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Abstract. We describe a project to capitalize on newly available levels of computational resources in 
order to understand human cognition. We are building an integrated physical system including 
vision, sound input and output, and dextrous manipulation, all controlled by a continuously operating 
large scale parallel MIMD computer. The resulting system will learn to "think" by building on its 
bodily experiences to accomplish progressively more abstract tasks. Past experience suggests that 
in attempting to build such an integrated system we will have to fundamentally change the way 
artificial intelligence, cognitive science, linguistics, and philosophy think about the organization of 
intelligence. We expect to be able to better reconcile the theories that will be develope d with current 
work in neuroscience. 

Keywords: robotics, artificial intelligence, human cognition, humanoids, androids 

1 Project Overview 

We are building an integrated physical humanoid 
robot including active vision, sound input and 
output, dextrous manipulation, and the begin- 
nings of language, all controlled by a continu- 
ously operating large scale parallel MIMD com- 
puter. This project capitalizes on newly available 
levels of computational resources in order to 
meet two goals: an engineering goal of building 
a prototype general purpose flexible and dex- 
trous autonomous robot and a scientific goal of 
understanding human cognition. While there 
have been previous attempts at building kine- 
matically humanoid robots, none have attempted 
the embodied construction of an autonomous 
intelligent robot; the requisite computational 
power simply has not previously been available. 

The robot is coupled into the physical world 
with high bandwidth sensing and fast servo- 
controlled actuators, allowing it to interact with 
the world on a human time scale. A shared time 
scale opens up new possibilities for how humans 
use robots as assistants, and allows us to design 
the robot to learn new behaviors under human 
feedback such as human manual guidance and 
vocal approval. One of our engineering goals is 

to determine the architectural requirements suf- 
ficient for an enterprise of this type. Based on 
our earlier work on mobile robots, our expecta- 
tion is that the constraints may be different from 
those that are often assumed for large scale par- 
allel computers. If ratified, such a conclusion 
could have important impacts on the design of 
future sub-families of large machines. 

Recent trends in artificial intelligence, cog- 
nitive science, neuroscience, psychology, lin- 
guistics, and sociology are converging on an 
anti-objectivist, body-based approach to abstract 
cognition. Where traditional approaches in 
these fields advocate an objectively specifiable 
reality-brain-in-a-box, independent of bodily 
constraints-these newer approaches insist that 
intelligence cannot be separated from the sub- 
jective experience of a body. The humanoid 
robot provides the necessary substrate for a 
serious exploration of the subjectivist-body- 
based - hypotheses. 

There are numerous specific cognitive hy- 
potheses that could be implemented in one or 
more of the humanoids that will be built during 
the project. For example, we can vary the extent 
to which the robot is programmed with an at- 
tentional preference for some images or sounds, 
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and the extent to which the robot is programmed 
to learn to selectively attend to environmental 
input as a by-product of goal attainment (e.g., 
successful manipulation of objects) or reward by 
humans. We can compare the behavioral result 
of constructing a humanoid around different hy- 
potheses of cortical representation, such as co- 
incidence detection versus interpolating memory 
versus sequence seeking in counter streams versus 
time-locked multi-regional retroactivation. In the 
later years of the project we can connect with 
theories of consciousness by demonstrating that 
humanoids designed to continuously act on im- 
mediate sensory data (as suggested by Dennett's 
multiple drafts model) show more human-like 
behavior than robots designed to construct an 
elaborate world model. 

The act of building and programming behav- 
ior-based robots forces us to face not only is- 
sues of interfaces between traditionally assumed 
modularities, but even the idea of modularity 
itself. By reaching across traditional bound- 
aries and tying together many sensing and acting 
modalities, we will quickly illuminate shortcom- 
ings in the standard models, shedding light on 
formerly unrealized sociologically shared, but 
incorrect, assumptions. 

2 Background: The Power of Enabling Tech- 
nology 

An enabling technology-such as the brain that 
we are building-has the ability to revolutionize 
science. A recent example of the far-reaching 
effects of such technological advances is the 
field of mobile robotics. Just as the advent of 
cheap and accessible mobile robotics dramati- 
cally altered our conceptions of intelligence in 
the last decade, we believe that current high- 
performance computing technology makes the 
present an opportune time for the construc- 
tion of a similarly significant integrated intelli- 
gent system. 

Over the last eight years there has been a 
renewed interest in building experimental mo- 
bile robot systems that operate in unadorned 
and unmodified natural and unstructured en- 
vironments. The enabling technology for this 
was the single chip micro-computer. This made 

it possible for relatively small groups to build 
serviceable robots largely with graduate student 
power, rather than the legion of engineers that 
had characterized earlier efforts along these lines 
in the late sixties. The accessibility of this tech- 
nology inspired academic researchers to take se- 
riously the idea of building systems that would 
work in the real world. 

The act of building and programming behav- 
ior-based robots fundamentally changed our un- 
derstanding of what is difficult and what is easy. 
The effects of this work on traditional artifi- 
cial intelligence can be seen in innumerable ar- 
eas. Planning research has undergone a major 
shift from static planning to deal with "reactive 
planning." The emphasis in computer vision 
has moved from recovery from single images 
or canned sequences of images to ac t ive-or  
animate-vision, where the observer is a par- 
ticipant in the world controlling the imaging 
process in order to simplify the processing re- 
quirements. Generally, the focus within AI has 
shifted from centralized systems to distributed 
systems. Further, the work on behavior-based 
mobile robots has also had a substantial ef- 
fect on many other fields (e.g., on the design 
of planetary science missions, on silicon micro- 
machining, on artificial life, and on cognitive 
science). There has also been considerable in- 
terest from neuroscience circles, and we are just 
now starting to see some bi-directional feedback 
there. 

The grand challenge that we wish to take up 
is to make the quantum leap from experiment- 
ing with mobile robot systems to an almost hu- 
manoid integrated head system with saccading 
foveated vision, facilities for sound processing 
and sound production, and two compliant, dex- 
trous manipulators. The system will be immo- 
bile. The enabling technology is massively par- 
allel computing; our brain has large numbers of 
processors dedicated to particular sub-functions, 
and interconnected by a fixed topology network. 

3 Scientific Questions 

Building an android, an autonomous robot with 
humanoid form, has been a recurring theme in 
science fiction from the inception of the genre 
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with Frankenstein, through the moral dilemmas 
infesting positronic brains, the human but not 
really human C3PO and the ever present desire 
for real humanness as exemplified by Comman- 
der Data. Their bodies have ranged from that 
of a recycled actual human body through vari- 
ous degrees of mechanical sophistication to ones 
that are indistinguishable (in the stories) from 
real ones. And perhaps the most human of all 
the imagined robots, HAL-9000, did not even 
have a body. 

While various engineering enterprises have 
modeled their artifacts after humans to one 
degree or another (e.g., WABOT-II at Waseda 
University and the space station tele-robotic ser- 
vicer of Martin-Marietta) no one has seriously 
tried to couple human like cognitive processes 
to these systems. There has been an implicit, 
and sometimes explicit, assumption, even from 
the days of Turing (see Turing (1970) 1) that the 
ultimate goal of artificial intelligence research 
was to build an android. There have been 
many studies relating brain models to computers 
(Berkeley 1949), cybernetics (Ashby 1956), and 
artificial intelligence (Arbib 1964), and along the 
way there have always been semi-popular scien- 
tific books discussing the possibilities of actually 
building real 'live' androids (Caudill (1992) is 
perhaps the most recent). 

This paper concerns a plan to build a se- 
ries of robots that are both humanoid in form, 
humanoid in function, and to some extent hu- 
manoid in computational organization. While 
one cannot deny the romance of such an enter- 
prise, we are realistic enough to know that we 
can but scratch the surface of just a few of the 
scientific and technological problems involved in 
building the ultimate humanoid given the time 
scale and scope of our project, and given the 
current state of our knowledge. 

The reason that we should try to do this at 
all is that for the first time there is plausi- 
bly enough computation available. High per- 
formance parallel computation gives us a new 
tool that those before us have not had available 
and that our contemporaries have chosen not 
to use in such a grand attempt. Our previ- 
ous experience in attempting to emulate much 
simpler organisms than humans suggests that in 

attempting to build such systems we will have to 
fundamentally change the way artificial intelli- 
gence, cognitive science, psychology~, and linguis- 
tics think about the organization of intelligence. 
As a result, some new theories will have to be 
developed. We expect to be better able to rec- 
oncile the new theories with current work in 
neuroscience. The primary benefits from this 
work will be in the striving, rather than in the 
constructed artifact. 

3.1 Minds 

The traditional approach taken in artificial in- 
telligence to building intelligent programs has 
affectionately been dubbed 'Good Old Fash- 
ioned AI', or GOFAI (Haugeland 1985). It 
is epitomized in the modularity arguments of 
Fodor (1983) and in the physical symbol system 
hypothesis of Newell & Simon (1981). These 
approaches reduce AI to the problem of con- 
structing a brain-in-a-box symbolic manipulator 
which would act intelligently if given appropriate 
connection to a robot (or other perceptuo-motor 
system). Still further modularization leads to 
independent work on such tasks as natural lan- 
guage processing, planning, learning, and com- 
monsense reasoning (e.g., Allen, Hendler & 
Tate 1990, Hobbs & Moore 1985 or Brachman 
& Levesque 1985). We have argued (Brooks 
1991a) that much of GOFAI was shaped by 
the technological resources available to its re- 
searchers. High performance computing and 
communications gives us a new opportunity to 
re-shape attempts at building intelligent systems. 

Many modern theories are at odds with GO- 
FAI. For example, Minsky (1986) suggests that 
the mind is a society of smaller agents com- 
peting and cooperating. Kinsbourne (1988) and 
Dennett (1991) argue that there is no place 
in the brain where consciousness resides. Lin- 
guists and psycholinguists have argued that the 
long-fashionable separation of language into the 
separate components of grammar and semantics 
is a fiction convenient for symbolic formulation 
but not useful for advancing our understand- 
ing of the real diversity of language phenomena 
(Langacker 1987, Harris 1991). Brooks (1991a) 
proposes that human-level intelligence can be 
built without a single central representation of 
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the world. Stein (1994) argues that all of cogni- 
tion can be seen as the recapitulation-through 
imaginat ion-of  action in the world. 

Many other theories of mind (e.g., Searle 
1992, Edelman 1987, Edelman 1989, Edelman 
1992) argue against the traditional AI notion 
of categorical representation, and instead for a 
more situated model of computation. Unfor- 
tunately these and others are flawed by funda- 
mental misunderstandings about the nature of 
computation and the uses of abstraction, usu- 
ally centered around formal models of Turing 
machines and sometimes their interaction with 
G6ders theorem. Such arguments were long 
ago successfully debunked (Arbib 1964), but 
continue to resurface 2. 

At the other end of the spectrum is connec- 
tionism. Computational scientists have worked 
with simple abstractions of the brain for many 
years in two main waves, one in the sixties 
(Rosenblatt 1962, Minsky & Papert 1969) and a 
second in the eighties (Rumelhart & McClelland 
1986). Unfortunately, most of this work is con- 
cerned with local aspects of the problem, rather 
than giving insight into how a complete system 
might be organized a. There have been recent 
attempts to bridge the gap in more serious ways 
between computation and neuroscience-in par- 
ticular Churchland & Sejnowski (1992)-but  still 
the gap is too large to consider neural-based 
approaches for a system of the scope we are 
proposing. Dennett & Kinsbourne (1992) are 
working to relate a neuroscientific theory of con- 
sciousness, dominant focus (Kinsbourne 1988), 
to a philosophical analysis of mind. A major 
intent of our work is to extend that analysis to 
the point of its being an implementable theory 
on our humanoids. 

Recent work in neuropsychology has produced 
surprising results. Lesion studies, e.g. those by 
Damasio & Damasio (1989) and McCarthy & 
Warrington (1990), indicate that the modularity 
of storage and access in the human brain is dra- 
matically different from what our intuitions- 
as exemplified by both cognitive science and 
GOFAI- te l l  us. For instance it is clear that a 
picture of a dolphin provides immediate access 
to a different set of representations at a different 
level of generalization from those prompted by 

the verbal stimulus, 'dolphin'. In a normal per- 
son these representations are cross-linked, but 
in patients with certain lesions these cross-links 
may be destroyed for particular classes of enti- 
ties (e.g., for animals, but not tools) 4. Likewise 
Newcombe & Ratcliff (1989) demonstrate mul- 
tiple parallel channels of control dependent on 
the task, rather than, say, a single centralized 
finger control module for each finger. There 
is a grounding of motor control in the differ- 
ent types of interactions the agent has with the 
world 5. Nor is the control of attention cen- 
tralized, as illustrated by studies of unilateral 
neglect (Kinsbourne 1987), but rather it is a 
matter of competition between brain systems. 

The argument is that the human brain 
stores things not only by category but also by 
modal i ty- the  'representations' are grounded in 
the sensory modality used to learn the informa- 
tion. Kuipers & Byun (1991), Mataric (1992b) 
and Stein (1994) implement limited forms of 
this body-based representation in mobile robots. 
Drescher (1991), too, uses environmental inter- 
action to construct representation. Still, each of 
these projects was limited by the relative poverty 
of the sensory suite. In this project, we are us- 
ing the neuropsychological evidence to build a 
far more sophisticated instantiation of the body- 
based theory of representation and to examine 
it relative to traditional theories of modularity. 

There is also evidence that what appear to 
be reasonably well understood sensory channels 
within the brain are much more complex than 
we currently imagine. As one example, there 
is the effect known as blindsight, where despite 
the lack of pieces or a whole visual cortex, both 
humans and animals can perceive, perhaps not 
consciously, certain things within their visual 
field (Weiskrantz 1986, Braddick et al. 1992). 
There has been some recent argument that these 
phenomena may be produced by partially intact 
visual cortex (Fendrich, Wessinger & Gazzaniga 
1992), but even that would still call into ques- 
tion the arguments of Marr (1982)-1ong used 
in computer vis ion-that  the purpose of the vi- 
sion system is to reconstruct a 3-dimensional 
representation of what is out in the world. 

The notion that embodiment in the physi- 
cal world is important to creating human-like 
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intelligence is not at all new. Even the 1947 
paper of Turing (1970) is quite concerned about 
this point. Later, Simon (1969) discusses a simi- 
lar point using as a parable an ant walking along 
the beach. He points out that the complexity 
of the behavior of the ant is more a reflection 
of the complexity of its environment than its 
own internal complexity and speculates that the 
same may be true of humans. 

The idea that our very modularity and internal 
organization depends on our ways of physically 
interacting with the world is carried even further 
in a series of philosophical arguments (Lakoff 
& Johnson 1980, Lakoff 1987, Johnson 1987). 
Their central hypothesis is that all of our thought 
and language is grounded in physical patterns 
generated in our sensory and motor systems as 
we interact with the world. In particular these 
physical bases of our reason and intelligence 
can still be discerned in our language as we 
'confront' the fact that much of our language 
can be 'viewed' as physical metaphors, 'based' 
on our own bodily interactions with the world. 

We have been taking these notions seriously 
as we build and program our humanoids, us- 
ing physical interactions as a basis for higher 
level cognitive-like behaviors. We have already 
demonstrated a simple version of these ideas 
using currently available "insect-level" robotics 
(Stein 1994). 

3.2 Symbols and Mental Representation 

The physical symbol system hypothesis construed 
as appropriate manipulation of a physical sym- 
bol system, maintains that any physical symbol 
system can implement intelligent behavior. As 
a consequence, it says that symbols provide a 
layer of abstraction that hides the details of 
perceptual and motor processes. 

To understand the difficulties that the physical 
symbol system hypothesis presents for our task, 
we might examine another similar abstraction. 
It is common to regard digital design as con- 
cerned solely with binary digits-discrete ones 
and zeros. Indeed, this digital abstraction al- 
lows the use of boolean logic to synthesize the 
combinational circuits out of which our compu- 
tational elements are built. By hiding the details 
of analog voltages that constitute our systems, 

the digital abstraction facilitates reasoning about 
and construction with these elements. However, 
the fact that the digital abstraction is useful for 
combinational synthesis does not mean that it 
suffices for all purposes. Indeed, for certain 
e lements-such as a bipolar switch-i t  may be 
necessary to look beneath the digital abstrac- 
tion to understand the interactions of electrical 
components-e.g.,  to debounce the switch. Fur- 
ther, certain portions of the resulting sys tem-  
such as the debouncing circui try-may never be 
interpretable directly in terms of the digital ab- 
straction. 

Approaches that rely on the physical symbol- 
system hypothesis cannot constitute complete 
explanations of intelligence, precisely because 
they abstract away the details of symbols' im- 
plementation. In order for a brain-in-a-box to 
connect to a body, all symbols must be deriv- 
able from sensory stimuli; but in addition, there 
are portions of the system-such as the bouncy 
switch-that  cannot be seen from the symbolic 
side of the abstraction. Thus, while symbolic 
approaches to cognition may provide us with 
tremendous insight as to how intelligence might 
work once we have symbols, it can neither tell 
us how to construct those symbols nor assist 
us in the identification and manipulation of the 
non-symbolic portion of our system. 

At the opposite extreme are several non- 
symbolic approaches to cognition. From con- 
nectionism to reactive systems to artificial life, 
these systems operate on stimuli much closer 
to "real" sensory input, often using diffficult-to- 
comprehend processes to compute appropriate 
actions based on these stimuli. Because they 
are closer to actual sensation, these approaches 
have had marked success in certain areas (e.g., 
video-game playing (Agre & Chapman 1987); 
navigation (Pomerleau 1991); "insect" intelli- 
gence (Connell 1990, Angle & Brooks 1990). 
However, because they lack symbols or any 
comparable abstraction, these systems are of- 
ten inscrutable. A corollary is the difficulty that 
practitioners have had in transferring knowledge 
gained in the construction of one system to the 
design of the next. Because there is little explicit 
structure, these systems generally defy descrip- 
tion by abstraction. 
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We believe that the most fruitful approach will 
be one that builds on both of these traditions 
(e.g., Rosenschein & Kaelbling 1986, Kuipers & 
Byun 1991, Drescher 1991, Stein 1994, Yanco 
& Stein 1993). Just as the digital abstraction is 
useful for the designer of combinational circuits, 
so the symbolic abstraction will be invaluable for 
the designer of cognitive components. However, 
combinational circuits are built out of raw volt- 
ages, not out of ones and zeros: the binary 
digits are in the mind of the designer. Simi- 
larly, the symbolic abstraction is a crucial tool 
in the analysis and synthesis of our humanoids; 
but we do not necessarily expect these symbols 
to appear explicitly in the humanoid's head. 

Thus, both of these pieces inform our ap- 
proach to representation. However, it is not 
at all clear that a single "symbol" (in the con- 
ventional sense, e.g., 'dolphin') will have a uni- 
tary representation (e.g., in the human brain 
the image of a dolphin may be stored sepa- 
rately from categorical knowledge about dol- 
phins as sea creatures). As a result, we need 
to broaden the conventional definitions. We ex- 
pect to use lower level modules-derived, e.g., 
from more 'reactive' approaches- to  come up 
with appropriate responses to stimuli. From 
these, we identify patterns of behavior that rep- 
resent generalizations- proto-symbols- and use 
these to establish reasoning that appears to be 
more "symbolic". 

There is an argument that certain compo- 
nents of stimulus-response systems are "sym- 
bolic." For example, if a particular neuron 
f i r e s -o r  a particular wire carries a positive 
voltage-whenever something red is visible, that 
n e u r o n - o r  w i r e - m a y  be said to "represent" 
the presence of something red. While this ar- 
gument may be perfectly reasonable as an ob- 
server's explanation of the system, it should not 
be mistaken for an explanation of what the agent 
in question believes. In particular, the positive 
voltage on the wire does not represent the pres- 
ence of red to the agent; the positive voltage 
is the presence of something red as far as the 
robot is concerned. 

The digital abstraction is not a statement 
about how things are; it is merely a way of 
viewing them. A combinational circuit may be 

analyzed in terms of boolean logic, but it is volt- 
ages, not a collection of ones and zeros. (Or, 
perhaps, it is electrons moving in a particular 
way.) At best, the digital abstraction tells us 
that the combinational circuit is amenable to 
analysis in term of ones and zeros; but it does 
not change the reality of what is there. 

Similarly, the utility of the symbolic abstrac- 
tion in analyzing rational behavior does not indi- 
cate that there are actually entities correspond- 
ing to symbols in the brain. Rather, it indi- 
cates that the b ra in -or ,  more likely, portions 
of the brain (viz. the debounced switch)-are  
amenable to analysis in symbolic terms. It does 
not change the fact that everything in the brain 
is (sub-symbolic) neural activity; nor does the 
equation of brain function with neural activity 
rule out the utility of a symbolic explanation. 

In building a humanoid, we begin at this 
sensory level. All intelligence is grounded in 
computation on sensory information or on in- 
formation derived from sensation. However, 
some of this computation abstracts away from 
explicit sensation, generalizing, e.g., over similar 
situations or sensory inputs. Through sensation 
and action, the humanoid will experience a con- 
ceptualization of space: "up," "down," "near," 
"far," etc. We hypothesize that at this point it 
will be useful for observers to describe the be- 
havior of the humanoid in symbolic terms. ("It 
put the red blocks together.") This is the first 
step in representation. 

The next step involves a jump from the view of 
symbols as a convenient but post hoc explanation 
(i.e., for an observer) to a view in which symbols, 
somehow, appear to the agent to exist inside the 
agent's head. This second step is facilitated 
by language, one of the tools that allows us to 
become observers of ourselves. This is the trick 
of consciousness: the idea that "we" exist, that 
one part of us is observing another. 

Although there is good evidence that con- 
sciousness is anything but a simple phenomenon 
(i.e., that the reality is far more complex than 
our post hoc reconstruction of it) (Springer & 
Deutsch 1981), it almost certainly does have 
some of the properties that we attribute to it. 

With language, symbols become more than 
merely a post hoc explanation by others of 



Building Brains for Bodies 13 

the workings of our own brains; symbols be- 
come our own explanation to ourselves. It is 
this ability to distance ourselves from our own 
symbols that gives rise to our illusions of con- 
sciousness (Bickhard 1991, Bickard 1993). How 
can we produce these "symbolic" associations? 
The same processes that produce responses from 
sensory inputs can be stimulated internally. For 
example, Kosslyn (1994) has demonstrated that 
portions of the visual cortex are implicated in 
visual imagery, suggesting precisely this sort of 
self-stimulation. Stein (1994) takes a similar ap- 
proach to add cognitive capacity to a behavior- 
based robot. 

We can summarize our approach to repre- 
sentation as follows: Stimulus-response systems 
abstract away from particular inputs to treat 
large classes of inputs similarly. This begins the 
"generalization" of particular stimuli into com- 
plex reactions and the external appearance of 
categorization, or proto-symbols. Next, these 
abstractions begin to be produced without re- 
sorting to actual sensory inputs. Symbol-like 
behavior results, but without instantiating sym- 
bols directly. 

4 High Performance Computing 

While traditional parallel processors are de- 
signed to act like fast serial computers, we are 
addressing an inherently parallel task. Indeed, 
while for most of computer science the transla- 
tion to parallel hardware has imposed additional 
complexity (and, indeed, much current research 
is devoted to minimizing the overhead of this 
translation), we anticipate a significant simpli- 
fication of our task in virtue of the parallel 
hardware available. 

Much of the work on high performance com- 
putation is benchmarked in terms of how it 
speeds up numerical simulations of physical 
phenomena (Cypher, Ho, Konstantinidou & 
Messina 1993). In these domains there is a 
well defined set of computations that given a 
valid set of initial conditions are guaranteed to 
be well behaved in some sense, generating a suf- 
ficiently accurate simulation of how events will 
unfold over time. Data is collected along the 
way, and a final summary of how the modeled 

system evolved over time is the result of the 
computation. The model of a computation is 
very much that of an algorithm that is given 
input data and, after some suitable computa- 
tion, outputs some data. As a result, much 
of the research into high performance paral- 
lel computers is concerned with how to present 
a shared memory that can be accessed quickly 
by all processors, leading to the need for local 
caching schemes and high speed switching net- 
works; how to make sure that all such views of 
memory are consistent, leading to the need for 
handling cache coherence; and how to dynam- 
ically balance the load on all processors, given 
the implicit understanding that the goal of the 
whole job is to complete the computation as 
quickly as possible. 

In our "problem" the constraints are very dif- 
ferent. By the nature of the system we do 
not need to migrate processes, do not need a 
shared memory, and do not need to dynami- 
cally redirect messages. Simple "hard wired" 
messages networks should suffice, with memory 
only local to each processor. The goal is not to 
"finish" a computation as quickly as possible but 
instead to pass the data through a process in a 
bounded amount of time so that the next data 
that the world presents to the system can flow 
through without getting blocked or lost. There 
is no end to a computation or final result; all is 
continuously being computed and recomputed, 
and actions in the world are the "outputs" of 
the system. But the computation is not sim- 
ply linear in ordering. There must be many 
pathways between sensors and actuators, some 
with very different latencies, each one contribut- 
ing to some aspect of the resulting behavior of 
the system. 

We need high performance and parallel com- 
puting in order to guarantee the bounds on 
computation time of any particular step in the 
processes. We will push on the organization 
of computation to do useful tasks directly in 
the real world, and will be pushing in a direc- 
tion which should lead to inherently simpler- 
to-construct massively parallel computers. The 
applications of this sort of processing will be 
wide ranging and indeed may well become per- 
vasive throughout our society. 



14 Brooks and Stein 

Our problem is more one of maintenance 
of activity rather than achievement of a single 
solution to a problem. 

Our humanoid robot is situated in a real world 
over which it has very little control. There 
are people present, moving about, changing the 
physical environs of the humanoid, responding 
to actions of the humanoid, and generating spon- 
taneous behaviors themselves. The task for the 
humanoid will be to interact with these ulti- 
mately unpredictable agents in a coherent way. 
It receives a continuous large and rich stream of 
input data of which it must make sense, relating 
it to past experiences and future possibilities in 
the world. It is a participant in this world and 
must act with appropriate speed and grace. 

5 Hardware and Software Experimental Plat- 
forms 

We have extensive experience in building mobile 
robots. The authors have been directly involved 
in the design and construction of over 35 differ- 
ent designs for mobile robots, and with multiple 
instances of many of these types of robots -  over 
100 robots in total. 

In that previous work with mobile robots, we 
started out thinking we would build one mo- 
bile robot that would be a platform for research 
for a generation of graduate students (Brooks 
1986). That soon changed as we realized three 
things: (1) trying to design everything into one 
robot caused too many compromises in our re- 
search goals as early experiments soon pointed 
to multiple different sensor/actuator suites which 
needed to be explored, (2) graduate students 
working on somewhat separate thesis projects 
needed their own robots if they were to do 
extensive multi-hundred hours of operation ex- 
periments, rather than simple validation demon- 
strations in controlled environments as were of- 
ten conducted in many research projects (Brooks 
1991b) and (3) by continually re-engineering our 
designs we gradually built more robust robots 
with longer mean times between catastrophic 
failures 6. Building many robots over a short 
period of time led to rapid increases in perfor- 
mance over a diverse set of robot morphologies 

(Yanco & Stein 1993, Torrance 1994, Brooks 
1986, Connell 1987, Horswill & Brooks 1988, 
Brooks 1989, Connell 1990, Angle & Brooks 
1990, Mataric 1992b, Mataric 1992a, Ferrell 
1993, Horswill 1993; see Brooks 1990b for 
an overview). At the same time, a common 
software system (Brooks 1990a) was developed 
which ran on many different processors, but pro- 
vided a common environment for programming 
all the diverse robots. Brooks (1990b) gives a 
mid-course review of some of those robots. 

In this project too, we expect that there will 
be great benefits from building the humanoid 
repeatedly over the life of the project and from 
running the software on multiple computer ar- 
chitectures, taking advantage in both cases of 
technological developments that will occur in- 
dependently of this project. At the same time 
we are following a learning curve, increasing 
our engineering sophistication and the inherent 
robustness of the systems we build. 

5.1 Brains 

Our goal is to take advantage of the new avail- 
ability of massively parallel computation in ded- 
icated machines. We need parallelism because 
of the vast amounts of processing that must be 
done in order to make sense of a continuous and 
rich stream of perceptual data. We need paral- 
lelism to coordinate the many actuation systems 
that need to work in synchrony (e.g., the ocular 
system and the neck must move in a coordinated 
fashion at time to maintain image stability) and 
which need to be servoed at high rates. We 
need parallelism in order to have a continu- 
ously operating system that can be upgraded 
without having to recompile, reload, and restart 
all of the software that runs the stable lower 
level aspects of the humanoid. And finally we 
need parallelism for the cognitive aspects of the 
system as we are attempting to build a "brain" 
with more capability than can fit on any existing 
single processor. 

But in real-time embedded systems there is 
yet another necessary reason for parallelism. It 
is the fact that there are many things to be at- 
tended to, happening in the world continuously, 
independent of the agent. From this comes the 
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notion of an agent being situated in the world. 
Not only must the agent devote attention to per- 
haps hundreds of different sensors many times 
per second, but it must also devote attention 
"down stream" in the processing chain in many 
different places at many times per second as the 
processed sensor data flows through the system. 
The actual amounts of computation needed to 
be done by each of these individual processes is 
in fact quite small, so small that originally we 
formalized them as augmented finite state ma- 
chines (Brooks 1986), although more recently we 
have thought of them as real-time rules (Brooks 
1990a). They are too small to have a complete 
processor devoted to them in any machine be- 
yond a CM-2, and even there the processors 
would be mostly idle. A better approach is 
to simulate parallelism in a single conventional 
processor with its own local memory. 

For instance, Ferrell (1993) built a software 
system to control a 19 actuator six legged robot 
using about 60 of its sensors. She implemented 
it as more than 1500 parallel processes running 
on a single Phillips 68070. (It communicated 
with 7 peripheral processors which handled sen- 
sor data collection and 100 Hz motor servoing.) 
Most of these parallel processes ran at rates 
varying between 10 and 25 Hertz. Each time 
each process ran, it took at most a few dozen 
instructions before blocking, waiting either for 
the passage of time or for some other process 
to send it a message. Clearly, low cost context 
switching was important. 

The underlying computational model used 
on that r o b o t - a n d  with many tens of other 
autonomous mobile robots we have bu i l t -  
consisted of networks of message-passing aug- 
mented finite state machines. Each of these 
AFSMs was a separate process. The messages 
were sent over predefined 'wires' from a specific 
transmitting to a specific receiving AFSM. The 
messages were simple numbers (typically 8 bits) 
whose meaning depended on the designs of both 
the transmitter and the receiver. An AFSM had 
additional registers which held the most recent 
incoming message on any particular wire. This 
gives a very simple model of parallelism, even 
simpler than that of CSP Hoare (1985). The 
registers could have their values fed into a local 

combinatorial circuit to produce new values for 
registers or to provide an output message. The 
network of AFSMs was totally asynchronous, 
but individual AFSMs could have fixed duration 
monostables which provided for dealing with the 
flow of time in the outside world. The behav- 
ioral competence of the system was improved 
by adding more behavior-specific network to the 
existing network. This process was called layer- 
ing. This was a simplistic and crude analogy to 
evolutionary development. As with evolution, 
at every stage of the development, the systems 
were tested. Each of the layers was a behavior- 
producing piece of network in its own right, 
although it might implicitly rely on the presence 
of earlier pieces of network. For instance, an 
explore layer did not need to explicitly avoid 
obstacles, as the designer knew that a previous 
avoid layer would take care of it. A fixed priority 
arbitration scheme was used to handle conflicts. 

On top of the AFSM substrate we used an- 
other abstraction known as the Behavior Lan- 
guage, or BL (Brooks 1990a), which was much 
easier for the user to program with. The output 
of the BL compiler was a standard set of aug- 
mented finite state machines; by maintaining this 
compatibility all existing software could be re- 
tained. When programming in BL the user has 
complete access to full Common Lisp as a meta- 
language by way of a macro mechanism. Thus 
the user could easily develop abstractions on top 
of BL, while still writing programs which com- 
piled down to networks of AFSMs. In a sense, 
AFSMs played the role of assembly language 
in normal high level computer languages. But 
the structure of the AFSM networks enforced 
a programming style which naturally compiled 
into very efficient small processes. The structure 
of the Behavior Language enforced a modular- 
ity where data sharing was restricted to smallish 
sets of AFSMs, and whose only interfaces were 
essentially asynchronous 1-deep buffers. 

In the humanoid project much of the com- 
putation, especially for the lower levels of the 
system, will naturally be of a similar nature. We 
expect to perform different experiments where in 
some cases the higher level computations are of 
the same nature and in other cases the higher 
levels will be much more symbolic in nature, 
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although the symbolic bindings will be restricted 
to within individual processors. We need to use 
software and hardware environments which give 
support to these requirements without sacrific- 
ing the high levels of performance of which we 
wish to make use. 

5.1.1 Software. For the software environment 
we have a number of requirements: 

• There should be a good software development 
environment. 

• The system should be completely portable 
over many hardware environments, so that we 
can upgrade to new parallel machines over the 
lifetime of this project. 

• The system should provide efficient code for 
perceptual processing such as vision. 

• The system should let us write high level sym- 
bolic programs when desired. 

• The system language should be a standardized 
language that is widely known and understood. 

In summary, our software environment should 
let us gain easy access to high performance 
parallel computation. 

We have chosen to use Common Lisp (Steele 
Jr. 1990) as the substrate for all software devel- 
opment. This gives us good programming en- 
vironments including type checked debugging, 
rapid prototyping, symbolic computation, easy 
ways of writing embedded language abstractions, 
and automatic storage management. We believe 
that Common Lisp is superior to C (the other 
major contender) in all of these aspects. 

The problem then is how to use Lisp in a 
massively parallel machine where each node may 
not have the vast amounts of memory that we 
have become accustomed to feeding Common 
Lisp implementations on standard Unix boxes. 

We have a long history of building high perfor- 
mance Lisp compilers (Brooks, Gabriel & Steele 
Jr. 1982), including one of the two most com- 
mon commercial Lisp compilers on the market; 
Lucid Lisp (Brooks et al. 1986). 

Recently we have developed L (Brooks 1993), 
a retargetable small efficient Lisp which is a 
downwardly compatible subset of Common Lisp. 
When compiled for a 68000 based machine the 
load image (without the compiler) is only 140 K 

bytes, but includes multiple values, strings, char- 
acters, arrays, a simplified but compatible pack- 
age system, all the "ordinary" aspects of format,  
backquote and comma, s e r f  etc. full Common 
Lisp lambda lists including optionals and key- 
word arguments, macros, an inspector, a debug- 
ger, d e f s t r u c t  (integrated with the inspector), 
block, catch, and throw, etc., full dynamic clo- 
sures, a full lexical interpreter, floating point, 
fast garbage collection, and so on. The com- 
piler runs in time linear in the size of an in- 
put expression, except in the presence of lexical 
closures. It nevertheless produces highly opti- 
mized code in most cases. L is missing f l e t  
and labe ls ,  generic arithmetic, bignums, ratio- 
nals, complex numbers, the library of sequence 
functions (which can be written within L) and 
esoteric parts of format and packages. 

The L system is an intellectual descendent of 
the dynamically retargetable Lucid Lisp com- 
piler (Brooks et al. <1986) and the dynami- 
cally retargetable ,Behavior Language compiler 
(Brooks 1990a). The system is totally written in 
L with machine dependent backends for retar- 
getting. The first backend is for the Motorola 
68020 (and upwards) family, but it is easily re- 
targeted to new architectures. The process con- 
sists of writing a simple machine description, 
providing code templates for about 100 primi- 
tive procedures (e.g., fixed precision integer +, 
*, =, etc., string indexing CHArt and other ac- 
cessors, CAR, CDrt, etc.), code macro expansion 
for about 20 pseudo instructions (e.g, procedure 
call, procedure exit, checking correct number of 
arguments, linking CATCH frames, etc.) and two 
corresponding sets of assembler routines which 
are too big to be expanded as code templates 
every time, but are so critical in speed that they 
need to be written in machine language, without 
the overhead of a procedure call, rather than 
in Lisp (e.g., CONS, spreading of multiple values 
on the stack, etc.). There is a version of the 
I/O system which operates by calling C routines 
(e.g., fgetchax,  etc.; this is how the Macintosh 
version of L runs) so it is rather simple to port 
the system to any hardware platform we might 
choose to use in the future. 

Note carefully the intention here: L is to 
be the delivery vehicle running on the brain 
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hardware of the humanoid, potentially on hun- 
dreds or thousands of small processors. Since 
it is fully downward compatible with Common 
Lisp however, we can carry out code develop- 
ment and debugging on standard work stations 
with full programming environments (e.g., in 
Macintosh Common Lisp, or Lucid Common 
Lisp with Emacs 19 on a Unix box, or in the 
Harlequin programming environment on a Unix 
box). We can then dynamically link code into 
the running system on our parallel processors. 

There are two remaining problems: (1) how 
to maintain super critical real-time perfor- 
mance when using a Lisp system without hard 
ephemeral garbage collection, and (2) how to 
get the level of within-processor parallelism de- 
scribed earlier. 

The structure of Es implementation is such 
that multiple independent heaps can be main- 
tained within a single address space, sharing all 
the code and data segments of the Lisp proper. 
In this way super-critical portions of a system 
can be placed in a heap where no consing is 
occurring, and hence there is no possibility that 
they will be blocked by garbage collection. 

The Behavior Language (Brooks 1990a) is an 
example of a compiler which builds special pur- 
pose static schedulers for low overhead paral- 
lelism. Each process ran until blocked and the 
syntax of the language forced there to always be 
a blocking condition, so there was no need for 
pre-emptive scheduling. Additionally the syntax 
and semantics of the language guaranteed that 
there would be zero stack context needed to be 
saved when a blocking condition was reached. 
We have built a new scheduling system with L 
to address similar issues in this project. To fit 
in with the philosophy of the rest of the system 
it has a dynamic scheduler so that new pro- 
cesses can be added and deleted as a user types 
to the Lisp listener of a particular processor. 
Reasonably straightforward data structures keep 
these costs to manageable levels. It was rather 
straightforward to build a phase into the L com- 
piler which recognizes the situations described 
above. Thus it was straightforward to imple- 
ment a set of macros which provides a language 
abstraction on top of Lisp which provides all 
the functionality of the Behavior Language and 

which additionally lets us have dynamic schedul- 
ing. A pre-emptive scheduler is used in addition, 
as it would be difficult to enforce a computation 
time limit syntactically when Common Lisp is 
essentially available to the p rogrammer -a t  the 
very least the case of the pre-emptive scheduler 
having to strike down a process is useful as a 
safety device, and acts as a debugging tool for 
the user to identify time critical computations 
which are stressing the bounded computation 
style of writing. In other cases static analysis is 
able to determine maximum stack requirements 
for a particular process, and so heap allocated 
stacks are usable. 

The software system so far described is being 
used to implement crude forms of 'brain mod- 
els', where computations will be organized in 
ways inspired by the sorts of anatomical divisions 
we see occurring in animal brains. Note that we 
are not building a model of a particular brain, 
but rather using a modularity inspired by such 
components as visual cortex, auditory cortex, 
etc., with further modulartiy within and across 
these components, e.g., a particular subsystem to 
implement the vestibulo-ocular response (VOR). 

Thus besides on-processor parallelism we need 
to provide a modularity tool that packages pro- 
cesses into groups and limits data sharing be- 
tween them. Each package resides on a sin- 
gle processor, but often processors host many 
such packages. A package that communicates 
with another package should be insulated at the 
syntax level from knowing whether the other 
package is on the same or a different proces- 
sor. The communication medium between such 
packages will again be 1-deep buffers without 
queuing or receipt acknowledgment-any such 
acknowledgment will need to be implemented 
as a backward channel, much as we see through- 
out the cortex (Churchland & Sejnowski 1992). 
This packaging system can be implemented in 
Common Lisp as a macro package. 

5.1.2 Computational Hardware. The computa- 
tional model presented in the previous section is 
somewhat different from that usually assumed 
in high performance parallel computer appli- 
cations. Typically (Cypher et al. 1993) there 
is a strong bias on system requirements from 
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the sort of benchmarks that are used to eval- 
uate performance. The standard benchmarks 
for modern high performance computation seem 
to be Fortran code for hydrodynamics, molec- 
ular simulations, or graphics rendering. We 
are proposing a very different application with 
very different requirements; in particular we re- 
quire real-time response to a wide variety of 
external and internal events, we require good 
symbolic computation performance, we require 
only integer rather than high performance float- 
ing point operations 7, we require delivery of 
messages only to specific sites determined at 
program design time, rather than at run-time, 
and we require the ability to do very fast con- 
text switches because of the large number of 
parallel processes that we intend to run on each 
individual processor. 

The fact that we do not need to support 
pointer references across the computational sub- 
strate means that we can rely on much simpler, 
and therefore higher performance, parallel com- 
puters than many other researchers-we do not 
have to worry about a consistent global mem- 
ory, cache coherence, or arbitrary message rout- 
ing. Since these are different requirements than 
those that are normally considered, we have to 
make some measurements with actual programs 
before we can make an intelligent off the shelf 
choice of computer hardware. 

In order to answer some of these questions 
we have built a zero-th generation parallel com- 
puter. It is being built on a very low budget with 
off the shelf components wherever possible (a 
few fairly simple printed circuit boards need to 
be fabricated). The processors are 16 Mhz Mo- 
torola 68332s on a standard board built by Vesta 
Technology. These plug 16 to a backplane. The 
backplane provides each processor with six com- 
munications ports (using the integrated timing 
processor unit to generate the required signals 
along with special chip select and standard ad- 
dress and data lines) and a peripheral processor 
port. The communications ports are hand-wired 
with patch cables, building a fixed topology net- 
work. (The cables incorporate a single dual 
ported RAM (8 K by 16 bits) that itself in- 
cludes hardware semaphores writable and read- 
able by the two processors being connected.) 

Background processes running on the 68332 op- 
erating system provide sustained rate transfers 
of 60 Hz packets of 4 K bytes on each port, 
with higher peak rates if desired. These sus- 
tained rates do consume processing cycles from 
the 68332. On non-vision processors we ex- 
pect much lower rates will be needed, and even 
on vision processors we can probably reduce the 
packet frequency to around 15 Hz. Each proces- 
sor has an operating system, L, and the dynamic 
scheduler residing in 1M of EPROM. There is 
1M of RAM for program, stack and heap space. 
Up to 256 processors can be connected together. 

Up to 16 backplanes can be connected to a 
single front end processor (FEP) via a shared 
500 K baud serial line to a SCSI emulator. A 
large network of 68332s can span many FEPs 
if we choose to extend the construction of this 
zero-th prototype. Initially we use a Macintosh 
as a FEE Software written in Macintosh Com- 
mon Lisp on the FEP provides disk I/O services 
to the 68332's, monitor status and health pack- 
ets from them, and provides the user with a Lisp 
listener to any processor they might choose. 

The zero-th version uses the standard Mo- 
torola SPI (serial peripheral interface) to com- 
municate with up to 16 Motorola 6811 pro- 
cessors per 68332. These are a single chip 
processor with onboard EEPROM (2 K bytes) 
and RAM (256 bytes), including a timer sys- 
tem, an SPI interface, and 8 channels of analog 
to digital conversion. We are building a small 
custom board for this processor that includes 
opto-isolated motor drivers and some standard 
analog support for sensors. 

There are certain developments on the hori- 
zon within the MIT Artificial Intelligence Lab 
which we expect to capitalize upon in order 
to dramatically upgrade our computational sys- 
tems for early vision, and hence the resolution 
at which we can afford to process images in real 
time. The first of these, will be a somewhat 
similar distributed processing system based on 
the much higher performance Texas Instrument 
C40, which comes with built in support for fixed 
topology message passing. In late '95 we expect 
to be able to make use of the Abacus system, a 
bit level reconfigurable vision front-end proces- 
sor being built under ARPA sponsorship which 
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promises Tera-op performance on 16 bit fixed 
precision operands. Both these systems will be 
simply integrable with our zero-th order paral- 
lel processor via the standard dual-ported RAM 
protocol that we are using. 

5.2 Bodies 

As with the computational hardware, we are 
also currently engaged in building a zero-th 
generation body for early experimentation and 
design refinement towards more serious con- 
structions within the scope of this project. We 
are presently limited by budgetary constraints to 
building an immobile, armless, deaf, torso with 
only black and white vision. 

In the following subsections we outline the 
constraints and requirements on a full scale hu- 
manoid body and also include where relevant 
details of our zero-th level prototype. 

5.2.1 Eyes. There has been quite a lot of 
recent work on animate vision using saccading 
stereo cameras, most notably at Rochester (Bal- 
lard 1989, Coombs 1992), but also more recently 
at many other institutions, such as Oxford Uni- 
versity. 

The humanoid needs a head with high me- 
chanical performance eyeballs and foveated vi- 
sion if it is to be able to participate in the 
world with people in a natural way. Even 
our earliest heads will include two eyes, with 
foveated vision, able to pan and tilt as a unit, 
and with independent saccading ability (three 
saccades per second) and vergence control of 
the eyes. Fundamental vision based behaviors 
will include a visually calibrated vestibular-ocular 
reflex, smooth pursuit, visually calibrated sac- 
cades, and object centered foveal relative depth 
stereo. Independent visual systems will pro- 
vide peripheral and foveal motion cues, color 
discrimination, human face pop-outs, and even- 
tually face recognition. Over the course of the 
project, object recognition based on "represen- 
tations" from body schemas and manipulation 
interactions will be developed. This is com- 
pletely different from any conventional object 
recognition schemes, and can not be attempted 
without an integrated vision and manipulation 
environment as we propose. 

The eyeballs need to be able to saccade up 
to about three times per second, stabilizing for 
250 ms at each stop. Additionally the yaw axes 
should be controllable for vergence to a common 
point and drivable in a manner appropriate for 
smooth pursuit and for image stabilization as 
part of a vestibulo-ocular response (VOR) to 
head movement. The eyeballs do not need to 
be force or torque controlled but they do need 
good fast position and velocity control. We have 
previously built a single eyeball, A-eye, on which 
we implemented a model of VOR, ocular-kinetic 
response (OKR) and saccades, all of which used 
dynamic visually based calibration (Viola 1990). 

Other active vision systems have had both 
eyeballs mounted on a single tilt axis. We will 
begin experiments with separate tilt axes but if 
we find that relative tilt motion is not very useful 
we will back off from this requirement in later 
versions of the head. 

The cameras need to cover a wide field of 
view, preferably close to 180 degrees, while also 
giving a foveated central region. Ideally the im- 
ages should be RGB (rather than the very poor 
color signal of standard NTSC). A resolution of 
512 by 512 at both the coarse and fine scale 
is desirable. 

Our zero-th version of the cameras are black 
and white only. Each eyeball consists of two 
small lightweight cameras mounted with parallel 
axes. One gives a 115 degree field of view and 
the other gives a 20 degree foveated region. 
In order to handle the images in real time in 
our zero-th parallel processor we subsample the 
images to be 128 by 128 which is much smaller 
than the ideal. 

Later versions of the head will have full RGB 
color cameras, wider angles for the peripheral 
vision, much finer grain sampling of the images, 
and perhaps a colinear optics set up using optical 
fiber cables and beam splitters. With more 
sophisticated high speed processing available we 
will also be able to do experiments with log-polar 
image representations. 

5.2.2 Ears, Voice. Almost no work has been 
done on sound understanding, as distinct from 
speech understanding. This project will start on 
sound understanding to provide a much more 
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solid processing base for later work on speech 
input. Early behavior layers will spatially cor- 
relate noises with visual events, and spatial reg- 
istration will be continuously self calibrating. 
Efforts will concentrate on using this physical 
cross-correlation as a basis for reliably pulling 
out interesting events from background noise, 
and mimicking the cocktail party effect of be- 
ing able to focus attention on particular sound 
sources. Visual correlation with face pop-outs, 
etc., will then be used to be able to extract hu- 
man sound streams. Work will proceed on using 
these sounds streams to mimic infant's abilities 
to ignore language dependent irrelevances. By 
the time we get to elementary speech we will 
therefore have a system able to work in noisy en- 
vironments and accustomed to multiple speakers 
with varying accents. 

Sound perception will consist of four high 
quality microphones. (Although the human 
head uses only two auditory inputs, it relies 
heavily on the shape of the external ear in de- 
termining the vertical component of directional 
sound source.) Sound generation will be ac- 
complished using a single speaker. 

Sound is critical for several aspects of the 
robot's activity. First, sound provides immedi- 
ate feedback for motor manipulation and po- 
sitioning. Babies learn to find and use their 
hands by batting at and manipulating toys that 
jingle and rattle. Adults use such cues as con- 
tact no i ses - the  sound of an object hitting the 
t a b l e - t o  provide feedback to motor systems. 
Second, sound aids in socialization even be- 
fore the emergence of language. Patterns such 
as turn-taking and mimicry are critical parts 
of children's development, and adults use gut- 
tural gestures to express attitudes and other 
conversational cues. Certain signal tones indi- 
cate encouragement or disapproval to all ages 
and stages of development. Finally, even pre- 
verbal children use sound effectively to convey 
intent; until our robots develop true language, 
other sounds will necessarily be a major source 
of communication. 

5.2.3 Torsos. In order for the humanoid to 
be able to participate in the same sorts of body 
metaphors as are used by humans, it needs to 

have a symmetric human-like torso. It needs to 
be able to experience imbalance, feel symmetry, 
learn to coordinate head and body motion for 
stable vision, and be able to experience relief 
when it relaxes its body. Additionally the torso 
must be able to support the head, the arms, and 
any objects they grasp. 

The torsos we build will initially have a three 
degree of freedom hip, with the axes passing 
through a common point, capable of leaning and 
twisting to any position in about three seconds -  
somewhat slower than a human. The neck will 
also have three degrees of freedom, with the 
axes passing through a common point which 
will also lie along the spinal axis of the body. 
The head will be capable of yawing at 90 degrees 
per second- less  than peak human speed, but 
well within the range of natural human motions. 
As we build later versions we expect to increase 
these performance figures to more closely match 
the abilities of a human. 

Apart from the normal sorts of kinematic sen- 
sors, the torso needs a number of additional 
sensors specifically aimed at providing input fod- 
der for the development of bodily metaphors. 
In particular, strain gauges on the spine can 
give the system a feel for its posture and the 
symmetry of a particular configuration, plus a 
little information about any additional load the 
torso might bear when an arm picks up some- 
thing heavy. Heat sensors on the motors and 
the motor drivers will give feedback as to how 
much work has been done by the body recently, 
and current sensors on the motors will give an 
indication of how hard the system is working 
instantaneously. 

Our zero-th level torso is roughly 18 inches 
from the base of the spine to the base of the 
neck. This corresponds to a smallish adult. It 
uses DC motors with built in gearboxes. The 
main concern we have is how quiet it will be, 
as we do not want the sound perception system 
to be overwhelmed by body noise. 

Later versions of the torsos will have touch 
sensors integrated around the body, will have 
more compliant motion, will be quieter, and 
will need to provide better cabling ducts so that 
the cables can all feed out through a lower 
body outlet. 
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5.2.4 Arms. The eventual manipulator system 
will be a compliant multi-degree of freedom 
arm with a rather simple hand. (A better hand 
would be nice, but hand research is not yet at a 
point where we can get an interesting, easy-to 
use, off-the-shelf hand.) The arm will be safe 
enough that humans can interact with it, handing 
it things and taking things from it. The arm will 
be compliant enough that the system will be 
able to explore its own b o d y - f o r  instance, by 
touching its head sys tem-so  that it will be able 
to develop its own body metaphors. 

We want the arms to be very compliant yet still 
able to lift weights of a few pounds so that they 
can interact with human artifacts in interesting 
ways. Additionally we want the arms to have 
redundant degrees of freedom (rather than the 
six seen in a standard commercial robot arm), so 
that in many circumstances we can 'burn' some 
of those degrees of freedom in order to align a 
single joint so that the joint coordinates and task 
coordinates very nearly match. This will greatly 
simplify control of manipulation. It is the sort 
of thing people do all the time: for example, 
when bracing an elbow or the base of the palm 
(or even their middle and last two fingers) on a 
table to stabilize the hand during some delicate 
(or not so delicate) manipulation. Our zero- 
th version arms have six degrees of freedom 
and a novel spring-based transmission system to 
introduce passive compliance at every joint. 

The hands in the first instances will be quite 
simple; devices that can grasp from above rely- 
ing heavily on mechanical compliance-they may 
have as few as one degree of control freedom. 

More sophisticated, however, will be the sens- 
ing on the arms and hands. We will use forms 
of conductive rubber to get a sense of touch 
over the surface of the arm, so that it can de- 
tect (compliant) collisions it might participate 
in. As with the torso there will be liberal use 
of strain gauges, heat sensors and current sen- 
sors so that the system can have a 'feel' for 
how its arms are being used and how they are 
performing. 

We also expect to move towards a more so- 
phisticated type of hand in later years of this 
project. Initially, unfortunately, we will be 
forced to use motions of the upper joints of 

the arm for fine manipulation tasks. More so- 
phisticated hands will allow us to use finger 
motions, with much lower inertias, to carry out 
these tasks. 

6 Development Plan 

We plan on modeling the brain at a level above 
the neural level, but below what would normally 
be thought of as the cognitive level. 

We understand abstraction well enough to 
know how to engineer a system that has sim- 
ilar properties and connections to the human 
brain without having to model its detailed local 
wiring. At the same time it is clear from the 
literature that there is no agreement on how 
things are really organized computationally at 
higher or modular levels, or indeed whether it 
even makes sense to talk about modules of the 
brain (e.g., short term memory, and long term 
memory) as generative structures. 

Nevertheless, we expect to be guided, or one 
might say inspired, by what is known about the 
high level connectivity within the human brain 
(although admittedly much of our knowledge 
actually comes from macaques and other pri- 
mates and is only extrapolated to be true of 
humans, a problem of concern to some brain 
scientists (Crick & Jones 1993)). Thus for in- 
stance we expect to have identifiable clusters of 
processors which we will be able to point to and 
say they are performing a role similar to that 
of the cerebellum (e.g., refining gross motor 
commands into coordinated smooth motions), 
or the cortex (e.g., some aspects of searching 
generalization/specialization hierarchies in ob- 
ject recognition (Ullman 1991)). 

At another level we will directly model human 
systems where they are known in some detail. 
For instance there is quite a lot known about 
the control of eye movements in humans (again 
mostly extrapolated from work with monkeys) 
and we will build in a vestibulo-ocular response 
(VOR), OKR, smooth pursuit, and saccades us- 
ing the best evidence available on how this is 
organized in humans (Lisberger 1988). 

A third level of modeling or inspiration that 
we will use is at the developmental level. For in- 
stance once we have some sound understanding 
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Fig. I. Development plan. 

developed, we will use models of what hap- 
pens in child language development to explore 
ways of connecting physical actions in the world 
to a ground of language and the development 
of symbols (Bates 1979, Bates, Bretherton & 
Synder 1988), including indexical (Lempert & 
Kinsbourne 1985) and turn-taking behavior, in- 
terpretation of tone and facial expressions and 
the early use of memorized phrases. 

Since we will have a number of faculty, and 
graduate students working on concurrent re- 
search projects, and since we will have a number 
of concurrently active humanoid robots, not all 
pieces that are developed will be intended to 
fit together exactly. Some will be incompatible 
experiments in alternate ways of building sub- 
systems, or putting them together. Some will 
be pushing on particular issues in language, say, 
that may not be very related to some particular 
other issues, e.g., saccades. Also, quite clearly, 

at this stage we can not have a development 
plan fully worked out for the lifetime of the 
project, as many of the early results will change 
the way we think about the problems and what 
should be the next steps. 

In figure 1, we summarize our current plans 
for developing software systems on board our 
series of humanoids. In many cases there will be 
earlier work off-board the robots, but to keep 
clutter down in the diagram we have omitted 
that work here. 
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Notes 

1. Different sources cite 1947 and 1948 as the time of writ- 
ing, but it was not published until long after his death. 

2. A more egregious version of this is (Penrose 1989) who 
not only makes the same Turing-G6del error, but then 
in a desperate attempt to find the essence of mind and 
applying the standard methodology of physics, namely 
to find a simplifying underlying principle, resorts to an 
almost mystical reliance on quantum mechanics. 

3. There are exceptions to this: for instance, the work of 
Beer (1990); but that is restricted to insect level cog- 
nition. 

4. One particular patient (McCarthy & Warrington 1988) 
when shown a picture of a dolphin, was able to form 
sentences using the word 'dolphin' and talk about its 
habitat, its ability to be trained, and its role in the 
US military. When verbally asked what a dolphin was, 
however, he thought it was 'either a fish or a bird.' 
He had no such discrepancies in knowledge when the 
subject was, for example, a wheelbarrow. 

5. For instance, some patients can not exercise conscious 
control over their fingers for simple tasks, yet seem 
unimpaired in threading a needle, or playing the pi- 
ano. Furthermore in some cases selective drug induced 
suppression shows ways in which many simple reflexes 
combine to give the appearance of a centralized will 
producing globally coherent behavior (Teitelbaum, Pel- 
lis & Pellis 1990). 

6. This observation parallels the developments in digital 
computers, where mean time between failures in the 
1950's was in the 20 minute range, extending to peri- 
ods of a week in the 1970's, and now typically we are 
not surprised when our workstations run for months 
without needing to be rebooted-this  increase in ro- 
bustness was bought with many hundreds of iterations 
of the engineering cycle. 

7. Consider the dynamic range possible in single signal 
channels in the human brain and it soon becomes ap- 
parent that all that we wish to do is certainly achievable 

with neither span of 600 orders of magnitude, or 47 
significant binary digits. 
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