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It is possible to obtain a spin-polarized solution in the unrestricted Hartree-- 

Fock method with p~ r ps in the singlet state only with strong electron correla- 
tion, where p~ and p~ are the densities of electrons with opposite spins. A new 
spin-polarized singlet and triplet model is considered that is invariant under 
time reversal. It is shown that a quasisinglet solution exists for such a model 
for any value of the electron~lectron interaction. This means that the method 

can be used without constraints in a readily implemented correlation model, in 
which one uses only an operation of pseudoreversal of p~" p$. 

The concept of differing orbitals for electrons with opposite spins is one of the sim- 
plest models for electron correlation. This is known as the unrestricted Hartree--Fock met- 
hod (XHF) in the theory of molecules, which is usually employed for radicals, triplets, and 

so on [1-3]. However, the UHF method should be identified with the spin-polarized Hartree-- 
Fock metho~ SPHF for singlet states, since the orbital splitting leads to spin densities that 
are of course absent in the spin-correct description of a singlet molecule. Only fairly 
strong electron correlation can force the electrons with spinup (s-shell) that differ from 

those with spindown (3 shell). This is spin polarization of the single level in SPHF, whose 
physical significance has not yet been completely elucidated. 

Such spin-polarized solutions are not realized when there is relatively weak electron 
interaction, namely the so-called triplet shell stability [2, 4]. If it were not for the 

latter feature, SPHF would be a simple standard scheme for incorporating electron correla- 
tion in molecules of any complexity. For example, it has been shown [5, 6] that SPHF is 

effective for describing nontrivial physical effects in conjugated polymers. It has been 
found [7, 8] that similar results are obtained on calculating perturbation effects from the 
variational and self-consistent schemes, with the latter carried out for SPHF in accordance 
with [9]. This similarity does not occur in the restricted Hartree--Fock method, although 
it indicates similarity to the exact solution. Studies have also been made on using SPHF 
in reaction theory [i0]. Therefore, we require an extension to the model that should provide 
a spin-polarized solution that is continuous for any values of the electron interaction. 

It might seem that the necessary formulation has long existed and is known as the spin- 
extended Hartree--Fock method (EHF). Also, recently there has been a suggestion of a more 
general approach to spin polarization in the form of the method of one-particle spin pairing 

amplitudes (OPSPA) [ll]. All the same, exact spin projection in EHF introduces substantial 
complexities into the practical calculations, in spite of the essential improvements in 
[12-14] and the use of the OPSPA algorithm of [ii]. Here we consider a substantially simpler 
approach, which does not deviate from the initial idea of SPHF, but which guarantees the 
existence of a spin-polarized solution for the singlet for any conditions, similar to EHF 
and OPSPA. 

Equivalence Restoration for the ~ and ~ Shells in the Singlet State 

In the SPHF model, one makes an assumption having a physical content that the motions of 
the electrons with ~ and $ spins are not equivalent. However, it is overlooked here that 
the electron behavior must be equalized in the final formulation, and this should lead for 
example to equality of the ~ and ~ components of the electron density for spin s = 0. In 
more accurate terms, this is expressed as the requirement that the singlet state is invariant 
under the operation of time reversal. On the other hand, the!~SPHF> wavefunction does not 
have that invarience. 

The Wigner operator [15] reverses the time for real wavefunctions containing spin: 
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Kr = (--~.)N/"%(0... %(N),~ (1) 

where the Pauli matrix is O~----i(l~><~l--I~>< ~l)and I~>, [~> are the standard one-electron 
spin functions. In a singlet molecule, N is oblige to be even, which together with the equa- 

tion o~ : i leads to hermitian and involution behavior K~-----I. This enables us to construct 
a projection operator I/2(1 q-KT) providing the necessary invariance. 

In accordance with [15] it can be shown that KTI~@,~ ~(--i)sl~g(~.~ where ~g@.0) is a 
wavefunction with spin s and zero spin projection. By virtue of this, i/2(I+Kr) not only 
restores the invariance in time reflection but also produces selective spin projection, 
leaving the opponents with even spin in the approximate singlet function ~ with the property 
(S~l ~> ----- 0, but 8z[~>~0) , i.e., the singlet, quintet, and so on ones. As a result, we arrive 
at a more correct model for the singlet shell: 

[ ~=o ~ (I -or- KT) / tlZSPHF >, ~gSSHF > ---- 92- (2 )  

which will be called the spin-symmetrized Hartree--Fock model (SHF). For the triplet state 
with zero spin projection we have 

I = I >, <3) 

since ~/2(l--Kr).retains the triplet, heptet, and so on components in the similar function. 
Here the vector ]~SpHF3 in (3) is different from that in (2) and is chosen from the condi- 
tion for minimum energy in the given triplet. An analogous phenomenon, namely exact spin 
projection by an approximate singlet function on a triplet one, is known from EHF theory 
[13, 16]. We note that the orbital formulation of spin symmetrization for a singlet level 
was proposed some while ago [17] in the form of a semiprojected method. Spin symmetrization 
is also desirable in the OPSPA method without projection [ii]. 

We now show that the states of (2) and (3) defined above always exist, i.e., (2) does 
[ + -- + -- + -- 

not reduce to the ordinary determinant ~o with paired filledMO ~o [~,~, . . . .  ~ . . .  ~ ] ,  
+ - 

and (3) does not reduce to zero (we have used the abbreviation ~ = ~la>, ~ ~ ~I~>)" For this 
+ - -  + -- 

purpose, in ~o we break up the i-singlet pair ~{~i-+~{~r where the new spin-polarized 

MO ~ are taken in the form 

i i (4) 

with l~p) an orbital vacant for ~o and x the MO splitting parameter. Then ~o becomes the 
superposition 

i S=l 
l~sP~F > = ~ {1% > + V2 z } ~ >  -- z ~ i ~ >  }, (5) 

~=~ = , [  + -  + -  ] 
w h e r e  I~i~p> ~2 ...~p~r i s  a s i n g l y  e x c i t e d  t r i p l e t  c o n f i g u r a t i o n  a n d  ITi~ ~ >  

i s  a d o u b l y  e x c i t e d  s i n g l e t  o n e .  From (5)  we c o n s t r u c t  t h e  s i n g l e t  SSHF o f  ( 2 ) .  B e c a u s e  

of the antisymmetry KTI s~l s=l ,s~o ~p> =--]~i~p> , the normalized vector of (2) amounts to I~SSHF>= 

I 
~ (l~0>--x2l~i{~p#>) , which is certainly more favorable as regards the energy E(~) than 

~ alone. In fact, for real quantities 

s=O 
E (W{s~F) = E (%) + z4s -- x~K~p (6) 

]_}_X 4 

where %~i~pp is the energy of double excitation and minimization, apart from the trivial 
case x = 0, with the demonstrated [18] positiveness of the exchange intergrals Kip, which 
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gives x 2=/I-~-C7-C (C=~ii~pp/Kip) with correlation energy Kipx ~. Also, it is evident that 

energy favors the transition in ~o from real MO to complex ones* followed by isolation 
of the real part using (2) (K T is then the complex-conjugate operator). Then x-+x]/~--l, 
~S=I ~ S:0 
{~p ~i~p, so (6) still applies. The same simple arguments of (4)-(6) illustrates that 

the EHF solutions are obligatory, which was first shown rigorously in [2] by analyzing the 
second variation of E(~EHF). Finally, from (5) one always isolates the state of (3) in the 

form "of a triplet configuration ~{~=~0, while in the complex MO method it is isolated as 

an excited singlet configuration {~p. This completes the proof that the solutions exist 
in the SSHF model. 

Calculating Electron Distributions 

We now consider the exolicit derivation of the SSHF solutions. We follow the operator- 
reduction method [14] of direct density calculation immediately in matrix (operator) form. 

As ~SPHF is a one-determinant function, N is a particular projector on it pN =[~SPHF)<~SPHF ]. 
which takes the form [2, 7, 14] 

Px = ANp(t)...p(N), (7) 

where A N is an antisymmetrizer and $ is the Fock--Dirac density matrix. A spin structure for 
SPHF is 

P = P~ [~><~l + P~ [13><1~1, (8) 

where p==p~, p~=p~ are the densities for the ~ and 3 shells, and p~ r PB" We introduce 
the symbol Px(P~; P~) for the projector of (4) subject to (8). The normalized states of (2) 
and (3) are denotred by the symbol l~F• with the upper sign for the singlet of (2) and the 

lower one for the triplet of (3). The projector P~= ]~•177 on these states, i.e., 

the following expression (~SpKTpN) 

, i + KT) ON (pod Pl~) ( I  + KT) p~v--2(t  •  (9) 

may be put in the more conveninent form 

P]  - 2 (~ + ~) P-~ (P~; P~) + ~- [pN (p~p~; p~p~) + p~ (p~p~; p~p~)] + ,ON (P~S; P~) �9 (io) 

We have in mind the identities 

KTPN (X; Y)Kr = px(Y; X), 

(ii) 

It is clear that (i0) is completely symmetrical under the substitutions pg ++ p~ , so although 
p~:p~, i.e., the correlation of the a and ~ shells is explicitly incorporated, the neccesary 
symmetry is maintained. 

We separate out the spin variables in (i0). For this purpose a transfer to the spinless 
o 

PN(P~; P~)" For N= 2n, this corresponds to the complete projector of (7), which allows of the 

representation 

o N[ 

(12) 

J. 

M. M. Mestechkindirected the author's attetntionto this aspect of the complex MO method. 
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where ~ = I~ d),..~(~)B(~ + l)...F(N)><a(l)...a(n)~(n + 1)...~(N)I. 

From (7) and (8) we f i n d  t h a t  

p~(p~; p~) An(l...n)p~( )...p~(n)An(n ~ l...N)p~(n ~ I)...p~(N), (13) 

where ~ is a purely spinless n-particle antisymmetrizer. In view of (12) and (13), we can o= 
draw up an expression for the spinless projector PN in (4). To do this, all the complete 

o 

operatios (containing aping) P~(X; Y) in (4) must be replaced by the spinpless ones pN(X; Y) with 
the expansion of (13). Further, we incorporate the fact that the followingnozero spinless com- 

ponents remain in the calculations on the one-particle and two-particle density matrices with 
Q 

the given spinless operator py in (12), namely the one-electron ones 

o o o o 

Fcr ~ n Sp PN, F~ = n Sp Plr~+lp.~,Pl,n+l 
(2...N) (2...Iv) 

(14 

and the two-electron ones 

0 o o 

F ~ =  n(n-- t )  Sp PN, F = n 2 Sp P~,~+lp~P2,~+I, 
2 (3,..N) (a...N) 

o o o O o 

FF ~ _ n (n 2-- t) (a..SP.N) Pl'n+lP2'n+lP~'Pl'n+lP~'n+~= (15) 

o 

which have been given in a somewhat different form in [2, 16]; Pi] is spinless transposi- 
O_L 

tion . We apply these formulas to pN~ to get the one-electron densities 

(16) 

and the two-electron ones 

{%(p4p  + + 
(17 

In writing 
invariants constructed in [14]: 

(16) and (17), we have used not only the symbol XIY----X(1)Y(2 ) but also the operator 

Sp A ~ ( i . . . n )  a ( l ) . . . a ( n )  (18) 
( 2 . . . n )  

~[~) = ~ Sp ]~ (I ... n) a (I) .. a (n), =~> = n (~- {) 
( 2 . . . n )  " 2 

The number coinciding with ~ in (I0) is ~(n)= for the one-electronquantity z : P~P~- 

sp ~T/n. 
Energy and One-Electron Equations 

Calculating the energy E amounts to taking two spinless traces: 

E = Sp (F~ + FF) h + Sp ( r ~  + F ~  + F~) g02) ,  
(i) (1,2) 

where h(1) is the one-electron hamiltonian and g(12) is the two-electron interaction. 
E(p~; PF) we denote the standard SPHF energy, where 

(19) 

By 

t E(X; Y) = ~ Sp[(h + / ( X ;  Y))X + (h + f(Y; X))Y], 

f(X; Y)=  h + Y(X + y)--I~(X),  

(20) 
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and J and K are the Roothaan Coulomb and exchange operators. The in SSHF, the energies of 

the states (2) and (3) derived from (16)-(19) takes the form 

E -+ -  ~ {E(p~;~)+~(~)E(U;U+)}. I - ~(r,--~ -- (21) 

In (21) we have incorporated the features of the quantitites of (15) when n coincides with 

the rank ~ of the matrix (the rank of PaPB is not more than n, since pa and p~ project on 

n MO in each shell), namely 

= = = ~( ) A ~ n [ n ,  ~(~) d e t l ~  1' "'gi n) ~(n)/_f, j iT) n o 

where U =U 2 is a nonhermittian operator. This is deived together with ~(n)bya recurrent 

method. For this purpose we construct the sequenceofmatrices [ii] 

o(.~) : ~U~,-1)i __ o(7~-1)~, ~(h) : Sp ~o(k) /k ,  ~ = P~Pl~,: ( 2 2 )  

beginning with ~(0) = <[, o(0) = 0. The recursion is carried through to k = n, and then we get 

U :- o(n)a/$ (~0 with the property ~-i = U, where n-1 = o(n)/$(n) is a pseudoinverse matrix. In 

fact, the construction of d(n) corresponds to the Hamilton--Caley method for Moore--Penrose 

pseudoinversion [20]. 

Direct variation applied to (21) gives equations of Hartree--Fock type defining the ~and 

~ in the SSHF method: B MOqgi and@ i 

F (,o~; ,o~) I ~?> = 4 ~ I q~>, F (p~; p~) [ q#> : ~ I q~>, ( 2 3) 

[ " )" (u + u+)] (o~; ~ )  : / (o~; o~) -+ d ~) u~ @; u +) (~ - u) + (~ - u +) f (u+;  u)  u + + -U~ , (24) 

with the operators p~=E(~?)<~?I, p~=Zlr162 ~=~=-E(p~;v~) being the spin-symmetriza- 
tion energy. The exchange P~++P6 denotes also U+~- U +. Together, (21)-(24) are the 

basic relations in the SSHF method. 

In general, I~SSMF>s=o does not give the exact zero value of 

o 
< $ 2 >  = - -  N / 4  + S p  P I ~ F ~ s  = - -  N / 2  + - -  

(1,2) 

1 ~ + ~ S p  [,o~,o~ + ~(n)uu*]. (25) 

However, in what follows it is not proposed to use any spin projector O s on a pure spin state 
with spin s if we wish to remain within the scope of SSHF. In the converse, we arrive at 

the corresponding projected model, since 0 s and K T commutate, and spin symmetrization is then 

superfluous. 

It is evident from (4) that we need to introduce asymmetry s in numerical calculations 
based on the starting density matrix Po in the restricted method: 

P~ : Po @ A~ 06 ~ p o - -  A, ( 2 6 )  

whereas A we can in fact take any matrix ~ Po. In deriving the triplet solutions, it is 
better to start from s in the form of the solution H(A) =)~minA, where Z is a superoperator 
defining the triplet-excitation spectrum for a superposition of singly excited configura- 
tions (p. 248 of [2]. This follows from an analysis of E- with the condition of (26), 
since the first nontrivial term in the expansion of E- with respect to A has the form ~Sp~ 
(A)A. We give for completeness the expression for the spin density Q in the SSHF triplet 
of (3) found from universal spin constraints [19]. 
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Q = r ~ - -  Sp P n r ~  = t 2(1 - ~(n)) [P~ + P~ - -  PaP~ - -  P~P~ + ~(n)( U U +  + U + U  - -  U - -  U+)] .  (27)  

O n e - P a r a m e t e r  SSHF Model  

We c o n s i d e r  t h e  s c o p e  f o r  t h e  m e t h o d  on an  e l e m e n t a r y  m o d e l  c o r r e s p o n d i n g  t o  t h e  o n e -  
p a r a m e t e r  a l t e r n a n t - o r b i t a l  m e t h o d  i n  SPHF and  EHF. We t a k e  t h e  f o l l o w i n g  f o r m  s  t h e  s p i n -  
p o l a r i z e d  s o l u t i o n  p ~ # p ~  i n  t h e  a l t e r n a n t  ~ s y s t e m  i n  t h e  b a s i s  o f  t h e  AO d i v i d e d  up i n t o  
two sets (labeled and unlabeled atoms): 

(I + Z) I, V1 Z z P*0 
o~ = o (z) ,  m = o ( -  z),  p (~) = ~ - tl g~  - -27  P.+o (~ - z) 4 t~' 

(28) 

where P,o is the matrix for the orders of the bonds between the atoms in the different sets, 

and P.0P~0 = I., P+0P,0 = 70. Calculation of the characteristic SSHF quantities gives 

�89 lYrTT~ 
I ,  F~-27- ~ ~*o 

P~O~ = ( t  - -  z ~-) U ,  U = l / V -  z o +  
F Y-~--7 ~*o Io 

~(n) _-- (i -- z~) n. (29) 

We use also Hubbard's approximation for the Coulomb intergrals ?~, =?06~. Then the SSHF 
energy of (21) in B=--Spk[2p(0)--I] units is 

_.=_ ( _  F ' y  + Cy) I -Iz- Y "0"-1 E SSHF ~ + - - ~  ' g = 1 - -  z 2, C - -  N ? o / 4 B .  (30) 

In the same model of (28), subsequent exact SSHF spin projection lead to the energy in the 
EHF method obtained by means of the formulas from [14]: 

EEHF = ( - V ' y  + C y ) r n l r ~ + l ,  r n - - - - ( l - - Y " ) / n ,  

C x(n -- t) rn+l/n - -  Xrn_ 1 (31) 

For N large, all the energies of (30) and (31) tend to come together. However, for N 
small, the EHF results and those from the simpler SSHF method are fairly similar, as is 
evident from the table for the v system of benzene, where B= 81~], C = 3Y0/161~I. We used the 
161=2.8 eV and Yo =4 eV. With these parameters, the correlation energy %EHF gives 63% of 
the exact value calculated in [21]. In turn, the projected value of the energy of (31) with 

ZSSHF gives about 80% of XEH F. We note also that the SPHF solution of (28) exists only for 
C~0,5,, so this example with C= 0.268 illustrates the performance of the SSHF model far 

from the threshold of triplet instability. 

TABLE I. Correlation Energy X and Triplet Excitation Energy 
AE in One-Parameter Models for the w Shell of Benzene 

Stngtet 

I ZSSHF(Z) 

I 
Z4SSHF = 0,358 ] 0,206 

z+'"Fr.m = 0,486 I 

ZEHF(Z) 

0,306 

0,402 
z SSHF 0,548 

Z~H F = 0,579 

Triplet 

AESSHF (z) 

5,32 

AEEHF(Z) 

5,47 

5,46 

+ + + 
Note: Z~CX~ and z>x ~ are derived from the minimum in E~CX@ of 

+ 
of (30) and E~X ~ (31) correspondingly with C= 0.2679. All the 

energies X(z) -- E+(0), AE(z) =E-(z) -- E+(z) are given in eV 
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CONCLUSIONS 

Therefore, in the SSHF model one performs inexplicitly a fairly successful approximate 

spin projection, which allows a spin-polarazed singlet solution to exist for any correla- 

tion energy. The method can be used, as is evident from the example of the benzene molecule, 

for calculations of EHF type exact in a spin respect if one takes the densities p~ and p@ 
readily derived from (23) and (24) as good approximations to their EHF values. However, a 

more important point is that the subsequent multiconfiguration calculations are realized in 
the basis of the spin-symmetrized MO of (23). Such calculations enable one to improve the 

description of the ground state more effectively than spin projection of I~SPHF > alone, and 
they also provide well-correlated wavefunctions for the exicted states, which is much more 
difficult to ensure form models of EHF and OPSPA type. 

It is also possible to construct a doublet wavefunction for a radical I's=~/2>~SSHF froma 
spin-polarized singlet in the spirit of second quantization methods: 

l g *='/= (i N - -  I)> = ]/'N<~(N) [ ~7~F (i N)>(~), (32) 
S S H F  . . . . . .  

where ]~> : [~> ]~> is an additional viarional orbital. In this way we arrive at spin pairing 
for the ~ and $ shells in the radical different from that in UHF or EHF. We elucidate this 
on a simple example for a three-electron system N -- 1 = 3. We first construct the four- 
electron SSHF function of the form 

++ + + -- --~ 
s~o ['FSSH~ 02341> = /~q~G~ + W'~p~qo,./, 

(33) 

with spin-orbital antisymmetrization. We take here 9~ = 9~ = ~ and find the following apart 
from coefficients: 

i++ 
- + + - \  

l u'~=~/2 (123)> ~ % q o ~  + ~F~q~qh/ ,  - t S S M F  

(34) 

which coincides with the so-called maximal pairing function. This function is [22] preferable 
to aprojected state constructed from the same MO: 

+ + - \  + + -  + + -  + + - \  

--EHF " 

The state of (34) is a pure doublet, but in the general case in (28) we lack only multiplets 
with spin s = (2k ~- I)/2. 

We denote the energy of a function of (32) by EN-,. According to formulas from [14], 
to calculate this we require the two-electron and three-electron densities, 'which are 
obtained from (13) on the basis of the obvious correspondence p=-+ U, p~-+ U+for the term 
in square brackets in (i0). After all the calculations, the result for ~0 is formulated 
as a general problem for the eigenvalues of the operator 

+ ~(n~ [(U + U+)E(U; U+) _ U/(U; U+)U - -  U+/(U+; U)U+], (35) 

namely: 

61~  > = ~N-~ [o~ + o~ + ~(~(u + u+)]  I m>. (36) 

In principle, p~ and p@ should be found by optimizing EN-~ which incorporates the orbital 
relaxation on ionization. Then by means of SSHF we can hope also for a reltively simple 
solution to the problem of spin pairing in radicals. 

i. 
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