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A study was made of the basic characteristics of eight-coordinate polyhedra in the dodecahedral class: 
the Hoard dodecahedron, the tetragonal antiprism, and the trigonal prism with two additional vertices 
over the centers of two of the rectangular faces. A criterion, based on the dihedral angles 5 between 
pairs of faces intersecting along the b-edges of a dodecahedron, is proposed for determining the poly- 
hedral shape. An additional criterion is based on the nonplanarity of the body-diagonal trapezoids of 
the dodecahedron. The nonplanarity is characterized by the dihedral angle q between two planes: the 
first passes through the short base of the trapezoid and the midpoint of the long base, while the second 
includes the long base of the trapezoid and passes through the midpoint of the short base. Problems in 
the stereoisomerism of eight-coordinate complexes with chelating ligands were examined. 

I. INTRODUCTION. EIGHT-COORDINATE POLYHEDRA 

There is presently no generally accepted nomenclature for the description of high-coordinate polyhedra. There 
is not even agreement as to which polyhedra are of the same type (differing only by the degree of distortion of one 
or the other form) and which ones are basically different in structure For example, [I] enumerates 23 different poly- 
hedra, with coordination numbers from six ID 12, which are found in rare earth compounds. Included are five differ- 
ent ten-coordinate polyhedra, six eight-coordinate polyhedra, and four six-coordinate polyhedra. However, the hex- 

agonal bipyramid is not listed among the eight-coordinate polyhedra. In all probability this is due to the stereo- 
chemical characteristics of the rare earths, which are different from those of the actinides. 

Generally speaking, in any convex eight-coordinate polyhedron a quadrangle (nonplanar in the general case) 
can be chosen such that four of the vertices lie at the corners of the quadrangle and the remaining four are distrib- 

uted two on each side of the quadrangle. When projections of various polyhecka onto the average plane of the quad- 
rangle are examined, four limiting cases can be distinguished for the relative positioning of the polyhedral vertices 
(Fig. I). When these polyhedra are idealized (by choosing the lengths of the sides and the values of the angles), each 
gives one of the known highly symmetrical distributions met in crystal structures (Fig. 2). 

The 8 A polyhedron, formed by two trigonal prisms laid crosswise on the common square face, is comparatively 
unusual. This polyhedron is found for the potassium ion in the structure of K2OsO2(OH) 4 [2]. The remaining three 

polyhedra are the 8 B hexagonal bipyramid, the 8 C cube, and the 8 D Hoard dodecahedron. They are familiar enough 
not to require illustrative examples. 

It is well known that polyhedra made up mainly or completely of triangular faces are the rule in island struc- 
tures (those structures in which the complexes are not linked into chains, layers, or three-dimensional lattices). With- 
out touching on the question of the requirements imposed on the symmetry of ~he polyhedron by the atomic orbitals 
which take part in forming the valence molecular orbitals, we can explain this phenomenon simply by the demands 
of interligand interactions. Crudely speaking, the repulsion forces force the ligands as far apart as possible subject 
to the maintenance of a constant distance from the central atom. In polyhedra inscribed in a sphere, the average 
edge length increases as the number of sides Of the defining polygons decreases. This may explain the absence of 
type 8 C and 8 A discrete complexes for the rare earth (these geometries are the cubic and crossed-prismatic ones), 
although these polyhedra are theoretically possible if the ~-orbitals of the central atom can take part in the molec-  

�9 ular orbitals. 
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Fig. 1. The four types of convex eight-coordinate polyhedra. 

/25 q 

Jl 
IJ/' 

oh-m3m 

Fig. 2. Idealized shapes of the four eight-coordinate polyhedra. 

The hexagonal bipyramid generally is found much Iess frequently than the dodecahedron and related polyhedra. 
The obvious reason for this is the inevitable chemical nonequivalence of the atoms at the vertices and those in the 
equatorial plane of the hexagonal bipyramid, coupled with the differences in the interligand distances along the equa- 
torial perimeter and along the pyramidal edges. This polyhedron is found mainly in uranyl compounds with bidentate 
ligands in the equatorial plane, where four-membered chelate rings are formed and the ligand bites are short. 

The present work examines the basic characteristic of eight-coordinate polyhedra in the dodecahedral class. 
All three of the most typical eight-coordinate polyhedra belong m this class: the Hoard dodecahedron, 8d, the te- 
tragonal antiprism, 8an, and the trigonal prism with two additional vertices above two of the rectangular faces, 8ct. 
The name of the last polyhedron is a cumbersome one, making it difficult to talk about this polyhedron in the paper. 
We therefore use the English name for this polyhedron, the bicapped trigonal prism. The 8an and 8ct polyhedra can 
be obtained by appropriate deformations of the 8 d dodecahedron. The transition 8 d --* 8ct can be brought about by 
deformations of the planar rectangle: one of the sides (b 1 in Fig. 3) is shifted to form a planar rectangle, while an- 
other side, bz, is rotated slightly about the two-fold axis. In order to accomplish the transition 8 d -* 8an, one more 
transformation must be added to the previous set: shifting of the b z side to form a second planar rectangle. In this 
sense the bicapped trigonal prism is a polyhedron intermediate between the dodecahedron and antiprism. 

Finally, the choice of which of the polyhedra is characteristic is fairly arbitrary. The symmetries are different, 
and conversion of one to another leaves only one two-fold symmetry axis fixed. However, in the analysis of com- 
plexes with different ligands, the symmetries of the polyheclra play a secondary role. It was just such cases as these 
that we had in mind in the present work. 

II. CRITERIA FOR DETERMINING THE SHAPES OF THE POLYHEDRA 

IN THE DODECAHEDRAL CLASS 

Hoard and Silverton [3] introduced the concept of the ideal dodecahedron and ideal antiprism inscribed in a 

sphere. By analogy we can introduce the concept of a bicapped trigonal prism inscribed in a sphere. The three poly- 

hedra are characterized by the following parameters. For the dodecahedron, a = m = g = 1.199r, b = l.%0r, a = 

1.499r. For the bicapped trigonal prism, t = p = 1.156r, h = 1.290r, t = 1.492r. For the antiprism, s = I = 1.215r. 

Here r is the radius of the sphere, and the meaning of the other symbols is apparent from Fig. 4. 

Differences in the ligands of necessity remit in distortion of the polyhedra. It is thus fairly important to estab- 
lish certain criteria for distinguishing the polyhedra. These criteria should also be capable of defining the extent of 
distortion, and of showing whether it is allowable (or artificial) to describe a polyhedron as intermediate between two 
ideal forms. 

245 



B ~ b, ~ 8 ~r ~ 9 o z 8 w 

: ',',, 

8c/ Set D,~-~gm 
2zfgZm C;.-mm 

Fig. 3. Relationships between the dodecahedron, bicapped trigonal prism, and anti- 
prism. 
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Fig. 4. Designation of the edges of the dodecahedron, bicapped trigonal prism, and 
antiprism. 

One such criterion was proposed by Lippard and Russ [4]. The basic parameter chosen was the angle w between 
the body-diagonal trapezoids of the dodecahedron, BIAIA III BIII and BIIAIIAIVBIV (Fig. 3). In the ideal dodecahe- 

dron this angle is 90 ~ while in the ideal antiprism it is 79.3 ~ The bicapped trigonal prism was not examined. 

The Lippard-Russ criterion seems to us to be a poor choice, for several reasons. First, distortions of each of the 
polyhedra are possible such that, although w can change and approximate the value ch~acteris t ic  for the other poly- 
hedron, the polyhedron itself retains its characteristic external shape. For example, the dodecahedron can be elong- 
ated along the two-fold axis (by lengthening the h a and b 4 edges in Fig. 3). Any desired decrease in w can be ob- 
tained in this way, but the polyhedron will not resemble an antiprism. Similarly, in the antiprism the angle w can 
be made equal to 90 ~ just by changing the s/~ ratio. 

Second, before the angle w can be de~ermined, it is necessary to define the trapezoids of interest, i.e., to de- 
termine the type b edges in the dodecahedron or to find the planar or nearly planar rectangular bases in the anti- 
prism. The choice of the trapezoids can predetermine the results, as is obvious from the first criticism above. 

Third, the body-diagonal trapezoids in the antiprism (and in the bicapped trigonal prism) are not planar, and 
the best mean square plates through them must be determined in order to calculate w. Their positions will naturally 
be very sensitive to random distortions in the polyhedron. 

Clearly, a more natural and simple criterion would be based on uhe same parameters by which we visuaUy char- 
acterize the shape of a polyhedron. The set of angles, 6,  between pairs of faces intersecting along the type b edges 
(of a dodecahedron) can serve as such a criterion. The first step of the analysis thus consists of choosing these edges. 
Generally speaking, when a model of the polyhedron is available the type b edges are easily located from the differ- 
ences in the number of edges intersecting at the various vertices. In a dodecahedron there are four edges joined at 
the type A vertices and five edges joined at the type B vertices. The b edges are the ones which link the four type B 
vertices. However, if a model is not available it is not immediately clear how the vertices should be joined so that 
the polyhedron remains convex. Therefore, the choice of the b edges should be based on measuring the dihedral an- 
gles between all possible ~iangular faces which intersect each other, and to choose from this set the ones which are 
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TABLE I. The Angles 5, 5', 

Earth Compounds 

]Dihedral an-] Dihedral angles 
igles 5 a t  [ 5', at remaining["Z~l :detOfth~ 
[type b edges[ edges I t :=~: . lmeansq , 

Compound [ . . . .  [ ; 2 ; ~  t plane~~ 

/ degrees [ . . . .  ]trap. 

q, and to for Some Eight-Coordinate Polyhedra in Rare 

Polyhedron [ 
and isomer Ref. 

type 

La (AA) s' 2H20 

Nd (AA) 3" 2H20 

Eu(AA) 3 3H20 

Ho (AA) s" 4H20 

HPipEu (BA) 4 

HGd (BA) 4' Pip 

HEu (BA) 4' DE A 

Cs[Y(HFA) 4] 

EuCI3.6H20 

4,5 
26,1 

37,6 u 43,8 

3,1 
24,9 

37,9 ~ 43,2 
5,4 

25,1 
41,6 H 49,4 

23,7, 25,3 
34,3 n 37,7 

0, 1,3 
52,2 ia 54,1 

10,0 10,0 
44,7, 44,7 
7,0, 7,0 

45,7, 45,7 
21,1,21,1 
31,8, 31,8 
14,4, 14,4 
41,8, 56,9 

46,8--56,9--57,4-- 
--57,4--58,3--61,4 

46,9--53,7--56,9 
57,1--60,6--66,5 

46,8--51,7--55,7-- 
--57,0--62,3--66,7 

51,6--52,0--54,6-- 
--57,1--63,1--63,6 
55,0--51,9--50,7 
51,5--49,0--49,6 
50,5, 53,4, 57,2 

56,2, 56,3, 51,0 
51,8 

30,1, 50,9, 56,6 

7,6 
15,6 

8,8 
16,2 

7,9 
14,6 

4,5 
5,0 

20,7 
26,3 
13,0 
19,7 
13,2 
21,4 

4,6 
5,3 

27,9 
30,6 

86,1 

85,7 

86,4 

85,8 

83,0 

86,7 

85,8 

88,3 

82,3 

Bicapped trig- 
onal prism, 
tlt~p2 + P2 

Bicapped trig- 
onal prism, 
htlP2 + P2 

Bicapped trig- 
onal prism, 
tltlPz + P2 

Dodecahedron. 
mmm + m 

Antiprism, ssss 

Antiprism, ssss 

Antiprism, ssss 

Do dec ahedron, 
ggg'g' 

Antiprism 

L5I 

[6] 

[7], 

[81 

[9] 

[1o] 

[9] 

[11] 

1121 

convex. After this is done the choice of the type b edges is not a difficult problem. In general, the 5-criterion 
rests on two assumptions: 

1) The edges must belong m a single closed quadrangle, the "body-diagonal" of the polyhedron, and generate 
the 8 D type of polyhedron (Fig. 1); 

2) of all such possible quadrangles, the one must be chosen which contains the edges supporting the largest 
(but convex ! ) dihedral angle in the polyhedron (the smallest angle between normals to the faces). 

In essence, the criterion is based on evaluating just those angles which are readily visible in the polyhedron and 
which are easily measured on models and calculated from the coordinates of the atoms at the vertices of the poly- 
hedron. 

The 5-cri terion permits the distinction not only between the dodecahedron and the antiprism, but also between 
these two polyhedra and the bicapped trigonal prism. In the ideal dodecahedron, all four 5 angles are equal to 29.5~ 
in the bicapped trigonal prism, 51 = 0, 52 = 21.7 ~ (trails to 51), 5 a = 54 = 48.2~ and in the antiprism 51 = 52 = 0, 5 a 
= 54 = 52.5 ~ 

An additional criterion is the degree of nonplanarity of the diagonal trapezoids. This =[uantity is conveniently 
characterized by the angle @ between two planes: the first contains the short base of the trapezoid and passes through 
the midpoint of the long base, while the second contains the long base of the trapezoid and passes through the mid- 
point of the short base. It is not difficult to calculate this angle. In the ideal dodecahedron the angle ~0 = 0, in the 
ideal bicapped trigonal prism it is 16.1 ~ and in the antiprism it is 24.5 ~ 

Table 1 gives the vanes  of the angles 5 ,  ~, to for most of the rare earth tris- and tetrakis-B-diketonates 
whose structures are known,* According to the criterion of Lippard and Russ, all of  the tris- and tetrakis-/g-diketo- 
nates would be classified as dodecahedral (the to angles are all close to 90~; the range is 85.2 to 88.3~ This classi- 
fication in no way agrees with the external shapes of the models of these compounds. The 5 and ~o criteria can be 

*The dihedral angles 5 '  are also given, where 5 '  is the angle between faces intersecting along the other edges, 
which join the vertices of the two more nearly planar quadrangles to form the polyhedron. 
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used to give a more definite description to the polyhedra, one that corresponds to their external shapes. The poly- 
hedra of all of the tris acetylacetonates except the holmium compound can best be described as bicapped trigonal 
prisms. The holmium compound, [Ho(AA)3(H20) 2] : 2H20, contains a dodecahedral polyhedron. All of the tetrakis 
benzoylacetonates have an antiprismatic shape, but PPr(TTA )4]- and [Ln(HFA )4]', where Ln = Eu and Y, are dodeca- 
hedral. The application of the proposed criteria m the coordination polyhedron of europium in EuCI~ �9 6H20 shows 
that the polyhedron can be described as a tetragonal antiprism. However, the quadrangular bases of the antiprism 
are the faces containing the ligands H20 I-HzOII-H2OII  I - C I I I  (two faces related by a two-fold axis) and not H2OII 

-H2OII ' -H2OIII-H2OII i '  and H2OI-H2OI ' -CII I -CII I ,  [12]. 

I I I .  STEREOISOMERS OF E I G H T - C O O R D I N A T E  COMPLEXES 
W I T H  C H E L A T I N G  LIGANDS 

Hoard and Silverton [3], in thek fundamental work on the stereochemistry of dodecahedral and te~agonal anti- 
prismatic complexes, examined, among other things, the problems of stereoisomerism of such complexes in the pres- 
ence of four identical chelating ligands. Possible stereoisomers of the dodecahedron and antiprism are given in 
Table 2, in the notation of Hoard and Silverton. There also are indicated the stereoisomers for the bicapped trigonal 
prism (see Fig. 4 for the meaning of the symbols). It is clear from the table that there are six possible isomers for the 
dodecahedron, six for the bicapped trigonal prism, and three for the antiprism. 

If the complex contains only three identical chelating ligands, the number of possible isomers increases signi- 
cantly. Simply replacing the fourth ligand with a different chelating ligand gives 11 dodecahedral isomers, 17 trig- 
onal prismatic isomers, and four antiprismatic isomers. If there are two monodentate ligands and three identical 
chelating ligands, then new isomers are possible since the monodentate ligands do not have m span a given edge. 
The corresponding numbers of new isomers are now eight, eleven, and four (not counting mirror images). The possi- 
bilities are listed in Table 3. 

When examining the relationship between antiprismatic and dodecahedral complexes with four identical 
chelating ligands, Hoard and Silverton considered the identical way of linking the vertices as well as analogies in 
the symmetries of the complexes (agreement of the symmetry groups with possible loss of some of the symmetry 
operations). A priori, it is not clear if the second factor is ever important in real cases. Since the two donor atoms 
of the ligand are not equivalent (e.g., in benzoylacetonates) because of factors due to steric effects, and since the 
molecular packing affects the coordination sphere, the symmetry will always be perturbed, and the shape of the 
complex may be an intermediate one. Thus it is highly important to establish the relationships between the isomers 
of the three polyhedra. This can be done on the basis of the deformational transitions, discussed previously with re- 
spect to Fig. 3, of the polyhedra. No reference to symmetry is necessary. 

As an illustration, Fig. 5 shows two ways to deform a ggg'g' dodecahedron (Dz), and Fig. 6 indicates three pos- 
sible ways to deform an ssss antiprism. A complete scheme for the mutual deformational transitions of the three 
polyhedra (dodecahedron, bicapped trigonal prism, and antiprism) is shown below for complexes with four identical 
chelating ligands: 

(a~s~s) . . . .  (~,p,p, D. . ) .  
~j>aabb 

azz tztzp, p, <~ggg~, 

/h,h,PzPz~ 

"~F~PzPz ~ mrngg 

.t, hzp, p , / /~'-. gggg 
:,aDs) <.(. ,, 

" (taPI paDM,)' 

Main isomers: 

au 6t:,p,>gggy 

~ tltlt~P* % n7n 7 
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TABLE 2. Stereoisomers of Eight-Coordinate Complexes 
with Four Identical Chelating Ligands 

Bicapped Antiprism Dodecahedron trigonal prism 

tlhp~p2 C~ - -  2 ssss D~ - -  222 m m r f t ~  

D gA - -  42m 

gggg $4 - -  
gggr g, D~ - -  222 
rnmgg C2 - -  2 
aabb De - -  222 
abrng C1 - -  t 

hlhlpp~ C ~ - - 2  
htzplpl C~- -2  

tlh2plpt S - - r n  
ht2plp: C l - - I  

hlhplp2 C 1 - - t  

llll D4 - -  422 
ssll C~ - -  2 

Use of the preceding scheme makes it easy to establish the relationships between stereoisomers of the dodeca- 
hedron, bicapped trigonal prism, and antiprism when there are three identical chelating ligands and one chelating 
ligand which is different (or two identical monodentate ligands located in a given edge of the polyhedron). The cor- 
responding scheme for dodecahedral-antiprismatic conversions is:* 

i _g 

(llas + Ds) . .  

(lDsDs§ aab+b 
lll+l ~ . ' >  abb+a 

g::'+q" 
..---.z B ! h e , ~ l t m  

/ >r,,#j*m 

(s/ l+&)~" - amg+b 

(L/~Ts+ S) . ";" ~ a bm + ff 

(u ~: Ds ) -. 
f 2>6g'g'+ ~.~' 

~s/'+D t ~ -  amrn+B,B 

/ . >  m~Tff + R,~ 

ssl+~ z ~ b m m + , q , a  

(ssDs % ) < ~  a gg + e,e 
lll+gY t ~ b g g + ~ , R '  

-> aaC + ,7,B 

(sl~:.o,)C. ~ bgg'+,q,,q' 
6ll+Ds " "  amg+b 

Main isomers 

Ill +l \ 

~ ggg'+ g' 

$$$+~mmm+oz 
~mnTg+~ 
// />rnffpm 

8Sl +l 
#gg +] 

dll+8 Y ~ tTmff+b 

Main isomers 

~sl+D l ~ a m m + B , 8  

/ ~ >  mgg + A,a 

ssl+Dl ~ . ~  

~ . . . ~  agg + 8,8 
III+D z - I -  

3ll + Ds ~ arnff+b 

In each of the symbols, the fourth letter (the one with the plus sign) refers to the edge which is occupied by the 
pair of monodentate ligands. Some deformations of the dodecahedron lead to antiprism stereoisomers where the bi- 
dentate ligands spanning pairs of vertices are not located on the edges of the polyhedron (such pairs are designated 
by Ds if they belong to one of the rectangular faces of the antiptism, and by D z if they do not). The cases where 
such pairs occur are given in parentheses. 

The right-hand part of the scheme shows the deformations between the dodecahedron and antiprism when the 
monodentate ligands do not lie on the same polyhedron edge. The vertices of the dodecahedron occupied by these 

See note in Table 3. 
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TABLE 3. S tereoisomers of Eight-Coordinate Complexes with Three Identical Chelating 
Ligands* 

Dodecahedron 

m m w t ,  -J[- in, 

geg + g 
ggg' + g' 

mmg + g 
mgg + m 

aab + b 
abb + a 

abm --~ g 
a~,g + m 
amg + b 
brag .-[-- a 

II 

{ arara + B, B 
agg + B, B 

{ btnra + A, A' 
bgg + A, A' 
bgg' + A, A' 
bg'g + A, A' 

abg + A, B 
ragg + A, B 

Bicapped trigonal prism 

{ hhp2+p2 
tlp~p2+tl 

hlp2p~-t-hl 

h t 2 p l + p l  
t2plpa+t2 

t lplpl+h2 
h2plp l+h  

'tit2pl + p2 
t:t2p~ + p: 
hpap~ + tz 

~t.~plp2 -{- tl 

II 

hlhlh2 -~- C, C 
tltlh~ + C, C 
t2t~hl + C, C 

h2plpl + M, M 
t2p,p2 + M, M 

{ tzplp~ ":t- M, N 
hlplp2 + M, N 

'383 "3[- 8 

III @ l 

jsst + l 
[su + s 

hlt2pi q- p~ 
h:t~p2 --}- pl 
hlplp~ + t~ 

t~p:p.~ + h: 

I 
' [t2tzpl @ M, U 
~tat2p2 -Jr- M, C 

t2hlp2 + M, C 
hlhepl -t- M, C 

Anfiprism 

iI 

sll + Ds 

lIl + Dl 
ssl + Dl 

Ssl' + DI 

*Column I is for complexes with four chelating ligands, one of which differs from the 
other three; column II is for complexes with two monodentate ligands in addition to the 
three chelating ligands. 

Fig. 5. 

u -  

Deformation of the ggg'g' dodecahedron to form bicapped trigonal prisms 
and 'antiprisms. 
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Fig. 6. Deformation of the ssss antiprism to form bicapped trigonal prisms 
and dodecahedra. 

ligands are designated by the letters A and B: the combinations A, B and B, B refer to nonadjacent vertices on the 
same trapezoid, while the combination AA' refers to different trapezoids. 

The probabilities of getting the various isomers are different. Some consideration was given to the reasons for 
this in [8]. For example, it is not  likely that identical bidentate ligands would span edges whose lengths are essen- 
tially different. This excludes from consideration all of the dodecahedra in which a type b edge is involved, the bi- 
capped trigonal prisms with type h, and h 2 edges, and the antiprism where the ligands would span the diagonals, D. 
In view of these considerations, the isomers which are actually possible and the associated transitions between them 
are listed separately under the heading, "Main isomers." 

It is clear that isomers involving like edges are more probable than the isomers involving unlike edges. Also, 
according to [8], electronic repulsions between the ligands make the lengths of the s and l edges of  the antiprism 
nonequivalent, and the a, m, and g edges of the dodecahedron nonequivalent ( a = m ~ g). Thus, combinations using 
s and Z, a and g, or m and g simultaneously are less probabIe. The most favorable i somers -  the ones which remain 
after these considerations are a p p l i e d -  are shown in the schemes in bold type. 

In the last column of Table 1 are shown the isomer types found in rare earth 8 -diketonates whose structures 
have been determined, In all cases, they fall into the group of the most probable isomers: the antiprismatic com-  
plexes are ssss isomers, the dodecahedral complexes are mmm + m (holmium iris acetylacetonate) or ggg 'g '  isomers 
(thenoyltrifluoroacetonate and hexafluoroacetylacetonate),  and the bicapped trigonal prismatic complexes are hhPa 
+ P2 isomers. They all form a common link in the deformation chain: 

l ggg,g, 

ssss--ttqP2 -4-p2--mrnm ~- m, 

that is, they can be regarded as various distortions of a single shape. 
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a b c 

Fig. 7. Coordination polyhedra of rare earth B-diketonates. a) Eu and Gd tetrakis-ben- 
zoylacetona.es; b) La, Nd, and Eu diaquo-tris-acetylacetonates; c) Ho diaquo-tris-acetyl-  
acetonate. 

The transition, antiprism o b i c a p p e d  trigonal prism ~ dodecahedron in the series [Ln(BA)j" -* [Ln(AA)s(HzO)2] 
[Ho(AA)a(HzO)z], can be briefly explained in the following way. In accordance with Hoard and Silverton, the most 

suitable isomers for acetylacetonate complexes will be the m m m m  dodecahedron or the ssss antiprism when the me-  
t a l - l i gand  distance is greater than 2.30 ~. The advantage of the latter isomer is that it can be easily deformed to 
match the requirements of the chelate rings without significantly increasing the interligand repulsions: the square 
faces of the antiprism can readily be converted into rectangular ones with the edges linked pairwise by the ligands, 
while the distances between the vertices on the various faces are kept unchanged. Evidently when the m e t a l - l i g a n d  
distance is close to 2.30 ~, the m m m m  dodecahedron is more suitable. The ssss antiprism is more probable when the 
m e t a l - l i g a n d  distance greatly exceeds 2.30 ~. Thus, for most rare earth tetrakis-B-diketonates, the ssss antiprism 
should be characteristic. These conclusions apply especially to the benzoylacetonates (Fig. 7a). 

The same configuration is found for [Ln(AA)3(H20)2] molecules (Fig. 7b). However, the rectangular shape of  the 
lower quadrangular face of  the antiprism (the one which contains two chelating ligands) allows two of the atoms on 
the upper face to be closer to the plane of  the lower base than the other two. The atoms which are closer are the O 6 
atom and the water molecule, (H20)I; these occupy vertices opposed to the long edges of the lower rectangle. The 
result is that the upper face is folded about the O s . . .  (H20) z line, and the polyhedron becomes a tltlp2 + P2 isomer 
of the bicapped trigonal prism. 

Further distortions of the polyhedron upon going to [Ho(AA)3(HzO)2] 2H20 may be due to the decreased radius 
of the metal  atom as the rare earth series is traversed. Decreasing the radius of the metal  would lead to an overall 
shrinkage of  the complex. As a consequence of this, steric problems would be increased for contacts involving chelat-  
ing ligands on the two bases of the polyhedron. The O 4 and O s vertices would tend to move apart, and there would be 
folding about the O 1 . . . 04 line (Fig. ?c). The polyhedron takes on the characteristics o f  an mmm + m dodecahe- 
dron. 

All of these interpretations are conditional, because the distances between the vertices of the two bases (type l 
edges) differ quite significantly from each other in all of the complexes examined to date. 
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