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A Tomographic Approach to Wigner's function 
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we propose a new derivation of Wigner's fimction based on the property of 
positivity of its integrals along straight lines in phase space. Identifying the values 
of these marginalizations with densities pertainbtg to invariant observables, we are 
able to reconstruct Wigner's pseudo-distribution from its slices. 

1. INTRODUCTION 

The possibility of expressing quantum mechanical expectation values as 
averages over phase space distribution functions is well known. It allows 
the transformation of the standard quantum formula 

( A )  = f O*(x) Aop(x, -ihO/~x) O(x)  dx (1) 

into the statistical expression 

( A ) = f a(x, p ) f ( x ,  p)  dx dp (2) 

where a(x, p)  is a classical function corresponding to the operator Aop and 
f is the "distribution function." The first introduction of such a represen- 
tation was made by Wigner, (1) who used for f the expression 

f w ( x ,  p )  = f d u e  - 2i~up @(x-I- ghu) O * ( x -  rchu) (3) 
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Later, alternative expressions were proposed but (3) remained the most 
attractive, especially when the goal was to display the departure from 
classical mechanics. 

In an attempt to select the best ways to the phase space represen- 
tation, axiomatic approaches have been proposed. (~-5) Basically they all 
make use of the following three main constraints plus some extra con- 
ditions: 

(i) f m u s t  be a real Hermitian form of the wave function; 

(ii) integration with respect to each variable can be interpreted as a 
marginalization, i.e., 

f f ( x ,  p) dx = lO(p)l 2, f f ( x ,  p)dp = l~/(x)I z 

(iii) the correspondence ~ - ~ f  must be invariant under Galilean 
transformations at fixed t and by space inversions. 

A typical example is given by the determination of (3) from (i)-(iii) and the 
added requirement that for free particles the time dependence o f f  becomes 
the nonrelativistic classical one. ~2~ A general feature of all auxiliary con- 
ditions is that they do not directly contribute to the phase space inter- 
pretation of quantum probabilities. The aim of this paper is to give an 
alternative construction which avoids this criticism and leads un 
equivocally to Wigner's function. 

To present our work, we have to explain condition (iii). The group G 
of Gatilean transformations (a, v) at a given instant t of time performs 
translations in phase space according to 

(a, v): (x, p) ~ ( x -  v t - a ,  p - m y )  (4) 

It is supposed to act on wave functions as usual (cf. Appendix) and to 
transform f like a classical distribution. Galilean covariance is then 
expressed by the commutativity of the following diagram 

~(x, t) , e -i(m/h)vx+i~°~''') ~ ( x + v t + a ,  t) (5) 

f (x ,  p) , f ( x  + vt + a, p + my) (6) 

where qo(v, t) is a phase we need not know explicitly since we always write 
Hermitian forms of ~ at time t. The principle of the method rests upon the 
fact that true densities exist for certain classes of observables, namely those 
invariant under a subgroup of G. Indeed, such observables can all be 
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simultaneously diagonalized, thus leading to an expression of the expec- 
tation values in the form 

<A ) = ; dfl A(fi) p(fl) (7) 

where p(//) appears as a probability law associated with the diagonal part 
of the density matrix. On the other hand, as a consequence of the transfor- 
mation law (6) off ,  these invariant observables are represented in (2) by 
functions in phase space which are constant on the subgroup orbits. This 
implies that (2) becomes a one-dimensional integral involving a 
marginalization of the phase space distribution. At this stage, a natural 
requirement is that the marginalization o f f  be identified with the quantum 
mechanical density p(fl). This is nothing but the generalization of con- 
straint (ii) to all G subgroups. Then, determining f appears as a 
tomographic reconstruction problem which can be solved using a Radon 
transform inverse. 

In Sec. 2, the basis diagonalizing observables invariant under an 
arbitrary subgroup of G is obtained together with its associated density. In 
Sec. 3, the general marginal condition is shown to determine f by its 
integrals along any direction in phase space. Finally, in Sec. 4, the inver- 
sion of the Radon transform yields Wigner's function. 

2. PROBABILITY DENSITY FOR CLASSES OF INVARIANT 
OBSERVABLES 

In the following, we are exclusively using the coordinate represen- 
tation to express quantum states and quantum observables. In particular, 
expectation values are written 

< A ) = f dx 1 dx2A(xl, x2) @•(Xl) @(x2) (8) 

where the kernel A(xl,  x2) is a distribution satisfying 

A(xl, x2)= A*(x2, xl) 

In order to specify some particular classes of observables, we need to con- 
sider subgroups of the Galilean group G. The subgroups will be denoted 
Go, where the label ~ fixes the ratio of the parameters a and v appearing in 
(4): 

a = ~v (9) 
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The action of such a subgroup on any quantum state results from the 
action (5) of the whole group and reads 

(ev, v)e G~: O(x, t ) ~ e  -~(m/h~'x+i~(~'~) O(x+v( t+e) ,  t) (10) 

Observables whose expectation values are invariant under this action will 
be called G~-invariant. They are characterized by kernels satisfying 

A(x l , x2 )=e- i ( "vh~(~2-X~A(x l -v ( t+e) , x2 - -v ( t+e) )  (11) 

To find the basis Z ~ of La(R) diagonalizing A, we notice that, due to 
the spectral decomposition 

A(xl ,  x2) = jr Z~,*(x2, fl) Z~(xl, fl) A(fl) dfl 

condition (11) leads to the equation 

Z~(x, fl)= e i°~'~'~)+i(m/h~'~ Z ~ ( x -  v(t + :~), fl) 

(12) 

(13) 

The solution is 

OZ ~ 
[i2(fl, c~) - i(m/h) x] Z~(x, fl) + (t + ~) ~ (x, fl) = 0 (14) 

2~(fl, ~)  - - f f 0 / o t , ) ( ~ ,  fl, v)j,,~o 

Z~( x, fl ) = K(fi, ¢x ) e i(Im/2h ~':2- ;(•, ~) ~1/(, + ~1 (15) 

The modulus of the integration constant K is determined by the nor- 
malization condition 

I z,(x, 

The result is 

fi) z ~ * ( x ,  f i ' )  a x  = 6(f l  - f i ' )  

jK(e, fl)l = 2n(]-+ ~) Q2(fl,(~]~ 0() 1/2 (16) 

where 

where 0 is a real function. 
To solve this equation, we perform v differentiations on both sides 

and, setting v = 0, we obtain 
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This expression guarantees the completeness relation 

Z'(x, [~) z~*(x ', ~) dB = 6(x - x') 

What we have obtained is an improper basis of L2(R) allowing us to write 
the expectation value of any G:-invariant observable as 

(17) 

where 

p~(~)=f dx, dx~Z~(x~,13)Z (xl ,~)O(x,)O*(x2) (18) 

The function p~(fl) is everywhere ~>0 and thus can be viewed as a 
probability density associated with the class of G~-invariant observables. 
The arbitrary function 2 corresponds to the freedom in the choice of the 
variable ft. It will be fixed later on. 

3. T O M O G R A P H I C  D E F I N I T I O N  OF THE P S E U D O -  
D I S T R I B U T I O N  F U N C T I O N  

We will now express the density associated with G~-invariant obser- 
vables in terms of the pseudo-distributionf Using relation (2) and perfor- 
ming a G~ transformation on f as defined by (6) and (9), we deduce that 
the function a(x, p) characterizing such observables must satisfy the 
equation 

a(x, p ) = a ( x - v ( t  +~), p - m y )  (19) 

Hence a must be constant on the G~ orbits in phase space given by 

x - (t + ~) p/m = 7 (20) 

where 7 is a real number. As a consequence, the phase space representation 
of G~-invariant observables can be written as 

a(x, p) = J" d 7 g@ ) 6(7 + ( t + ~) p/m - x) (21) 
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and their expectation values reduce to 

{A ) = f dy ,~(y) I(7, o~) (22) 

where 

/(7, a) =- f & @ f i x ,  p )  b(y + (t + a)(p/rn)  -- x )  (23) 

Thus, for each value of a, the integral of f along parallel lines in phase 
space plays the role of a one-dimensional density associated with the class 
of G,-invariant observables. The identification of the latter with the density 
p~ obtained in the preceding section will give us what can be seen as a 
general marginal condition. In practice, we have to match the parameters 
appearing in Eqs. (18) and (23). In a first step, we do it through the 
arbitrary function 2 introduced in solving (14) and obtain 

where 

I(fl, ~)= p~(A(fl, a)) (24) 

2 n l t + a l  $(xl)q*(x2) 
• z 2 

• C t [ ( m / 2 h ) ( x ~  X l ) - ) ~ ( f l ,  a ) ( x 2 - - x l ) ] / ( t + ~ )  

The second step witl consist in a determination of the function 2 by 
requiring the stability of (24) under Galilean transformations and space 
reflections. Writing (24) for the transformed (5)-(6) of f and ~, we get 

I(fi + a -- av, a) = p'~(2(fi, ~))  

where 

(%)/Off[ 
p'~,(2(fl, ~)) = f dx ,  dx2 2n It + aI ~(xi) ~t*(x2) e -;~'/a'~'¢~'-x2) 

. e t [ ( m / 2 h ) ( t ,  x 2 - -  v t  - -  a )  2 - -  ( X l  - -  v t - -  a )  2)  - -  ~ ( f l .  a } ( x 2 - -  x l  } ] / ( t  + ¢~) 

In order to obtain the same functional relation as (24), we must have 

p'~(2(fl, ~ ) ) = p ~ ( 2 ( f l + a - ~ v ,  ~)) 

This relation will hold for any ~ if and only if 

)f ir  + a - ~v, ~ ) = 2(fl, a)  + (rn/h )( a - ~v ) 
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The general solution of this equation is 

2(/3, ~) = (m/h ) /3 + h(~) (25) 

with h an arbitrary function. 
In the same way, requiring the commutativity of the diagram related 

to space inversions 

O(x) ' O( -x )  

1 1 
f (x ,  p) , f ( - x ,  - p )  

we obtain 

h(e) - 0 (26) 

Combining (23), (24), and (25)-(26), we deduce the generalized 
marginal condition in the form 

f dx dp f (x ,  p) 6(/3 + (t + ~¢) p / m -  x) 

f m e i'~Ea(x~-x~)-~c~2-x~)t/(`+~)~ x = jdxldX22~zh(t+~¢) - ~ (1) tP*(x2)  

This is nothing but a tomographic description o f f  

4. INVERSION OF THE RADON TRANSFORM. 
WIGNER'S FUNCTION 

According to (27), f is determined by its Radon transform. The easiest 
inversion technique makes use of a Fourier integral. (6) 

Indeed, multiplying both sides of (27) by e 2 ~  and integrating in /3, 
we get 

~ dx dp f (x ,  p) e 2~=c~-(~+~)p/~# 

m 
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The left-hand side is just the double Fourier transform o f f  which can be 
readily inverted, yielding 

f ( x ,  p) = f due -2'~up $(x  + rchu) ~p*(x - ~zhu) 

This is just the expression (3) of the original Wigner function. 

5. CONCLUDING REMARKS 

We have proposed a construction of Wigner's function resting upon 
one probabilistic constraint beside Galilei invariance. Its main interest is to 
emphasize the prominent position of the Wigner function among pseudo- 
probability distributions. Though nonpositive, it is the only one to have the 
correct marginalizations whatever the direction of integration in the x - p  
plane. This permits us to consider it as the closest to a true distribution 
function. 

For simplicity, the above developments have been restricted to one 
spatial dimension. Generalization to higher dimensions involves only 
technical difficulties. 

APPENDIX. TRANSFORMATION OF THE WAVE FUNCTION BY 
GALILEI GROUP 

Extensive discussions of the Galilei invariance may be found in the 
literature. ~7,s) However, we are only concerned with the changes of Galilean 
reference frames at a given instant, and a straightforward derivation is 
possible. 

In quantum mechanics, we work with a density and a current density 
defined, respectively, by 

p(x, t )= tO(x, t)[ 2 (A1) 

J(x, t)= --(h/2im)[O(x, t)V0*(x, t ) -  $*(x, t)VO(x, t)] (A2) 

These quantities are related by the continuity equation 

~ t  + div J = 0 (A3) 
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Such an equa t ion  must  
ma t ion  given by 

be form- invar ian t  under  the Gal i lean 
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transfor-  

X ' = X - - 1 ) t - - a  
(A4) 

t ' = t  

This implies tha t  p and J must  t ransform according to 

p ~ p ' ( x ,  t)  = p ( x  + vt, t) (A5) 

J -~ J ' ( x ,  t) = J ( x  + vt, t) - v p ( x  + vt, t) (A6) 

The first relat ion shows that  ~ must  t ransform as 

~ ~9'(x, t)  = e '~x'~'~'~'~ tp(x + vt, t) (A7) 

where ~b is an a rb i t ra ry  real function. 
Combin ing  Eqs. (6) and  (7), we obta in  the x dependence of this phase: 

(k(x, t, v) = - ( m / h )  v x  + q)(v, t) (AS) 

where (p remains  arbi t rary.  This result is sufficient for s tudying the behavior  
of  Hermi t ian  forms of ~ under  Galilei t rans format ions  at t fixed. 
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