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1. Introduction 

In a recent paper [1] J. R. CANNON & C. D. HILL studied the movement of the 
interface between two diffusing substances which undergo a chemical reaction, 
the products of which do not take part in the diffusion process. This is a simplified 
picture of a fast chemical reaction between two diffusing substances in a solution 
with precipitation after the reaction. Many other phenomena (see [1] for references) 
can be described by this scheme, which leads to the multidimensional analytical 
model described below. 

Adopting the symbols of [l] we let G be a bounded domain in R n with a smooth 
boundary dG. Setting G(t) = G x {t} and ~G(t) = aG x {t} for each te [0, T], T> 0, 
we shall consider the cylinder O= d G(t) and its lateral surface S =  U OG(t). 

O<t<_T O < t < T  

Then we shall define a surface F (the free boundary), separating ~ into two parts 
12~, Q2, in the following way. Let #eC l (O)  be such that # < 0  in/21 and # > 0  in 
t22; we set F(t)={(x, t)eG-~(t): #(x, t )=0} and F =  O F(t), assuming that 

O<t~_T 

grad O(x, t):~0* o n e  GI(0) and G2(0 ) will denote the regions into which G(0) 
is divided by F(0). Finally, we define S~=~ica S (i= 1, 2). Further considerations 
about the geometry of the problem are found in [1]. 

Now let a s, ~2 denote the concentrations of the reacting substances, with 
initial values hi, h2 in G 1 (0), G 2 (0). The problem studied in [1] was to find t71, u2 
in f21, I22 and, of course, the interface F (that is, a function �9 defining F) under 
the assumption that no flow occurs at the boundaries S v More precisely, we have 
the following set of equations: 

(1.1) ai(ai) ~ t  i = div [ki(ui) grad ff~] in t2 i (i = 1, 2), 

(1.2) ~l=hi, h~>0 in Gi(0) (i=1,2), 

(1.3) k~(tTt)~n~ =0  on Si ( i=1,2),  

�9 Throughout the paper the operators grad and div refer only to the space variables. 
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(1.4) ffi=0 on F ( i=1 ,2) ,  

(1.5) vkl(~l)graddP.grad~l=-k2(a2)gradcb.grad~ 2 on F, 

where c3/c3n is the derivative along the outer normal to S, v is a positive constant 
related to the mass ratio in the reaction and ~i(u), ki(u) are positive and bounded 
functions defined for u > 0. 

Uniqueness, existence, qualitative properties and compatibility of suitably 
defined weak solutions of problems (1.1)-(1.5) were investigated in [1]. In this 
paper similar results will be given concerning the more general second boundary 
value problem obtained by replacing (1,3) by 

(1.Y) ki(~i)Z~n=q/i(x, t)>O on S ~ ( i=1 ,  2) 

with S ~ = S i - F  n S, and also concerning the first boundary value problem where 
(1.3) is replaced by 

(1.3") ~i(x,t)=~(x,t)>O on S ~ ( i=1 ,2) .  

We shall refer to these problems as problem A and problem B respectively. 
A somewhat delicate question arises in the proper statement of conditions (1.3'): 
Are the surfaces S o in (1.Y) meant to be known? Consider now the case in which 
G is a cube in which a given flow of the two substances occurs at two opposite 
faces ~1, tr2, not  intersecting F(0), while the other ones are insulated (i. e., here we 
have @i=0). In this case some parts of S ~ S ~ namely, al x [0, T], tr 2 x [0, T], are 
really known while F c~ S still has to be determined. 

Thus we are led to the following remark. 

Remark 1. In the conditions (1.3') only those parts of S ~ on which ~ is 
essentially positive are understood to be given. 

Now we define what we shall mean by classical solutions of problems A or B: 
a set (ul,  u2, ~b) satisfying (1.1), (1.2), (1.3'), (1.4), (1.5) is a classical solution of 
problem A if t~ i and grad ui are continuous in Oi and A t~ i and a~i/a t are continuous 
in 12i; similar conditions are required for classical solutions of problem B, with 
the exception that grad t~ are continuous only on 12~ w F. 

The definition of weak solutions of problems A and B will be given in the next 
section. Uniqueness and existence of the weak solution to problem A will be in- 
vestigated in Section 3, while Section 4 is devoted to the study of stability, mono- 
tone dependence on the data, and regularity of such solutions. In Sections 5 and 6 
a parallel study will be made for weak solutions of problem B. The last section 
deals with some complementary remarks concerning the disappearance of one or 
both the reacting substances and the compatibility of approximate solutions. The 
results of [1] and the techniques of [2] will be used extensively. 

2. Generalized Formulations of Problems A and B 

In order to give a generalized formulation of problem A we make even exten- 
sions to u<O of the functions ~zt(u), ki(u ) and, following [1], we define the odd 
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functions 
tJ 

A+(u)= Ioti(Od~, K,(u) = ik,(~ld~ (i=1, 2) 
0 0 

and set 

u l = u l ,  u2=--t72; h i = h i ,  h z = - h 2 ;  ~P1=~1, tP2=-~2.  

Thus problem (A) takes the form 

(2.1) O Ai(u~)=divgradKi(ut ) in f2i (i=1,2), 
at 

(2.2) u l = h l > 0  in GI(0), u2=h2<0 in G2(0), 

0 
(2.3) On K i ( u i ) ' ~ Y i  o n  S i (i=1,2), 

(2.4) u~ = 0 on F (i = 1, 2), 

(2.5) vgrad ~ .  g radKl (u l )=grad~ ,  gradK2(u2) on F. 

We now introduce the test functions for problem A as smooth functions 4) in 
R "+1 vanishing on G(T) and such that 0qS/dn=0 on S. We shall denote the space 
of such functions by O a. 

Selecting a test function from OA, multiplying each of (2.1) by it, performing 
elementary calculations similar to [1], and taking into account (2.2)-(2.5), we 
obtain 

(2.6) + SS [A2(u2)a-~-~, *K2(u2) Ar d x d t +  S vA , (h l ) r  
02 L u~ J G1 (0) 

T T 

+ S A2(h2)cpdx+S ~ v@lcpdSxdt+~ ~ r  
G2(0)  0 ~Gt(t) 0 cnG2(t) 

Then, defining 

and 

u in 01 / h i > 0  in GI(0) =fv~kl on S ~ 
u=  0 on F ,  h=  0 on F(0), r o, 

u2 in Q2 [h2<O in G2(0 ) (4/2 on S2 

fVAl(U), u>=O , : ,  (vKI(u), u>O 
Az(u), u<0'  otu)='[ gz(u), u<0'  

we get from (2.6) 

o ( o )  s 

Definition 1. A bounded measurable function u in f~ satisfying (2.7) for all 
c~ E 6) a is called a weak solution of problem A. 
1" 
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The definition of weak solution of problem B can be given similarly. First of 
all it is necessary to formulate problem B in a form analogous to (2.1)-(2.5). 
Obviously, (2.3) must be replaced by 

(2.3') Ki(ui) =Ki(fi) on S O (i = 1, 2). 

Then a different class of test functions is needed. We define the space (9 B of test 
functions for problem B as the space of smooth functions in R "+ 1 vanishing on 
6 ( r )  u s .  

Now definer1 = f  l, f 2 = - f 2 and 

f f v K l ( f 3  o n  s o , 

= ~ K2 (f2) on S ~ 

and it follows from analysis similar to that above that 

(2.8) ~S[a(u)~t  + b ( u ) A ~ ] d x d t +  ~ a ( h ) q ~ d x - ~ f  ~CP ds=O. 
G(O) S o n  

Definition 2. A weak solution of  problem B is a bounded measurable function u 
satisfying (2.8) for all 4p ~ On. 

Obviously, any classical solution of problem A or B is also a weak solution. 
Conversely, it is easy to show that a weak solution of problem A or B possessing 
the smoothness requirements of a classical solution is actually a classical solution. 

3. Uniqueness and Existence Theorems for Problem A 

The uniqueness of the solution of problem A can be established in exactly the 
same way as in the case ~k-0 of reference [1]. The following assumptions are re- 
quired: 

(i) G is bounded and ~G is of class C 2+~ (~>0) (see [3], p. 86); 

(ii) the functions ~i(u), k~(u) (i= 1, 2) are continuous and there exist two posi- 
tive constants ~o, 71 such that 

(3.1) yo<~i(u)<yl, yo<k~(u)<yl, i=1,2. 

We shall now prove the following existence theorem. 

Theorem 1. Under assumptions (i) and (ii), together with 

(iii) the initial datum h is a bounded and measurable function in G(0); 

(iv) h~HI(G) (see [3], p. 272); and 
(v) ~b, ~t are summable over S and ~b is bounded; 

a weak solution of  problem A exists in H 1 (f2). 

The assumptions on h and ~b will be considerably weakened in the next section. 
This will obviously reduce the regularity of u. 

Proof of Theorem 1. Let us take sequences {am(U)} , {bin(u)} of C OO (R 1) functions 
uniformly convergent on compact subsets of R 1 to a(u) and b(u) respectively. 
Recalling (3.1) and the definitions of a(u) and b(u), we may choose {am}, {bin} in 
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such a way that am (0)= bm (0)= 0 and that 

(3.2) 0<r2_-<a'(u)_-__r3,  0<r2<b' (u)<r3 ,  

hold for all m, where 72 and 73 are fixed constants. 

Next consider a sequence {hm (x)}, with hm~ C oo (G) and max [ hm [ < ess sup J h 1, 
converging to h with respect to the H 1 (G)-norm. ~ 0 

Finally, let us introduce a sequence {~m(X, t)} of smooth functions defined on 
S such that 

sup I ~9m I ~ ess sup I ~k 1, 
S S 

and lim ~ {l~,.-~b[+J~kmt-~btl}dS=O. 
m'-~ o0 S 

Consider now the problems 

O (x, 0)= abm(hm) I 
8 / /  t~G ~ 

(3.3) a am ( U m ) =  div grad bm (U,n) 
St 

(3.4) um=hm in G(0), 

a 
(3.5) an b~(um) = ~bm 

which by means of the transformation 

(3.6) Vm =bm (um) 

can be readily put into the forms 

on S, 

in f2, 

(3.7) arm =Cm(Vm)Av, " in [2, 
St 

(3.8) vm=bm(hm) in G(0), 

(3.9) ~Vm an =~Pm on S, 

where cm is the C ~ (R 1) function defined by 

(3.10) Cra(1)m) = {a~, [~m (Vm)] ~,(v,.)} - ' 

and ~,,,(Vm) is the inverse of the function b,,,(u,,,), that is, urn= ~(vm). By virtue of 
(3.2) we have 

(3.11) 0<72/73 <%<?3/?2, m= 1, 2, .... 

Multiplying both sides of (3.9) by c,,, (v,,,), one sees that problem (3.7)-(3.9) is a 
special case of the initial-boundary value problem for quasilinear parabolic equa- 
tions treated in [2] (see problem (7.1)-(7.3), p. 475-476). The results of [2] con- 
cerning this problem were also applied in [1], but in our case special care is needed 
due to the non-homogeneous boundary condition. 

First of all we have to ascertain that problem (3.7)-(3.9) fulfills the assumptions 
of Theorem 7.3, p. 487 of [2], listed under (7.34). This will be a basic result in the 
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proof of the existence theorem since a bound independent of m will be derived for 
max [ VI[ and, consequently, for max [ Um 1. 

By virtue of (3.1 l), most of (7.34) of [2] are satisfied. It remains only to prove 
that we can choose two non-negative constants )'4, 7s such that 

(3.12) VmCm(V,,)~Pm(X, t)__--<74V2+75 for all (x, t)~S. 

Set ~ = ess sup [ r [. Since 
S 

VmCm(Vm)~bm<--__(T3/T2) ~Vm for Vm>--_O 
and 

Vm Cm(Vm) ~m~ --(73/72) ~Vm for Vm<O, 

condition (3.12) is satisfied if 

y4v~-(ya/72)~Vm+75>-_O for Vm>=O 
and 

~74V2mdt-0)3/~2) ~r/Vm-[-~) 5 _~0 for Vm~O. 

These inequalities are both valid if 

r4 'Y5 ~ �88 2 ~/./2. 

Thus 74 and 75 can be chosen independent of m. An application of the maximum 
principle [2, p. 487] yields 

(3.13) max lyre(x, 01=<21 earmax ([/~5, max bm(hm)), 

with 2z, 2 dependent only on the constants ~2, ~3, ~4 and the boundary S. 

By virtue of the assumptions made on bin, hm, (3.13) leads to the estimate 

maxlvm(X,t)l<C 1 , m = l , 2 ,  ..., 

where the constant CI depends on the data of problem A, but not on m. Recalling 
(3.6) and (3.2), we obtain the estimate 

(3.14) maX[Um(X,t)[<C2, m = 1 , 2  . . . .  , 

with C2 = C~/72. 
It  is worthwhile to remark for further applications of (3.14) that the constant 

C2 is independent of II~llur and IIgradhllL~w). 
By reducing problem (3.2)-(3.9) to a problem with zero initial value by means 

of the transformation Wm=Vm-b~(h~) and applying Theorem 7.4, p. 491 in [2], 
existence and uniqueness of Vm is established. 

Now we shall obtain a uniform bound for the functions Um in the norm of 
H 1 (fl). Multiplying both sides of equation (3.3) by Obm/Ot, integrating over G(t) 
and performing an integration by parts on the right hand side, we obtain 

[~um2dx t~bmt~bra 1 ~  2 
' d S ~ - ~  S-~-[gradbm(um)[ dx. S am(um) b'm(Um)lO t = S ~t On t;(t) ~ ( t )  2 ~(t) 0 t 
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Now we take into account (3.5) and integrate with respect to time. Next, we 
interchange the order of the integrations in the right hand side and integrate the 
first term by parts. We obtain 

' 133_~2dxd~ S ~ a'b'm =�89 ~ (b')2lgradhml2dx 
o G(~) G(O) 

- �89 ~ (b'm)2lgraduml2dx+ ~ bm~,mdSx 
o(t) oG(t) 

- I b,,O~,dS~-I I b~ dSxd~, O<t____r. 
ec(o) o 0G(O 

Next we recall that a~,, bm have lower and upper bounds independent of m 
(see (3.2)) and that (3.14) implies an m-independent bound for bm (Vm): [bm (vm)[_-- < 
V3Cz in ~. Hence we arrive at the inequality 

?~I I �89 I Igradum] 2dx 
0 G(r) G(t) 

< � 8 9  ~ Igradhml 2 d x + 2 ? a C 2  ~mes(aG)+yaC2 ~ t  m 0 < t <  T. 
G(O) L~(S)' --  

o,p,. a,p 
Since hm ~ h in the norm of H x (G) and - - ~ - - ~ -  in the norm of L 1 (S), the right 

hand side of this inequality is in turn dominated by a constant independent of m. 
Thus we have proved that 

(3.15) II UmIIH1 (~) ~ C3, 

where Ca is dependent only on the data of problem A. 
From this point the proof of Theorem 1 is strictly simiIar to the existence 

theorem of [1]. 

4. Properties of Weak Solutions to Problem A 

Theorem 2 (Stability). I f  u, fl are weak solutions to problem A with the respective 
data h, ~k, ~, ~ satisfying the assumptions of Theorem 1, then 

(4.1) Ilu-allL~<~)<-_G{llh-hll,~2(G>+ ll~-~llL,<s)}. 

In (4.1) C4 is a constant depending on T and on max(C2, C2), C2, C2 being 
the constants in (3.14) corresponding to h, ~k and ~, ff respectively. The proof can 
be carried out following the method given in [1 ] with no important modifications. 

Theorem 2 can be used to show the existence of a weak solution of problem A 
for h~L 2 (f2) and ff~L 1 (S). As in [1] it suffices here to take a sequence of functions 
]ir, satisfying (iii), (iv), converging to h in L 2 (G), and a sequence of functions ff,~ 
satisfying (v), converging to ~k in L 1 (S). Considering a sequence of weak solutions 
{tim} which satisfy 
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and using the fact that the constant C4 in (4.1) does not depend on ll~[Iu,(~) and 
II~m,l/L,(s) (see the remark made about (3.14)), we find that the sequence {Urn} is a 
Cauchy sequence in L 2 (12) and therefore it has a bounded limit u eL  2 (12) which is 
a weak solution to problem A with data h, ~k. 

As a corollary and by similar arguments, Theorem 2 can be demonstrated for 
h eL 2 (12) and @ sL  1 (S). For Theorems 3 and 4 below, we assume only that h sL  2 (12) 
and ~ L  1 (S). 

Theorem 3 (Monotone dependence). I f  h > ~ a.e. in G and ~b > ~ a.e. on S, 
then u>a a.e. in 12. 

Theorem 4 (Regularity). I f  12' is a subdomain of  12 separated from S w  G(O) by 
a positive distance d, the weak solution u of  problem A belongs to C~'~/2(12 ') for 
some ~ with a Hiilder coefficient depending on the data and d. 

We shall omit the proofs of these theorems because they are strictly similar to 
the corresponding ones in [1]. However, we remark that the demonstration of 
Theorem 4 is based upon a uniform H61der estimate in 12' (that is, in the norm of 
C ~, ~/2 (12')) of the solutions of the following problems: 

(4.3) O Win= div {Dm (win) grad Win} in 12, 
Ot 

(4.4) Wm=am(hm) in G(0), 

(4.5) 
Wra 

Dm(Wm)--~n =~l m on S, re=l ,  2 . . . . .  

which are obtained from problems (3.3)-(3.5) by means of the transformation 

Wm= am(Urn). The coefficients Dm (Win) are given by Dm(Wm) = b'(tlm(Wm)) with a;(,Tm(w~))' 
~lm (WI) = Urn. Since an estimate of max ] wm [ independent of m is easily deduced by 

D 
(3.15), all the assumptions of Theorem 1.1 of [2], Chapter V are fulfilled and this 
gives an estimate of the norm of Wm in C ' ' / 2  (12,) which is independent of m. 

5. Uniqueness and Existence Theorems for Problem B 

Theorem 5. Under assumptions (i), (ii), problem B has at most one weak solution. 

Due to the different space of test functions entering the definition of weak 
solutions to problem B, the proof of the uniqueness theorem of [1] cannot be 
immediately extended to the present case. Nevertheless, some results of [1] will be 
utilized. One of these is the following: if (ii) is satisfied, the function 

(5.1) 
[ b (u) - b (v) 

e(x, t ) = l a ( u ) - a ( v ) '  u4~v, 
10, u = v  



Boundary Value Problems in Chemical Reactions 9 

defined for any pair of functions u = u(x, t), v = v (x, t), satisfies the inequalities 

0 < e ( x ,  t)<C5 

where C5 is a positive constant dependent on 7o, Yl. 
Let {e~} he a sequence of C ~ (O) functions such that 

1 
(5.2) - -  < era(x, t) < C6 

m 

for some constant C6 independent of m and let us look for an m-independent bound 
for the solutions r  of the following parabolic problems: 

~r  .l_emAdPm= F in f2, (5.3) at  

(5.4) era(x, T ) = 0  in G(T), 

(5.5) era=0 on S, r e = l ,  2 . . . . .  

where FeC~(f2).  Existence and uniqueness of smooth solutions to (5.3)-(5.5) 
under the assumption (i) are well known classical results (see, for example, [2], 
[3]). Note that CmeOB, m= 1, 2, .... 

Lemma 1. There is a constant C7 depending only on T and max I FI such that 
D 

(5.6) m a x l r  r e = l ,  2 . . . . .  

Proof. The estimate (5.6) is readily obtained by the maximum principle. Since the 
functions z~ (x, t) = A ( T -  t) _ ~bm (x, t), with A > max I Fh satisfy the inequalities 

az~ +__>0 on G ( T ) u S ,  a----t--+e,~Az~ = - A _ F < 0 ;  z~ 

then [ q~m (X, t) I < A ( T -  t) in 0. Hence, (5.6) follows with C7 = T max [ F[. 

The following estimate is also needed. 

Lemma 2. There is a constant Cs depending on f2 and F such that 

(5.7) [1 e~/2A r ca. 

ProoL We multiply both sides of (5.3) by A ~b m and integrate to get 

~ ~ A c~m d x d t + S~ e= [I qbm 12 d x d t = SJ F A qls d x d t. 

An integration by parts in the first integral yields: 

A r  S ~ d S = d t - ~  ~ 1 [gradCm[2dxdt. 
o ~a(t) ~ t  ~n  o ~o(t) 2 
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It  follows from (5.4) and (5.5) that 

~a~-~AC~mdxdt=�89 ~ [grad~bm(x,O)12dx. 
6(0)  

Moreover, the membership of F in C~ ~ (g2) yields 

~ FdOmdxdt=~ OmAF dxdt, 

thus, 
�89 ~ Igradr162162 

6(0) ~ 

which implies (5.7). 

Now, if u(x, t), v(x, t) are two weak solutions of problem B, consider the 
function e(x, t) defined by (5.1) and introduce C~176 approximations em to e 

1 1 
such that O<=-~m<=Cs and [[e---dml[L2m)<- ~ ,  m = l ,  2, .... Assume e m = ~ m + - - ;  

m 

then Lemmas 1 and 2 and the same argument given for Lemma 5 in [1] imply 
that ][e/em[[r2(a) is bounded independently of m. 

As in [1], the following equation is derived from (2.8) and (5.3): 

~ [a(u)--a(v)] Fax d t=~  (e m- e) A (a m dx at. 
~2 f~ 

Hence, 
I~[a(u)-a(v)]Fdxdt]~C~[em-e] ]AC~m[dxdt 
f~ 1"2 

where C is independent of m. The right hand side of this inequality tends to zero 
as m ~ oo. Since Fcan  be arbitrarily chosen in C~ (f2), a(u)=a(v) a.e. in f2. Hence, 
u = v a.e. in f2. This completes the proof of Theorem 5. 

In order to prove the existence of a weak solution of problem B we will make 
the following assumptions on the initial and boundary data: 

(vi) f and h are bounded measurable functions in their respective domains of 
definition and there exists a bounded measurable function g defined in f2 
and belonging to W 2" 1 (t2)*, such that g[s=f, g[6(o)=h. 

Lemma 3.4 of [2], Chapter II, specifies the regularity properties of f and h satis- 
fying (vi). 

Theorem 6. Under assumptions (i), (ii) and (vi), problem B possesses a weak 
s o l u t i o n  u ~ H  1 ( Q ) .  

After having proved a stability theorem (Section 6) we will be able to assert 
that a weak solution exists in L z (f2) for any pair of data heL 2 (G), f eL  2 (S). 

Proof of Theorem 6. Take a sequence of C ~o (0) functions {gin} converging to g 
in the norm of W g' 1 (f2) and such that max [gin [ < ess sup [gl. Next, consider the 
approximating problems ~ 

(5.8) dam(U,) dt =div gradbm(um) in f2, 

* See [2], Chap te r  I, for  the  defini t ion of the  space W 2 '  1 (O). 
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(5.9) u,,=h,, in G(0), 

(5.10) Wm =fro on S, m = 1, 2 . . . . .  

where the sequences {am) and {bin} are the ones introduced in Section 3 and 
hm=gm]G~o), fm=g,,Is �9 Using the symbols of Section 3, we rewrite (5.8)-(5.10) in 
the form 

vm _ c~(vm) A v~ in O, (5.11) 3t 

(5.12) v,=bm(hm) in G(0), 

(5.13) Vm =bm (fro) on S, m = 1, 2, . . . .  

Using Theorem 9.1, Chapter IV, of [2], we obtain 

(5.14) ]]omllw~. l~m ~ C9, m = l , 2  . . . . .  

where the constant C9 depends only upon ~2, Ilgllw~.,(m and the upper bound 
~3 for b~,. 

The chain of inequalities 

leads to the estimate 

(5.15) I1 u,,[[n1(o) < C9/~2, m= 1, 2 ... . .  

Moreover, the estimate 

(5.16) maxlum[<__Clo, r e = l , 2  . . . . .  

follows from an application of the maximum principle to (5.11)-(5.13). Here C10 
depends only on ~2 and ess sup [g[. 

D 

This being shown, the proof is completed in a similar manner to that of Section 3. 

6. Properties of Weak Solutions of Problem B 

Let u, fl be two weak solutions of problem B corresponding to the pairs of 
data h,f; ~,f, respectively. Recalling the definition (5.1) of e(x, t) and replacing 
v by ~, we have 

S'[a(fl)--a(u)] {~ t  +eAcp} dxdt  
(6.1) 

= ~ [a(h)-a(h)]q~dx+~(f-f)  ~n dS 
6(0) s 

for any ~b~Oa. 
Now take ~b = ~b m, where ~b m is defined by (5.3)-(5.5). It follows from Lemmas 1 

and 2 of Section 5, the method of proof in [1], and (6.1) that for any FeC~(g2) 
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there exists a constant Cll ,  dependent only on 12 and max [FI, such that 

I ~ [ a ( u ) - a ( a ) ]  F dx  d t l 
12 

where lim era=0. Since the difference a ( u ) - a ( a )  is bounded and measurable, it 
can be approximated in L 2 (f2) by a sequence of C~ ~ (f2) uniformly bounded func- 
tions {F J}. Then, assuming F = F  s in (6.2) and taking the independent limits for 
j--+ oo and m --+ oo, we obtain a stability theorem from uniform bounds for 14b,, I 
and l ac~m/dnls. The bound for 14bm I is given by (5.6). By virtue of the uniform 
boundedness of max I F j  I, the bound for the I d C~m/Dn Is is obtained by means of 

a straight-forward application of Theorem 9.2 of [2], Chapter IV, along with 
Lemma 3.4 of [2], Chapter II. 

Now, using Schwartz's inequality in the right hand side of (6.2) and recalling 
again (3.2), we arrive at the following conclusion: 

Theorem 7. For any two weak solutions u, fl o f  problem B with data satisfying 
the assumption o f  Theorem 6, we have 

(6.3) Ilu--allL=<o)<fxz{llh--hllL=<~)+ IIf--fllL2<s)}. 

In (6.3), C12 depends on f2, on the upper bounds Clo, Clo for u, Ii (see (5.16)) 
and on Y3. By the arguments of Section 4, one can show the existence of a weak 
solution of problem B in L 2 (f2) for any pair of data hsLZ(G), f~L2(S )  and the 
validity of (6.3) for h, ~ ~L 2 (G), f, f E L  2 (S). 

Under the same weakened assumptions the following theorem holds. 

Theorem 8. I f  h > ~ a.e. in G and f >  f a.e. on S, then u>t~ a.e. in f2. 

Proof. The proof of Theorem 8 is similar to the proof of the corresponding 
Theorem 3. Hence, we omit it. 

The regularity of weak solutions of problem B can be discussed in a similar 
manner to that of Theorem 4 and the same conclusions are reached. 

Remark 2. The solution u turns out to be continuous in O - 8 G ( 0 )  i f f a n d  h are 
continuous on S and G(0) respectively. Indeed, in this case we can choose the 
sequence {gm} in such a way that fro -> fand  hm ~ h in the maximum norm. Thus the 
convergence of Um to U will be uniform in each closed subset of O - a G ( 0 ) .  

7. Complementary Remarks 

L Disappearance o f  One or Both of  the Reacting Substances 

We shall give here an extension of the results of [1]. Let us consider the func- 
tion 

t 

(7.1) H(t)  =-" S a ( h ) d x + S  ~ ~sdSxdz. 
~-(o) o oa(~) 
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We shall refer to  the substance 1 and the substance 2 according to  the sym- 
bols in Section 1. The following theorem holds:  

T h e o r e m  9. I f  H(to) > 0 (H(to) < O) for a given to ~ (0, T), then the substance 1 
(the substance 2) cannot disappear at t= to; / f  H(to)=0 and the substance 1 (2) 
disappears at t = to, then the substance 2 (1) must also disappear at the same instant. 

Proof.  Following the a rgument  in [1], it can be shown that  
t 

a(u)$dx= S a ( h ) $ d x + S  S $$dSxd* 
a(t) G(0) o o a ( , )  

(7.2) 
+ ~ S [a(u) -~-z~+b(u)A (9] d x d z  

0 G(z) 

for  0 < t < T and any tk ~ Oa. Choos ing  <k = 1 on G x [0, t ], it follows f rom (7.2) that  

(7.3) ~ a(u)dx=H(t) ,  0 <  t <  T. 
G(o 

Suppose now H(to) > 0 for  some to E (0, T) :  if the concentra t ion of the substance 
1 were zero at t= t  o, we should have ~ a(u)dx<O, which contradicts  (7.3). 

G (to) 
Similar arguments  apply to the case H(to)< 0. If  H(to)= 0 and the concentra t ion 
of the substance 1 is zero at t =  to, the eventual persistence of the substance 2 
would imply ~ a(u) dx<O and the same contradict ion would be reached. 

G(to) 

II. Computability of  .4pproximate Solutions 

The solutions of the approximat ing problems can be calculated by means of 
classical finite difference schemes or via the techniques of J. DOUGLAS ~; T. DUPONT 
[4] for  nonlinear  parabolic equations. 

This research was supported in part by the National Science Foundation, the NATO Senior 
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