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An unambiguous procedure for separating the contributions to the transition moment 
and dipole polarizability of a molecule has been achieved by introducing a uni- 
versal transition operator for the coordinate, exhibiting invariant character 
with respect to a displacement of the origin of coordinates. The method has been 
illustrated for the calculation, in the self-consistent approximation, of the 
contributions of the fragments to the v-polarizability of a number of aromatic 
molecules in the singlet and triplet states. Definite transferability of the 
calculated local contributions from one molecule to another is observed. 

The dipole polarizability a of a molecule can be represented as the sum of local con- 
tributions made by the separate structural elements of the molecules and a certain increment 
taking account of the interaction between the fragments. The fact that this increment is 
usually small demonstrates the addltivity rule, which has long been familiar for this quan- 
tity (see, for example, [I, 2] and the up-to-date discussion in [3]). 

The quantum-mechanical justification of the additive scheme for a encounters certain 
difficulties, associated with the usual representation of the polarizability aRR in the 
direction R in the form of the sum with respect to excited states 

QR 1~ 
(i)l a R ' = 2 ` ~  ~ , (i) 

where QRi)_ is the moment of the transition from the ground state to the i-th excited state 

(with polarization R), and %i is the energy of excitation of this state. As a result, the 
separation of the local contributions in qRR is closely related primarily to the breakdown 
of the moments of the transition into contributions corresponding to the separate frag- 
men ts. 

The formal difficulties which then arise can be illustrated for simplicity by specific 
examination of a v-electron model. In this case the usual equation for the moment of a 
transition polarized in the direction R, and related quantities (of the polarizability 
type), calculated in the approximation of singly excited configurations, reduces to 

Qn=]/c~ ~ dqje~qc:r (2) 
~=I j= l  q=n+l 

Here, R~ represents the diagonal matrix elements of the operator of the coordinate R in a 
basis of the AO {X~}~, where R~ coincides with the coordinate of the atom at which the AO 
X~ is centered, dqj represents the coefficients of the expansion of the excited or perturbed 
state with respect to the configurations ~j+q, and c>j represents the MO LCAO coefficients 
[4]. 

At first sight, it appears natural to identify the local contributions to QR for the 
entire molecule with the atomic quantities 

Q~-= l/~ d~jc~qe~j R~, (3) 
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which in the sum give QR =~f . These quantities have a significant disadvantage, how- 

ever, associated with their noninvariant character with respect to the choice of, the origin 
of coordinates in the molecule being studied. In fact, 

n+a _ ~n -- ~ * -- Q~ § a ] /2  ~ dqjCvqs 
J,q 

r 
and only the sum of the resultant contributions ~dqic~qc~} over all the AO X~ becomes zero 

Lq 

as a consequence of the orthogonality of the occupied and unoccupied MO ~ c~qe~j = 0, so 

that the integral value of QR remains invariant: QR+~ = QR. 

An attempt to obtain a general solution for problems of this kind was undertaken in 
[5], where relationships were proposed for calculating the local contributions to the dipole 
moment and polarizability, based on local systems of coordinates. The difference which then 
unavoidably arose between the total value of ~RR and the sum of the local one-center con- 
tributions is redistributed between the two-center contributions calculated by means of 
special numbers. The system of equations for these in the general case is indefinite, and 
this method does not give the unambiguous solution of the problem desirable for specific 
applications. 

In the present work it has been possible, by introducing a transition operator of the 
coordinate invariant with respect to displacement, to put forward an unambiguous procedure 
for separating the local contributions to QR and a RR and hence to follow the transferability 
of the calculated local contributions from one molecule to another. 

TRANSITION OPERATOR OF THE COORDINATE, INVARIANT 

WITH RESPECT TO DISPLACEMENT 

To find the invariant quantities QR = QR+a, we shall consider in general form an arbi- 
trary transition moment QR in the form of the matrix element of the N-particle coordinate 

iV 

R~(I...N)----~R(i), calculated between the wavefunctions of the ground state IqD(i... N)> 
i=l 

and the excited state ]~).(I...N)> 

Qn=<(I) (t . . .  N) ] Rnl(I),  ( t . . . N ) >  - -  Sp B~vlO, ( l . . .  N)> <@ (1 . . .  N) [- (4) 
(1...N) 

We then write Eq. (4) ~n the form of the trace of the one-electron operator R(1) and the 
one-particle density matrix of the transition T(1) from ](I)> into the state ]~,> 

x ( l ) = N  Sp [ ( I ) , ( i . . . N ) > < ( O ( I . . . N ) I .  (5) 
(2...~v) 

According to Eqs. (4) and (5), the moment of the transition is equivalent to the expression 

Qn ~_ SpRT. (6) 

In Eq. (6) we redefine the operator of the coordinate in such a way that the new operator 

has the required property of invariant character with respect to a displacement by an 

arbitrary constant 

= (7) 

For this purpose we subject R to a certain "oblique-angle" transformation 

-~ = u R v ,  (8) 

and the matrices of the transformation U, V are selected so as to satisfy automatically 
condition (7) and the additional natural requirement 

Q~ = Sp~.~, (9) 

that is so that the new operator can be used to calculate the transition moments from the 
previous relationship (6). From Eq. (7) we readily obtain the operator equation 

UV = 0, (10) 
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and it follows from Eq. (9) that the one-electron transition matrix should also be invariant 
in a transformation of type (8) 

VxU = T. (ii) 

The specific structure of U, V is determined, if it can be found, by the form of the 
wavefunctions I~>, I~,> and the corresponding density matrices. 

In the case of greatest interest to us, that is in the case of the one-determinant 
Hartree--Fock description of the ground state I~> and the excited or perturbed state I~,> in 

the form of the superposition ~dqj~j~q , the one-particle spin-free transition density 
J.q 

matrix has the form 

x = 1/'-2Yl, d q j l %  > <(pj l, (12) 
J,q 

where lops> denotes the MO occupied in the ground state, and ITq> represents a vacant MO. 

It follows from Eq. (ii) that ~ is invariant with respect to the projection of x on the 
left into unoccupied MO and on the right into occupied MO. The projector on to the occupied 

?I 

MO, which is the familiar Fock--Dirac density matrix, is denoted by P----~ l~><~jl- The pro- 
j=l 

Jector on to the unoccupied MO ~' l~q><~ql then coincides with I -- 0, since from the 
q = n + l  

m 

completeness conditions, ~, l~i><~il = I .  Thus 
i=l 

x = (I -- p)~p. (13) 

Comparing with Eqs. (13) and (ii), we assume the identities U = 0, V = I -- 0, and with this 
choice, because of the idempotent character of 0, Eq. (i0) is satisfied automatically. As 

% 

a result, we have R = pR(I -- 0). It is more convenient to work with Hermitian operators, 

so that the symmetrized operator R can be written as 

= pR( I  - -  9) q- (I - -  p)Rp  = t / 2 ( R  - -  WRY),  

where Y = 2p -- I, and the symmetrized transition density matrix is x/=(~ + ~+)- D. We have 
final ly 

= I / 2 ( R  - -  Y R Y ) ,  (14) 

OR = Sp _~z = Sp R D ,  (15) 

It may be noted that the component of the polarizability ~RR in the direction R can also be 
written by means of Eq. (15), but in this case 

~R = Sp R.6Y, (16) 

where 6Y is the correction to the density matrix of the ground state satisfying the non- 
homogeneous equation, the right hand side of which also contains the matrix R [6]. 

LOCAL COMPONENTS OF THE TRANSITION MOMENT 

We can now consider specifically the problem of separating the local contributions 
to the transition quantities QR or a RR in the prepared form (15) and (16). For this purpose 
we break down the molecule into two parts, A and B. This breakdown corresponds to the 
following block structure of the matrices: 

= D = DB Y YBA Yu " ( 1 7 )  

Because of the involute character of ya = I, the following restrictions are imposed on the 
blocks Y 

Y ~  + YABYBA = I ,  YABYB + YAYAB = 0, ( 1 8 )  

The transition operator of the coordinate (14) is then detailed as follows: 
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RA = 1/2(RA--YARAYA -- YABRBYBA), (19) 

RB = (RA)A~B, BAB = t/2(YABRBYB + YxRAYAB). (20) 

The total moment QR then breaks down into the local contributions Q~ and Q~ and the inter- 
fragment component Q~B 

QR = Q~ + Q~ + Qfn, (21) 

Q~ = Sp RADA, Q~ = Sp RBDB, (22) 

Q~B = Sp (RABDBA + RBADAs)- (23) 

As a consequence of the involute conditions (18), the relationships (R--~a'-I)A= RA, (R~--~ a---I)AB 

=RAB, and hence the requirements of invariant character 

Qf+a Q~, ~n+a = vhs = Qfe (24) 

are fulfilled. 

An analysis of the transition matrix D from the viewpoint of the local character of the 
electronic transitions was carried out in [8], where it was shown that the norms l]Dhll, and 
IIDell can be used to estimate the localization of the excitation on the fragments A and B, 
respectively, and that ]]DABII 2 can be used to estimate the weighting of the states with 
charge transfer. From this viewpoint, the breakdown (21)-(23) is quite natural. 

The situation with the inter-fragment interaction Q~B is characteristic. From the 
quasidiagonal structure of R in Eq. (17), it can readily been seen that the previous ex- 
pression for QR of type (6) leads to 

Qn = Sp RADA + Sp RBDB, (25) 

so that the states with charge transfer, defined by the block DAB , do not make a contribu- 
tion to the transition moment. In the new invariant representation of the contributions to 
QR there has appeared the inter-fragment transition moment (23), generated directly by the 
matrix DAB. This dependence of Q~B on DAB can be eliminated by using the relationship D + 
YDY = 0, equivalent to Eq. (13). This identity leads to the following relationship between 

the block D A and DAB 

DA + YADAYA ~ YADaBYBA + Y~BDBAYA + YABDBYBA = 0 (26) 

and makes it possible to transform Eq. (23) to the form 

i 
SpDA (RA ~ YA RAYA ~ YABRBYBA) ~ -~- Sp DB (RB ~ YBRBYB ~ YBARAYAB), (27) 

in which DAB and DBA are eliminated in explicit form. We can compare Eq. (27) with the 
quantities in Eq. (22), which for clarity can be written in the expanded form 

Q~ = ~ Sp Da (BA -- YaRAYA -- YAsReY~x), 

1 (22') Q~ =-g-SpDB(BB- Y z R B Y z -  YexB~Y~z). 

The terms with Y in Eqs. (27) and (22') differ in sign, so that the result in the sum gives 
Eq. (25), with the difference that 8p RAD A and Sp RBD B in Eq. (25) are not invariant since 
in the general case, Sp DA ~= 0, although Sp D = Sp D A + Sp D B = 0. The presence in'Q~ of 
terms with YABRBYBA indicates that the local component Q~ absorbs a certain fraction of the 
interaction of the fragment A with the rest of the molecule. A rigorous separation takes 
place in the case of a weak interaction between the fragments, a measure of which is pro- 
vided by IIYABII (smallness of the orders of the bonds between the fragments). By assuming 
that YAB is a matrix of the first order of smallness with respect to the inter-fragment in- 
teraction, we find that 

Q~ ~ -~- Sp Da (Bx -- YxRaYA) (28) 

with an accuracy up to second order. The actual inter-fragment contribution Q~B is then 
of the second order of smallness. This feature apparently determines the real possibility 
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of breaking down the oscillator strength and polarizability into local contributions in 
those cases where it is possible to distinguish weakly interacting fragments in the mole- 
cule. 

We have thus shown that in the calculation of Q~ and Q~ it is possible to use local 
systems of coordinates, centered on the fragments A and B, respectively, but in this case 
it is necessary to use Eqs. (22) and (22'). 

BREAKDOWN OF THE POLARIZABILITY 

We can now detail the relationships found as applied to the analysis of the polariza- 
bility ~RR of the form (16), for which we expand the correction ~Y with respect to the 
transition density matrices D(i) ([6], pp. 235, 236), 

8Y = 2 ~ Sp D(i)R D(i) 2 ~ 0~) D(i). 
i ~i = . ~ (29) 

% 

The analogous expansion for R gives 

= Z Q~)D (0. (30) 
i 

By now breaking down D(i), the density matrix of the transition into the i-th excited state, 
into blocks and introducing the symbols 

l(~ ) = Sp [D(~)] 2, ~AB'(i) 2 r  n(i ,  n(i) (31)  ~)p A]AB L~BA) 

(i) (j) l(~ j) = Sp D(~)D~ ), l(~ ) Sp[DA,DBA + nO, nq ) ]  : ~'ABJJBAJ, (32) 

we obtain the following representation of the local and inter-fragment components of the 
polarizability of the type (21)-(23) 

---- q- man, (33) 

~#) Zi (34) 

R R 

(ZABnR = 2 ~[O~)]2I(~)B+. ~ 2 Zi#) ~Q(i)Q(i)l(~'~. (35) 

IA(i) and IA(~) arose earlier IS], where they characterized the The localization numbers 

local character of the i-th excitation and hence the degree of charge transfer. From the 

normalization Sp D= = 1 we have l (i) + l (i) + Z(~) = i. The new numbers (32) characterize 
the overlap of the excitations, and as a consequence of the orthogonal character of the ex- 

cited states Sp D (1) D (j) = 0, their sum becomes zero: IA (ij)- + ZB (ij)- + IA(~ j)- = 0. As a 

consequence of this condition, the terms with IA(~ j), etc. do not appear in the overall 
polarizability, which reduces to the standard expression (i). 

The possible identification of ~A RR with 

[ 
af" = 2 ,~- - - ~ i  (36) 

which is suggested by Eqs. (i) and (34), is also an acceptable version of the separation of 
the local contribution in the total polarizability, but this method requires a knowledge 
of all excited states possible in the given scheme and their characteristics. At the same 
time, Eqs. (34) and (35) are based on the use of the quantities (16) and (21)-(23), the 
calculation of which requires a knowledge of only the total correction ~Y, which is usually 
found numerically, avoiding the expansion of type (29). 

It is obvious that when there are more than two fragments A, B, ..., C, the local con- 
tributions and the inter-fragment components are calculated from equations of the same type 
as Eqs. (22) and (23) 

= s p  . . . ,  o , g "  = S p  
RR =A~ ~ Sp (NAI~SYBA n t- B~ASYaB) . . . .  (37)  
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TABLE i. Local Components of the Average u-Polarizability, 
~a, in a Series of Polyphenyls 

Molecule 

Biphenyl 

Terphenyl 

Qu aterphenyl 

Ground state 

A ~A AB 

4,9 I--2 
5,1 1--2 
5,i i - -3  
5,2 i - -2  
5,3 2--3 

1--3 
1--4 

O~AB 

t,8 
2,1 
0,3 
2,3 
2,5 
0,4 
0,5 

Lowest triplet 

A c~ A 

i 8,8 
i 9,6 
2 5,6 
1 9,0 
2 t0,4 

AB 

t - -2  
1--2 
i - -3  
t - -2  
2--3 
1--3 
i - -4  

gAB 

3,0 
8,6 
i,2 

10,9 
6,6 
3,2 
0,5 

In CNDO calculations, the matrix R is not purely diagonal, but retains a block structure of 
the form (17) for any breakdown of the molecule into fragments, so that Eqs. (19)-(37) also 
cover the case of all valence electrons. 

As an illustration we give the results of calculations of the local contributions to 
the v-electron polarizability for a number of aromatic molecules. For the average polariza- 
bility of various benzene derivatives it is possible to use the following diagrams (e in 
~3) : 

0~9 0,91 0 ~  

1~58 

where the numbers in the ring or at the substituent correspond to the local contributions 
aA, and the numbers above the arrow coincide with the value of the inter-fragment contribu- 
tion CAB. It can be seen that the average v-polarizability of the benzene ring is with good 
accuracy a transferable quantity, although for separate components of the polarizability 
this stability of the values of the local contributions is not observed. For example, in 

~ 3 ~ xx = 714 A = benzene exx = eYY = 6.74 A , whereas in aniline, for the phenyl ring, ePh 
6.51, and in nitroaniline, xx = 7.50 e yy = 5 74. 

ePh ' Ph " 

Polyphenyls in the ground singlet state are also characterized by almost transferable 
values of ePh, and the whole effect of strong nonadditivity for the polarizability of these 
conjugated systems can be assigned to the inter-fragment component eph,Ph', which for the 
nearest interactions are also almost transferable; the long-range interactions are small and 
can be neglected. In the lowest triplet state (the calculation was carried out in the un- 
restricted Hartree-Fock (UHF) approximation by the method described in [8]), the trans- 
ferability of the ~-contributions, which are greater in this case, to the polarizability is 
much lower than that for the singlet case. The results of the calculation of e A and CAB 
for polyphenyls are given in Table i, where the usual numbering of the fragments is adopted 
(from the start of the polyphenyl chain). 

In summarizing the foregoing, we would emphasize the simplicity of this method for 
separating the local contributions from the calculated Values of e RR �9 With slight changes, 
the same method can be used for the hyperpolarizability 6 RST, the coefficient for the third 

power of the electric field strength ~ in the expansion of the energy of a molecule in a 
series with respect to the powers of ~. Invariant character in this case is achieved by 
the identity transformation of the quantity ~ of the form [6] 

= Sp 5I(Sr)~r ~ Sp B.SY,  

where B = */2[[~f, Y]+, 6Y]+. It can be seen that the addition of the displacement of the 
coordinate al to the correction 6f of the Fock operator f leads, with an accuracy corre- 
sponding to the coefficient a, to the quantity [Y, 6Y]+, which becomes zero [6], and this 
ensures the required invariant character of the operator B. 

The separation of the local contributions to the electrical properties of molecules, in 
addition to the obvious application to the problem of additivity, may also prove useful in 
the study of the instability of a molecule in an electric field, leading to the separation 
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of definite molecular fragments [9]. With an accuracy corresponding to the terms ~3, the 
electrostatic energy concentrated in the fragment is estimated as the sum of the correspond- 
ing local contributions to the dipole moment, polarizability, and hyperpolarizability. 
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A QUANTUM-CHEMICAL STUDY OF THE REACTION OF CARBON MONOXIDE 

MOLECULES WITH THE ATOMS AND IONS OF THE ELEMENTS OF THE SECOND 

PERIOD. 

II~ CALCULATION FOR THE COMPLEXES Be2+'CO AND Be'CO 

D. A. Zhogolev and V. V. Solov'ev UDC 539.192/194;535.33/34 

The Fischer--Kollmar version of the CNDO method has been used to study the geometric 
and electronic structure of the systems Be2+.CO and Be'CO. For the first of 
these, the most favorable geometric configuration corresponds to the linear 
arrangement of the atoms, and for Be. CO the most favorable configuration corre- 
sponds to the triangular arrangement. The calculations indicate that the CO mole- 
cule forms strong bonds both with the beryllium atom and with the beryllium 
cation (~80 and 180 kcal/mole, respectively). In the complex Be2+'CO, the 
strength of the C--O bond is of the same order as the strength of the Be--CO bond, 
that is, Be2+'CO is a three-component system with linkages of approximately equal 
strength, characterized by high values of the energy of rupture. The calculations 
indicate that the interaction of the CO molecule with the beryllium atom lowers 
the characteristics of its excitation process, and hence should soften the condi- 
tions required for its activation. 

The carbon monoxide molecule in many respects deserves greater attention. In particu- 
lar, it is the most stable diatomic molecule (its dissociation energy is 256 kcal/mole [i]), 
and this is stimulating the search for possible applications of carbon monoxide as a com- 
ponent in materials science. At the same time, as already noted in [2], carbon monoxide 
is a harmful (toxic) byproduct of many technological processes, particularly those asso- 
ciated with the combustion of organic fuel, and in principle, the problem of developing ab- 
sorbers for this gas is urgent. This to some extent explains the interest in the study of 
such problems as the strength of the bonds formed by CO molecules with the atoms or ions of 
various elements, the value of the coordination number in complexes of the type X(CO)n, the 
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