integrable Hamiltonian 

systems of any codimension. It is based on a simple observation which turns out to 

be a theorem. It can be stated as follows: 

T H E O R E M .  All stable nondegenerate singularities o f  integrable Hamiltonian systems 

can be, after a finite covering, decomposed topologically to a direct product o f  simplest 

codimension I and/or codimension 2 singularities. 

In a sense, the above theorem gives a topological classification of all stable 

nondegenerate singularities. It also gives a way to compute singularities in concrete 
cases. Without the stability condition, the theorem does not hold but a similar 
statement is true for the the singular leaf. 
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2. Preliminaries 

In this Letter, by an integrable Hamiltonian system we will always mean a Poisson 
action on a symplectic manifold (M 2", ~o), generated by n commuting Hamiltonian 
vector fields X~,. . . ,  X,.  Let F = (F1,. . . ,  F , )  : M 2, _~ R n be a corresponding moment 

map, X i = Xr~. We will always assume that the level sets of F are compact. 
Let Xo be a singular point of the above Poisson action. The number 

n - rank DF(xo)  is called the corank of Xo. Let • be the kernel of DF(xo) and let 
Z be the space generated by Xi(xo)(1 ~< i ~< n), Z is a maximal isotropic subspace of 
S with respect to the symplectic structure co o = co(x0). Hence, the quotient space 
~#/Z : / ~  carries a natural symplectic structure COo. R is symplectically isomorphic 
to a subspace R of Txo M of dimension 2k, k being the corank of the singular point. 

The quadratic parts of F1 .... , F,  at Xo generate a sub@ace -~-~)(x0) of the space of 
quadratic forms on R. This subspace is a commutative subalgebra under the Poisson 
bracket, and is often called in the literuture transversal Iinearization of F. The 
singular point Xo is called nondegenerate of corank k if Y~)(Xo) is a Cartan 
subalgebra of the algebra of quadratic forms on R, i.e. if it has dimension k. Denote 
by Q(2n) the algebra of quadratic forms in R g~ with respect to a standard Poisson 
bracket. For  the local structure of nondegenerate singularities, we have (cf. 
[1, 4, 3, 8, 9]): 

T H E O R E M  2.1 (Williamson). For any Cartan subalgebra C of Q(2n), there is a 

symplectic system of coordinates (xl ,  ..., x , ,  YI, ..., Y,) in R 2" and a basis f l ,  . . . , f ,  of 
cg such that each f ~ is one of the followin# 

f i  = x 2 + y2 (elliptic type), 

f ~ = xiyi (hyperbolic type), 

f i  = xiyi+l - xi+lYi "[(focus-focus type). 
f i + l  = x i Y i +  X i+lY i+l  

T H E O R E M  2.2 (Vey-Eliasson). Locally, near a nondegenerate singular point, the 
Lagrangian foliation associated to the Poisson action is diffeomorphic (and even 

sympIectomorphic) to the one 9iven by the linearized action 

The above theorems are still not enough in order to understand the topology of 
integrable Hamiltonian systems. We need the following (cf. [11]): 

D E F I N I T I O N  2.3. Let F: (M 2", ~o) ~ R" be the moment map of a given Poisson 
action, and assume that the preimage of every point in R" under F is compact and 
the differential DF is nondegenerate amost everywhere. 

(a) The leaf through a point xo e M associated to the Poisson action is the minimal 
closed invariant subset of M which contains Xo and which does not intersect the 
closer of any orbit of the action, except the orbits contained in it. 

(b) From (a), it is clear that every point is contained in exactly one leaf. The 
(singular) foliation given by these leaves is called the Lagran!Tian foliation associated 
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to the Poisson action. The orbit space of this foliation is called the orbit space of the 
Poisson action. 

(c) A leaf is called singular if it contains a singular point. A nondegenerate singular 
leaf is a singular leaf whose singular points are all nondegenerate. A singular leaf is 
called of eodimension k if k is the maximal corank of its singular points. 

If a leaf is nonsingular or nondegenerate singular, then it is a connected component 
on the pre-image of a point under the moment map, and a tubular neighbor- 
hood of it can be made saturated with respect to the foliation (i.e. it consists of 
whole leaves only). Later on, a tubular neighborhood of a nondegenerate leaf will 
always mean a saturated tubular neighborhood. The Lagrangian foliation in a 
tubular neighborhood of a nondegenerate singular leaf N will be denoted by 
(~#(N), !~). By a singularity of the Poisson action we will mean either a singular 
leaf N or (a germ of) a singular foliation (~'(N), ~) (which object is refered to will 
be clear in the context). In this Letter, all singularities are assumed to be non- 
degenerate. 

D E F I N I T I O N  2.4. A nondegenerate singular point x of corank k is said to have 

Williamson type (ml, m2, m3) if it has ml elliptic, m2 hyperbolic and m3 focus-focus 
components in the Williamson's classification ( k=ml  + m2 + 2m3). 

LEMMA 2.5. I f  a point x in a singular leaf N has corank k equal to the codimension 
of N (maximal possible) and has Williamson type (ml, m2, ma), then any other point 
x'in N with the same corank will have the same Williamson type. 

The proof of the above lemma only uses some standard arguments similar to 
that of [6, 7]. If x ~ N has maximal corank and has Williamson type (ms, m2, m3), 
then we will call (ml,m2,m3) the Williamson type of N (or of the singularity 
(~U(N), ~)). [] 

3. Torus Action and Reduction 

T H E O R E M  3.1. Let (~#(N), P~) be a nondegenerate singularity of codimension k of an 
integrable system with n degrees of freedom. Then we have: 

(a) There is a locally free Hamiltonian T "-k action in (cg(N), P~) which preserves 
the singular Lagrangian foliation. 

(b) There is a finite coverin 9 of (~ll(N), !~), denoted by (~(N), P.), of order at most 
2 m2 where (ml, m2, m3) is the Williamson type, such that the Hamiltonian torus T "-k 
action in (Y#(N), P~) as in (a) is free. So we can use the Marsden-Weinstein reduction 
to obtain a (n - k)-dimensional family of codimension k singularities in systems with k 
degrees of freedom. 

The above theorem generalizes a result in [11] about codimension 1 singularities. In 
view of the above theorem, to prove our main result it is enough to consider 
singularities of maximal codimension, i.e. singularities which contain a fixed point. 



190 NGUYEN TIEN ZUNG 

For the proof, one first shows that near every closed singular T "-* orbit in 
(~'(N), ~) (i.e. the set of singular points of maximal corank) there exists a required 
action. Then one shows that these actions can be extended to the whole (q/(N), ~) 
(and they will agree on the extention). [] 

LEMMA 3.2. There is a local function H = H(F):(R",  0 ) ~  (R", 0), which is non- 

degenerate at 0 = F(N), such that for any point y ~ N ,  if  y has corank r, then there exist 

exactly r components H i l , . . . , H ~  of  H i l , . . . , i r  <~ k, such that dHi~(y)  
. . . . .  d H ~ ( y )  = 0. 

From the topological point of view, the moment maps F and H give the same 
thing. So later on instead of considering the Poisson action generated by F, we will 
consider the one generated by It. For  shortness, we will call H again by F. 

Take a point x ~ N of maximal corank k. Then we can also reorder (F~) to assume 
that F1, . . . ,  F,, 1 correspond to elliptic components, F,,~ + ~,... Fml +m~ correspond to 
hyperbolic components, and F,,~+m~+~,..., Fk correspond to focus-focus compo- 
nents in the local classification. (We say that Fi corresponds to a component if, in the 
local classification, the differential of F~, restricted to N, does not vanish only on the 
intersection of N with that component.) Then it is also true for any other singular 
point of maximal corank in N (without reordering again). 

4. Stability 

Assume now that k = n and F as in Lemma 3.2 Set 

Vi = {x ~ (~(N) ,  9~)[dFi(x) = 0 if j ~ i} (/-elliptic or hyperbolic component) 

o r  

Vi,i+ 1 = {x E(ql(N), 9~)[dFj(x) = 0 i f j  ¢ i, i + 1} ((i, i + i)-  focus-focus com- 
ponent) 

Then Vi are 2-dimensional symplectic surfaces and Vi, ~+1 are 4-dimensional sym- 
plectic submanifolds, and they have induced singular Lagrangian foliations. 

By generalizing a notion in [2], we will call the set of all Vi and Vi, i+ ~ the l-type of 
(~/(N), ~). It is an important invariant of the singularity, which will be used in the 
proof of the main result. 

D E F I N I T I O N  4.1 A nondegenerate singularity (q/(N), ~) of codimension n (maxi- 
mal possible) is called stable if the following two conditions are satisfied: 

(1) There is a diffeomorphism q~: R " ~  R" such that by taking the composition 
F' = ¢J o F of the moment map with this diffeomorphism, we have that, under the 
new moment map F '  restricted to ~#(N), F'  : ~#(N) --. R" = {(xl,. . . ,  x,)}, the singular 
value set of this map in R n is contained in the union of the hyperplanes 
k3~=1 {x~ = 0} (and N is mapped to the origin). 

(2) In N there is no closed orbit except fixed points. 
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Comments. The first condition means that singularities near N (of codimensions 
less than k = n) do not 'break up' when going from N. For example, all the 
codimension 1 singularities near N are just finite-sheet coverings of Vi where Vi are 
elements of the 1-type of N. The second condition implies that focus-focus elements in 
the 1-type don't contain closed singular orbits. It is justified by the fact that in view of 
the existence of a Hamiltonian S ~ action [11], in 4-dimensional case, we can split 
closed singular orbits from focus-focus singularities by a small perturbation. 

DEFINITION 4.2. A nondegenerate singularity (¢g(N), ~) of codimension k will be 
called stable if in the reduction given by Theorem 3.1 we obtain a (n - k) family of 
topologically equivalent stable codimension k singularities (of systems with k degrees 
of freedom). 

In the case k = 1, Definition 4.2 coincides with a definition of stable codimension 1 
singularities given in [11]. The following proposition can also be taken as a 
definition of stable singularities. 

PROPOSITION 4.3. A nondegenerate codimension k singularity (~#(N), o) is stable if 

and only if the following two conditions are satisfied: 

(1) There is a diffeomorphism (P: R" ~ R "  such that by taking the composition 
F' = • o F of the moment map with this diffeomorphism, we have that, under the new 
moment map F'  restricted to ~#(N), F'  : ~ll(N) ~ R" = {(xl .... , x,)}, the singular value 

k {xi = 0} (and N set of this map in R" is contained in the union of the hyperplanes k_) ~= 1 
is mapped to the origin). 

(2) All closed orbits in N have the same dimension n - k. [] 

5. Decomposition 

If N1 and N 2 are  two nondegenerate singularities, N~ c M 2n~ of codimension k~, with 
the corresponding Lagrangian foliation (~//(N1), ~1) and (~//(N 2), ~2), then the direct 
product of these singularities in the singularity N = NI x N 2 of codimension k i + k2 
with the associated Lagrangian foliation equal to the direct product of the given 
Lagrangian foliations: 

(q/(U), ~) = (°g(Ut), ~1) X (o~(N2) , ~2). 

DEFINITION 5.1. A nondegenerate singularity N of codimension k in a symplectic 
2n-manifold is called of direct-product type topologically (or a direct-product singular- 

ity if the Lagrangian foliation (°g(N), ~) associated to it is homeomorphic to the 
following direct product of Lagrangian foliations: 
(q/(N), ~) 

h . . . .  (~(T"-k), ~ )  × (P~(N~I), ~1)  × "'" × (P~(Nsi), ~-~si) X 

X (P41(Nfi), e f l  ) X " ' '  X (P4(Nfj) ,  ~.~fj), 
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where (J//(T"-k), £r) denotes the Lagrangian foliation in a tubular neighborhood of a 
regular Lagrangian (n - k)-torus in a symplectic 2(n - k)-manifold, (p2(Nst), £+t) for 
1 ~< t ~< i denotes a Lagrangian foliation association to a codimension 1 nondegener- 
ate surface singularity (=  singularity on a symplectic 2-manifold), (p4 (Nft), ~ft) for 
1 ~< t ~< j denotes a Lagrangian foliation associated to a focus-focus singularity on a 

symplectic 4-manifold, i, j />  0, i + 2j = k. 

D E F I N I T I O N  5.2. A nondegenerate singularity N is called of almost-direct-product 

type topologically (or simply an almost-direct-product singularity) if the associated 
Lagrangian foliation (9/(N), 2) has the property that a finite covering of it is 
homeomorphic to a Lagrangian associated to a direct-product singularity. 

Notice if (m 1, m2, m 3) is the Williamson type of N, then in the above definition we 

have i = ml + mz , j  = m3. 

T H E O R E M  5.3. Any stable nondegenerate singularity (qZ(N), £) is of almost-direct 

product type. More precisely, it can be written (diffeomorphically) in the form of a 

quotient of a direct product singularity 

(~#(T"-+), £,.) x (PZ(Nsl), £9-++i) x ... x (p2(N.+I),£++) x 

x (p4(Nfl),£fl) x ... x (P4(Nfj), £fj), 

by a free action of a finite group G. G acts on the above product component wise, i.e. it 
commutes with the projections onto the components. 

Proof (Sketch). We consider only the case when k = n. Consider the 1-type of N. 
Then for each pair of surfaces and/or 4-dmensional spaces U, V in this l-type, there is 
a natural action of the fundamental group of U on V. By taking covering, we can 
trivialize these actions step by step. Once these actions are trivial, the singularity is 

also of direct-product type. [] 

A direct product with an action group in the above theorem will be called a model 
of a stable nodegenerate singularity (d#(N), £). A model is called minimal if there does 
not exist a nontrivial element of G which acts trivially on all the components except 

one. 

P R O P O S I T I O N  5.4. Suppose that k = n. Then there exists an unique minimal model 

for each stable nondegenerate singularity (~g(N), !~). [] 

Open question. If two stable singularities are such that their near-by singularities (of 
less codimension) are equivalent in a natural way, can we deduce that these two 
singularities are equivalent? 

The answer seems to be YES, at least in the case when the components in their 
decompositions are rather simple. The meaning is that in concrete problems we can 
compute codimension 1 and codimension 2 singularities - a relatively easy task - 
and then deduce from that the structure of higher codimension singularities. Some 
computations were done in [-10, 11] in this direction. 
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