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Abstract. Previous results on quasi-classical limit of the KP  hierarchy and its W-infinity symmetries are 
extended to the Toda hierarchy. The Planck constant h now emerges as the spacing unit of difference 
operators in the Lax formalism. Basic notions, such as dressing operators, Baker Akhiezer functions, and 
tau function, are redefined. W1 + ~ symmetries of the Toda hierarchy are realized by suitable rescaling of 
the Date-J imbo-Kashiara-Miwa vertex operators. These symmetries are contracted to wl + ~ symmetries 
of the dispersionless hierarchy through their action on the tau function. 
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1. Introduction 

Dispersionless analogues of integrable systems of KP and Toda type [1] provide an 
interesting family of integrable 'contractions'. In the context of field theory, the 
dispersionless Toda equation is studied as continuous (or large-N) limit of the 
ordinary Toda field theory [2] as well as a dimensional reduction of four- 
dimensional self-dual gravity [3]. Recently, a hierarchy of higher flows has been 
constructed [4] and applied to two-dimensional string theory [5]. 

Dispersionless (or long wavelength) limit can also be understood as quasi-classical 
limit. In a previous paper [6], we considered the KP hierarchy and its dispersionless 
version from this point of view, and could show a direct connection between 
W-infinity symmetries of the two hierarchies, i.e., WI+~ symmetries of the KP 
hierarchy and wl+oo symmetries of the dispersionless KP hierarchy. In this Letter, 
we present similar results on the Toda hierarchy and its dispersionless version. 

2. Lax Formalism of Dispersionless Toda Hierarchy 

To begin with, let us briefly review the Lax formalism of the dispersionless Toda 
hierarchy [4]. The dispersionless Toda hierachy consists of an infinite number of 
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commuting flows with 'time variables' z = (zl, z2 .... ) and ~ = (£~, 22, ...). The Lax 
equations can be written 

az° = {~"' ~e}, a~. = {~"' s} ,  

az. = {~"' ~ ) '  02. = {~"' ~} '  

where 5g and L~ are Laurent series 

n = 1,2,..., 

(1) 

= p + ~ u,(z, 3, s)p-", 
,=0 

5~ = ~ a,(z, 2, s)p" 
n = l  

of a variable p, and ~ ,  and ~= are given by 

~ .  = (~°%o,  ~ .  = ( ~ - ° ) . < - 1 .  

(2) 

(3) 

Here ( )~>o and ( ).<-1 denote the projection of Laurent series onto a linear 
combination of p" with n >~ 0 and ~< - 1, respectively. The Poisson bracket { , } is 
defined by 

OA(p, s) OB(p, s) OA(p, s) OB(p, s) 
{A(p,s),B(p,s)} = p gp gs gs P gs (4) 

on the two-dimensional 'phase space' with coordinates (p, s). This Lax system can be 
extended to a larger system. The extended Lax representation possesses, in addition 
to the above equations, another set of dispersionless Lax equations 

6=. : {~"' ~ } '  a~. - {~°' ~ } '  

u 2  ~ 
n = l , 2  .. . .  , 

(5) 

and the canonical Poisson relations 

for a second set of Laurent series 

(6) 

n : l  n : l  

y2 = -  ~ n ~ . ~ - . +  s + ~ ~.(z,~,s)~". 
n : l  n : l  

(7) 
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These somewhat  compl ica ted  equat ions  can actually be cast into a simple, compac t  

2-form equation: 

d £  a/x dJ¢/ dS~ A d J ~  
5 ° - c o =  ~ , 

where 

dp ~ 
co = - -  Ads + d ~ .  Adz. + d ~  AdS.. 

P .=1 .=1 

(8) 

(9) 

3. Lax Formalism of Toda Hierarchy with Planck Constant 

To interpret  this h ierarchy as quasi-classical limit, we reformulate  the ord inary  T o d a  

hierarchy [7] in the language of difference opera tors  in a cont inuous  variable s with 

spacing unit  h. The Lax equat ions are then given by 

h aL h 3L [/~., L], 
~z. = [B., L], 38. -- (I0) 

haL = l B . ,  L ] ,  h 3L = [ & ,  L ] ,  n = i ,  2,.. 
Oz. ~8. "' 

where the Lax opera tors  L and L are difference opera tors  of the form 

L = e ha/as + ~ u. (h, z, i, s) e-"he/as, 
.=o (I f)  

L = ~ ti.(h, z, 8, s) e "ha/as 
n = l  

and B. a n d / 3 ,  are given by 

B. (L")> o, /3. ^ - "  = = ( L  ).<_,. (12) 

Here  ( ).>o and ( ).<-1 denote  the project ion onto  a linear combina t ion  of e "ho/a* 

with n ~> 0 and  ~< - 1 ,  respectively.* This Lax representat ion,  too, can be extended 
into a larger system. Besides the above  Lax equations,  the extended Lax representa-  
t ion contains  the second set of  Lax  equat ions 

h aM = lB., M ] ,  
~Zn 

h 3~ ?~z. = lB., M], 

h °M = [&,  M], 

~aM = [ & ,  M1, 
38. 

n = l ,  2 . . . .  , 

(13) 

*These notations are quite different from earlier papers [-7]. In particular, L and L correspond to L and 
M therein, whereas M and/~ introduced here have no counterpart. Furthermore, W and l~ introduced 
below correspond to W~) and ~(o~ in those papers, whereas P and if' to W ~°) and W (°~ therein. We 
would like to apologize for this notational inconsistency. 
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and the canonical commutation relations 

[L, M ]  = hL, [L, M ]  = hL (14) 
for a second set of difference operators 

M = ~, n z , , L " + s +  ~ v,,(h,z, 2, s)L-", 
n=l  .=1  (15) 

= - . 2 . L - "  + s  + z,  2, s ) L  ° 
n = l  n = l  

These equations obviously bear a close resemblance to ordinary quantum mechanics. 
To be consistent with ordinary quantum mechanics, h in these formulas should be 
replaced by ih. 

The dispersionless hierarchy emerges from the ordinary hierarchy as quasi- 
classical limit as follows. We assume smooth asymptotic behavior of the coefficients 
of the Lax operators as h --, 0: 

u.(h, z, 2, s) = u~.°)(z, 2, s) + O(h), 

v,(h, z, 2, s) = v(,°)(z, 2, s) + O(h), (16) 

a.(h, z, 2, s) = a~.°~(z, 2, s) + O(h), 

~.(h, z, 2, s) = v~°)(z, 2, s) + O(h). 

One can then define Laurent series 5~, J//, 5~ and ~ from these coefficients as 

~ ( ° ) l ( z ,  2, s)p-", etc., (17) = p  + u,+ 
n ~ l  

and Laurent polynomials N.(p) and ~,(p), similarly, from the coefficients 

b.,~(h, z, 2, s) co) ^ O(h), = b,~,i (z, z, s) + 

~.,i(h, z, 2, ~) = 6~°](z, 2, s) + o ( h )  (18) 

of the difference operators 

n - 2  

B,,(p) = e "h°/°` + Y', b..i(h, z, 2, s) e ~ha/a~, 
i=o (19) 

n 

&(p) = Z t~.,,(h, ~, 2, s) e - ' ~ / ~  
i = 1  

as  

n - 2  

N,(p)  = p" + y' b~°,](z, 2, s)p ~, (20) 
i=O 

N.(p )  y.O.°~(z, 2, = n, i ,  s)P - i"  
i = 1  
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In quasi-classical (/i ~ 0 )  limit, commutators of difference operators turn into 
Poisson brackets as 

[C °/°~, s] = h ehe/°s--+ {p, s} = s. (21) 

The Lax equations of L, M, L and M can thereby be reduced to the dispersionless 
Lax equations of £0, rig, 5~, and ~ .  

4. Dressing Operators, Baker-Akhiezer Functions and Tau Function 

The notions of dressing operators, Baker-Akhiezer functions and tau function [7] 
can be reformulated so as to fit into the above setting. 

The dressing operators are now given by difference operators of the form 

W = 1 + ~ w, (h, z, 3, s) e-"ha/~s, 
.=1 (22) 

W = ~ ~,,,(h, z, 3, s) e "h~/~s. 
n = O  

The Lax operators are then given by the 'dressing' relations 

L = Wehe/esW- 1 L ~-- ~Veh~/°s~v- 1 

M=W(~=nz"e"he/~S+s) W , ,  1 1, (23) 

( ~_ nz"e-"h~/OS+s) w 1 M = W - 1  

The Lax equations can be converted into the evolution equations 

h ~3 W W e "h~/~s, h (?W 8,, W, = B. W - 0~. = 
(24) 

h Ow h & W -  We 

The coefficients w. and ~.,  unlike u., etc., are singular as h ~ 0, as we shall see in 
the following analysis of Baker-Akhiezer functions. 

Baker-Akhiezer functions are given by (formal) Laurent series of a 'spectral 
parameter' 2: 

• = ( 1 +  ~=1~ w"(h'z'2's)2-") expli-~[z(2)+sl°g2]' 
(25) 



170 

where 

KANEHISA TAKASAKI AND TAKASHI TAKEBE 

z(2)= f zn2", 2(2 -1) = f 2.2 -n. (26) 
n = l  n = l  

Dressing relations (23) can now be transformed into linear equations of ~t' and ~:  

aq~ 
2~, = L ~ ,  h2=::  = M~'. U,4 

(27) 

In particular, the coefficients vn and Vn of M and 5) can be read off from logarithmic 
derivatives of q? and ~:  

h2 ~3 l°g q? f 82 - nz"2n + s + vn(h, z, 2, s)2-n, 
n ~ l  n = l  

h2 0 log q J  f n2n2 -n + s  + f f3.(h, z, 2, s)2 n. 
82 n=l n=Z 

(28) 

Evolution equations (24) of the dressing operators, too, can be converted into linear 
equations of u? and ~:  

e~e hee &v, 
h ~z. = B"qJ' g8 = 

h a P  Bnq', h a~e 
azn = T~- : ~"~'" 

(29) 

These equations resemble time-dependent Schr6dinger equations in ordinary 
quantum mechanics. This implies that ~I' and • takes a WKB asymptotic form as 
h --* O: 

= exp[h- 1S(z, 2, s, 2) + O(h°)], 

= exp[h- tS(z, 2, s, 2) + O(h°)], 

where S(z, 2, s, 2) and S(z, 2, s, ,~) have Laurent expansion of the form 

(30) 

S(z, 2, s, 2) = z(2) + s log 2 + ~ S,(z ,  2, s)2-", 
n = l  

S(z, 2, s, 2) = 2(2-1) + s log 2 + f S.(z, ~, s)2". 
n = O  

(31) 

In particular, w, and ~,  are singular as h ~ 0. 
The tau function, too, exhibits characteristic singular behavior as h-~ 0. In the 

presence of h, we define the tau function r(h, z, 2, s) as a function that reproduces the 
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Baker-Akhiezer functions as 

171 

r(h,  z - h e ( 2 - 1 ) ,  2, s) 

r(h, z, 2, s) 
exp h-  1 [z(2) + s log 2] = q~(h, z, 2, 2), 

~(h, z, 2 - he(2), s + h) 

r(h, z, 2, s) 
exp h-  112(2-1) + s log 2] = qJ(h, z, 2, 2), 

(32) 

where 

22 2" ) 
8 ( 2 )  ,... -- . . . .  (33) 2'2-~ ' n '  

In the case of h = 1, this reduces to the ordinary definition. Taking the logarithm of 
(32) and comparing them with the WKB asymptotic form (30) of ~F and @, one can 
easily find that log z(h, z, 2, s) should behave as 

log r(h, z, 2, s) = h-2F(z, 2, s) + O(h-  1) (h ---r O) (34) 

with an appropriate scaling function F(z, 2, s). The Laurent coefficients S= and S. of 
S(z, 2, s, 2) and S(z, 2, s, 2) can be written 

1 OF 1 OF OF 
S. - S. - go = - - .  (35) 

n Oz.' n 02.' 0s 

This implies that F(z, 2) is nothing but the logarithm of the tau function of the 
dispersionless Toda hierarchy [4]: 

F = log %Tod= (36) 

The function F may be called the 'free energy' in analogy with matrix models of two 
dimensional quantum gravity [6]. 

5. Hamilton-Jacobi Equations and Legendre Transformation 

The 'phase functions' S and g satisfy a set of Hamilton-Jacobi equations, which turn 
out to reproduce the Lax formalism of the dispersionless Toda hierarchy after a 
Legendre transformation. To see this, let us gather up the Hamilton-Jacobi equa- 
tions into 1-form equations: 

d2 0S 
dS(z, 2, s, 2) = ~¢/(2) ~-  + ~ss ds + 

dit 0g 
dS(z, 2, s, 2) = J¢2(2) T + ~s as + 

• ~,,(e as/°=) dz,, + ~, ~n(e ~s/°') d2,, 
n = l  n = l  

~ = ( e  as?~') dz, + ~ ~=(e ~s?°s) di=, 
n = l  n = l  

(37) 
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n = l  n = l  
(38) 

oo oo 

= - E . e . 2 - "  + E °. 
n=1 n=l 

Exterior differentiation of these equations give a 2-form equation of the form 

d2 (OS~ ~ 
/x dJC{(2) = dkc~s ] /x ds + ~:1 d~ , ( e  °s/~')/x dz, + ,=1 d~,(e as/~')/x dr, (39) 

5 -  

and a similar 2-form equation including Jd(2) and S in place of Jd(2) and S. We now 
distinguish between the two 2's in S and S as S(z, i, s, 2) and S(z, f, s, i), and solve the 
equations 

exp OS(z, f, s, 2)/c?s = exp ~S(z, f, s, I)/Os = p (40) 

with respect to 2 and )~. Obviously, this is a kind of Legendre transformation. Let us 
write the solutions 

I = 2.@(z, f, s, p) (41) 2 = L,e(z, 2, s, p), 

and define 

= ~(2)lx=~=,~,s,,), ~ = ~ ( 2 ) [ ~ : ~ ( z , ~ , ~ , p ) .  (42) 

Then the above 2-form equations coincide with (8), hence these S ,  J//t, 2 and 
indeed satisfy the dispersionless Toda hierarchy. 

6. W-Infinity S y m m e t r i e s  

We now turn to the issue of W-infinity symmetries. W-infinity symmetries of the 
Toda hierarchy can be formulated in two different ways, i.e. in bosonic and fermionic 
languages. For the analysis of quasi-classical limit, the bosonic language is more 
convenient. 

The bosonic description is based on the so-called 'vertex operators' [8]. Actually, 
the Toda hierarchy has two copies of W1 + ~ symmetries, which mutually commute. 
They are realized by the infinitesimal action z --+ z + ~Zz, ~ ~ ~ + eZz of the vertex 
operators 

Z(h, 7~, 2) exp (h  l [ z ( ~ )  - -  z(2)])(~/2) s/h exp(h[-  ~'z(2- 1) _1_ ~"z( 2 -  1)]) __ 1 
= ~ - 2  ' 

(43) 
Z(h, .~, 2) exp (h- 1 [f(~- 1) _ 2(2-1)])(2/2)s/h exp(h[-  ~(2) + ~'~(2)]) - 1 

= ~-1  _ 2 - 1  , 
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where 

~.=(2_1) = ~ 2-" c~ ~',(2) = ~' 2" 3 (44) 

If one expands these two-parameter families of symmetries into Fourier modes along 
the double loop 1~t = [2[ = const., the outcome are two copies of gl(~) symmetries 
[8]. If one first expands these vertex operators into Taylor series along the diagonal 

= 2) 1 1 

,=, -(17_ ~. W(')(h' 2), etc., (45) 

and further into Fourier modes along the loop 121 = const., 

W")(h,,~)= ~ W~°(h)2 -~-~, etc., (46) 
n = - o o  

the coefficients W(,°(h) and W())(h) (n e Z, l ~> 1) become generators of W1 + 0o symmet- 
ries. These symmetry generators are differential operators of finite order in z and 2, 
respectively, and differ from the ordinary (h = 1) definition [8] by the simple 
rescaling 

3 

(47) 

- T L \  o(h)] 
h - z  

- l [ ( d /Z (2 )2 -1 ) ' +  O(h) ] .  (48) 

3 
2, ~ h-  12,, ~ h 

We have thus essentially the same W1 + ~ symmetries as the KP hierarchy, but now 
in duplicate. 

Let us show how to contract these WI+~ symmetries into Wl+~ symmetries of 
the dispersionless hierarchy. The essence is the same as in the case of the KP 
hierarchy [6]. First, with the aid of basic relations (34) and (35), we write the action 
of W(°(h, 2) on the tau function in terms of ~(2): 

W(°(h, 2)~(h, z, 2, s) 

T(h, z, 2, s) 

_,_(LY -- l\O~] exph- l[S(z ' z ' s '~) -  S(z'2's'2) + O(hl) ] l i :z  
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We then pick out  the mos t  singular term ( ~ h  -~) as h ~ 0, and consider it as defining 

a k-dependent  infinitesimal t rans format ion  of F, F ~ F + ew(~)(2)F. Its Four ier  
modes  w~l)F are given by 

w~l)F = -- Res 1 1 i , + z- 1 d2 ~= ~ ~ ( ~ ( ; ~ ) ~ -  ),~ 

1 1 n = - R e s - / J {  5¢ a=~ d log ~¢ 

where Rest= ~ denotes  the residue at 2 = ~ ,  

(49) 

These w~, t) coincide with one half of the Wl + 0o symmetries that  have been constructed by 
a different me thod  [4]. Another  half  can be obta ined  f rom l~,~)(h) in the same way. 

In the fermionic language, the vertex operators  correspond to fermion bilinear forms. 

Let  if(2) and ~*(2) be the D a t e - J i m b o - K a s h i w a r a - M i w a  free fermion fields [8] 

n, (51) 

with an t i - commuta t ion  relations 

[ ~ i , ~ j ] +  = [ ~ * , ~ * ] + =  0, [~, ,~b*]+ = 61j, (52) 

and (nl and In), n ~ 2~, be the g round  states in the charge-n sector of the Fock  space, 

~,n{0> -- 0 (n ~< - 1 ) ,  ~,,'10> = 0 (n ~> 0), 

<Ol 0n = 0 (n > /0) ,  <0l ~.* = 0 (n ~< -- 1). (53) 

A generic expression of the tau function is given by [9] 

z(h, z, 2, s) = ( h -  is i emZ)/hg(h) e - a(el/h Ih- ~s), (54) 

where 9(h) is an appropr ia t e  h-dependent  Clifford operator ,  and H(z) and/4(~)  are 
genera tors  of t ime evolutions,  

n = 1 . = 1 ( 5 5 )  

Hn = ~ :Om~*+n: 
r n  = - - ~ 3  

no rma l  ordered with respect to (01 and 10). Actually, the Clifford ope ra to r  g(h) takes 
the same form as in the case of  the K P  hierarchy [6]: 

9(h) = exp h 1 :A 2, h 0(2)" 0"(2): 2~i '  

Res )t n d2 = - fin,- 1- (50) 
~ , = o O  
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where A is a linear differential operator, and 'A~0. if*' means A~ times if*. The action 
of Z(h, 7, 2) and Z(h, "2, 2) is realized by insertion of a fermion bilinear form: 

Zfh, L ~)~(h, z, 2, s) : < h -  I sI emZ)/h~b(~)~,*(2)9(h) e-  n(~)/h Ih- 1s>= 

Z(h, 7[, 2)z(h, z, ~, s) = < h -  is I emZ)/hg(h)~(~)~*(2) e - a¢e)/~ Ih- is>. 
(57) 

The bosonic and fermionic representations are thus connected. For the moment, the 
bosonic language looks more preferable because the fermionic representation is valid 
only for discrete values s E hE. 

7. Conclusion 

We have thus extended our previous results on the quasi-classical limit of the KP 
hierarchy to the Toda hierarchy. The Planck constant h now enters into the Lax 
formalism as the spacing unit of difference operators. The notions of dressing 
operators, Baker-Akhiezer functions and tau function are redefined so as to fit into 
the new formulation. We have used two copies of the Date-J imbo-Kashiwara-Miwa 
vertex operators to calculate the action of W1 + co symmetries on the tau function, 
which exhibits singular behavior as h --+ 0. The most singular terms therein turn out 
to give wl + ~ symmetries of the dispersionless Toda hierarchy. 

Hopefully, these results will further be extended to multi-component KP and Toda 
hierarchies. The so-called Whitham hierarchies [10] will then emerge as quasi- 
classical limit. 
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