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This paper, using the author's decomposition method and recent generalizations, 
presents algorithms for an analytic solution of  the stochastic Navier-Stokes 
system without linearization, perturbation, discreJization, or restrictive assump- 
tions on the nature of stochasticity. The pressure, forces, velocities, and 
initial/boundary conditions can be stochastic processes and are not limited to white 
noise. Solutions obtained are physically realistic because of  the avoidance of  
assumptions made purely for mathematical tractability by usual methods. Certain 
extensions and further generalizations o f  the decomposition method have provided 
the basis Jbr the solution. 

1. INTRODUCTION 

Turbulence is encountered everywhere in the flow of fluids, and the 
methods of dealing with it realistically are still inadequate due to com- 
monly used restrictive assumptions and formulations tailored to convenient 
mathematics. A correct, convenient, and physically realistic theory requires 
the analytic solution of nonlinear stochastic partial differential 
equations--a stochastic Navier-Stokes system under general conditions, 
i.e., without linearizations or use of physically unrealistic processes such as 
white noise, perturbation, closure approximations, or even discretized 
numerical approximation methods leading to massive printouts. Such a 
solution of Navier-Stokes has been considered impossible and, despite 
thousands of papers on turbulence and some excellent books, (~3) has not 
yet been realized, (Formal solutions in terms of function space integrals 
and generalized measures which do not lead to actual solutions are not 
considered to fit our criteria.) 
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Fortunately,  recent developments (4-~ on the mathematics  make a 
totally new approach  possible. We outline it here assuming as known all 
the work in the referenced papers, particularly Ref. 5. 

2. D I S C U S S I O N  

As usually stated, the model  is an incompressible fluid of kinematic 
viscosity v, and constant  density p. These condit ions will, of  course, have 
to be modified according to the prevailing circumstances, and the 
methodology  is not  limited to these cases. The basic equations are given as 

~ u / O t ) + ( u . V ) u - v V 2 u + ( 1 / p ) V p = f  f2 x (0, T) 

V . u = 0  i n O x ( 0 ,  T), u = 0  i n d f 2 x ( 0 ,  T) 

where u is a vector with components  u, v, w. 2 
We assume the velocity u(x, y, z, t, co), the pressure p(x, y, z, t, co), 

and the external force f are stochastic processes. In terms of  velocity 
components  u, v, w, we write 

(Ou/~t) + u(~u/ax) + v(~u/~y) + w(~u/~z) 

-- ~( ( O2U/~X2) "JC ( ~2u/~y2)  "+" ( ~2U/~Z2) ) "t- (1/p )( @/Dx ) = Fx 

((?v/~t) + u(Ov/Qx) + v(Ov/@) + w(Ov/Oz) 
(1) 

- v((a%/ax 2) + (#%/ay 2 ) + (a%/az2)) + (1/p)(@/@) = Fy 

(aw/at) + u(~w/ax) + v(~w/ay) + w(~w/az) 

-- v((aZw/ax z) + (aZw/@ z) + (c~2w/az2)) + (1/p)(@/az) = gz 

We define an ini t ial-boundary problem, by specifying initial conditions for 
u, v, w and, for t ~> O, specifying u, v, w on the boundary  (x, y, z) e Fo 

3. THE ERGODICITY Q U E S T I O N  

The problem as generally stated (1"3~ utilizes a white noise input, i.e., 
the derivative of a Wiener process, and an It6 approach.  These restrictions 
will not  apply in the present treatment. 

We have considered y' = ( y -  1)2 + a with a > 0. If a < 0, the solution varies between two 
horizontal asymptotes with inflection point at (0, 1 ). The asymptotes coincide if a = 0. The 
solution y = 1 is a singular solution not derivable from the general solution. 
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To describe general stochastic processes completely, we would need 
nth order probability distributions as n -*  w.); however, it is physically more 
reasonable to determine only first- and second-order statistics. Although we 
can go further, it makes no sense to ask for more knowledge for the 
solution process of our system than we can possibly know for the input 
processes. 

The assumption of ergodic behavior is common and basic. In practice, 
we do not see an entire ensemble; we see results of an observation over a 
period T. Thus, we observe moments with respect to time and assume 
under the ergodic hypothesis that the means with respect to time over a 
period T converge as T-~ oo to the corresponding ensemble means. 

Let us represent the point x, y, z, t by 4; then a correlation R would 
be R(~I, ~2), which is dependent on two points of space-time. The correla- 
tion depends on two points of space-time and is the mean of the product 
of values at two different instants but the same point in space. We call 
this the correlation in time. If we consider a single instant and two space 
points, we have a correlation in space. If the random field is stationary, this 
implies R(xl ,  YI, zl, t l;x2, Y2, z2, t2)=R(xl ,  y~, zl;x2,  Y2, z2, t 2 - t l )  or 
R(t 2 -  t~)=R(v) .  It implies an invariance of probability distributions to 
second order with a shift in the time origin, or a simultaneous shift of two- 
time points. Thus, the first and second moments are averages over time. 
Similarly, we can have moments obtained by space-averaging. Thus, a 
random field satisfying an invariance of probability distributions with 
respect to position, or a simultaneous shift of two space points to obtain 
a correlation, is stationary with respect to space, which is more often called 
statistical homogeneity rather than stationarity, For space-averaging to 
yield the same result as ensemble-averaging, a random field would have to 
be statistically homogeneous (or stationary with respect to position). For  
time-averaging or space-averaging to equate to ensemble averaging, we 
must have the respective stationarity over some finite region. However, this 
is a necessary but not sufficient condition. If we have stationarity, and 
R(v) -~ 0 as v ~ o% we can expect ergodicity--this is reasonable since for 
physical processes as t 2 - t  becomes large, the correlation should vanish. 
The time average u .approaches the ensemble average ( u )  as T-~ oo and 
lim r ~ ~ ( (U -- ( U ) ) 2 )  = 0. Ergodicity requires stationarity. For  turbulent 
flows, ergodicity is an unjustified hypothesis under nonsteady flow condi- 
tions. The onset and decay of turbulence on a region cannot be stationary, 
hence, we cannot have ergodicity. Conditions governing the process would 
need to be time-independent, as would the external conditions. 

Emphasizing that by a "stochastic differential equation" we mean not 
a deterministic system with a stochastic input (usually white noise) but one 
which has stochastic processes in the system parameters or coefficients of 
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the equation, and perhaps also in the input or given conditions, the solu- 
tion process cannot be stationary even if all parameter and input processes 
and conditions are stationary (an exception can occur under physically 
unrealistic circumstances that require correlations between input and 
parameters). We are solving Navier-Stokes as a stochastic system, hence 
ergodicity cannot exist in the solution except under special conditions. 
Nonstationarity is the general case. 

Under special conditions where the mechanisms involved have become 
steady or over sufficiently short time intervals, we may have a quasi- 
stationary condition and use the property of ergodicity. 

4. APPROACH U S I N G  DECOMPOSITION M E T H O D  

Let us rewrite the system ( t )  in the standard (Adomian) decomposi- 
tion form (5~ 

Lu  + NI(u ,  v, w) = gl  

Lv  + N2(u,  v, w) = g2 

L w  + N3(u , v, w) = g3 

We do have some choice on the definition of the nonlinear terms. First, we 
consider 

L = (~/~3t) - v(~?2/~3x 2) - v (02/@ 2) - v(~?2/dz z) = L ,  + L~ + Ly  + L z 

N1 = u(au/~x) + v(Ou/Oy) + w(au/~z) 

N2 = v(Sv/~y) + u(~v/(?x) + w(Ov/~z) 

N3 = w(Ow/~z) + u(~w/~x) + v(~w/~y) 

gl  = Fx - (1/p )(@/c3x) 

g2 = F y -  ( t /p  )( @/Oy ) 

g3 = F= - ( 1 / p ) ( @ / ~ z )  

To complete the specification of gl,  g2, g3 we must know the pressure 
function. Let us assume first that the pressure depends upon depth only. It 
will, of course, become a function of x, y, z, t as any disturbance occurs. 
However, we must determine the functional dependence of pressure on the 
velocities u, v, w so that the gl,  g2, g3 are calculable. 
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We can rewrite the Navier-Stokes equations (for incompressible flow) 
also in the form 

8 8 
u~(x, t) + u / x ,  t) ~ u,(x, t) - vV2u,(x, t) = F , -  7x~ p(x, t) 

a-~j .j(x, t) 

recognizing that in a more general situation p becomes a function of 
x, y, z, t. (We will also consider two points xl ,  tl and x2, t2 when we seek 
the two-point correlations). (We can absorb the lip into p by writing 
(l /p)(8/Sxi) p(x, t) for the last term.) 

In this form i = t yields the equation for u, i -- 2 yields the equation for 
v, and i =  3 yields the equation for w. The j runs from 1 to 3 and the 
repeated index implies summation. The xj corresponds to x, y, z respec- 
tively as j goes from l to 3. The second term is the same as 
u(8/Sx) u + v (~?/8y) u + w (8/8z) u. Our intention is to solve for ui(x, t), or 
u~(x, y, z, t), by the decomposition method. This will result in a stochastic 
series from which statistics will be obtained. Usual methods are either to 
multiply the Navier-Stokes equation by various terms and ensemble- 
average to get moments, or to write a characteristic functional for the 
probability distribution P(u, p, t), expand as a series of joint moments, and 
ensemble-average. 

This is unsatisfactory since we have limited statistical knowledge in the 
real world. We ask only for (u(x, t ) )  and two-point correlations found 
from u(xl,  tt) and u(x2, t2). Decomposition avoids the closure problem 
which, in essence, is a perturbative treatment which eliminates the 
possibility of understanding turbulence which is due to strong nonlinear 
stochastic effects. 

If we find the divergence of each term in the Navier-Stokes equation, 
the Vp becomes V2p [or  (l /p)72]7 depending on the definition used for p] .  
The first and third terms vanish from the divergence condition. 3 The 
second term gives us V(~2.V). u. Thus 

Wp = V. F - V ( u  .V)-u  

The i component of V(u.V)  is (c~/c~x)[uS/Sx+vg/c~y+wS/Sz]. The j 
component is (8/Sy)[u 8 / S x + v  8~By+ w 8/8z]. The k component is 
(8/Sz)[u 8/8x + v 8/8y + w 8/8z]. Taking the scalar product with u, we have 

3 To see that the third term is zero, note that V x (V x 5)= V(V-t2)- V2ff. Since the first term 
on the right vanishes, the div(V2t~) is the div curl of a vector and therefore vanishes. 
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+ ~  . + ~ V y + ~  w 

After differentiations, we have 18 terms. Nine of these terms or 

u ax ~ + ~ + ax a~J + v ~ +--ay ~ + ~ j  

[- ~2 u a2v a2w -] 
+ w 

are identically (u .V)(V.u) and vanish since V. u=0.  The final result for 
the second term of the right side of the equation for V2p is 

Thus, 

(au)2 a.o  
ax,/ + toy/ \ az J 2 Oy a--x 

~w eu a w O_2v 
+ 2~xx~zz+2 ay ~?z 

(au)2+(oq2 (aw)2 o.a  
[ L x + L y + L z ] p = V F + \ a x )  k a y )  + \ a z }  + 2 ~ a x  

2 c3w au aw c~v 
+ Oxg +2 ~-7Oz 

Symbolizing the right side by f, solving for Lxp, and inverting the operator 
Lx, we have 

p = A + Bx  + L x l f _  L21Ly p _ L21L~p 

Writing p = Z~=o Pn and identifying 

po= A + Bx + L 2 l f  

we have for n >~ 0 
P~ + 1 = - -L~  1Lypn - L ~  I Lzp~ 

and we can write an n-term approximation for p by 

n--1 

i~0 
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which converges to ~ , ~ 0 P , ,  or p. (Similar equations can be written for 
Lyp and L,p). To get Po we need L j / l f o r  

We originally assumed a pressure varying only with depth, i.e., as an initial 
pressure or A in our equation for P0. The coefficient B is zero since the dis- 
turbance vanishes as x -~ ~ .  We use this p(z) to find u, v, w as outlined in 
this paper. The resulting velocities are used in our equation for p, as a 
function of velocities, to yield an improved p = Po +P~ (which recalculates 
Po because of the change in f ) .  This is used to improve results for velocities 
u, v, w. These calculations can proceed until we have sufficiently accurate 
results for u, v, w, p. 

The effect of the force represented by the Vp becomes more and more 
important  as velocities increase. Dependent on the force F, the boundary 
conditions and the velocities involved, we get p(x, y, z, t) and ~(x, y, z, t) 
and a turbulent situation. 

Assume a coordinate system with z downward and centered at the 
surface. Let the pressure p for small z be p(z)= pgz + Po, where Po is the 
atmospheric pressure and p is assumed constant. Hence dp/dz = pg and 
dp/dx = dp/dy = 0. (Effects of temperature and salinity on p are ignored 
here). Thus 

L~u + Lxu + Lyu + Lzu = gl - N1 

L,v + Lxv + LyV + Lzv = g 2 -  N2 

L~w+ L~W+ Lyw+ L , w =  g 3 - N 3  

from which 

L ~ u = g l - N  1 - L x u - L y u - L z u  

Lxu = g l - N 1 -  L t u -  L y u -  Lzu 

Lyu = g l - N ~ - L x  u - L f u - L z u  

L , u =  g l - N ~ - L x u - L y u - L , u  

Ltt~ = g2 

L~v = g~ 

L.vv = g2 

L .  v = g2 

-- N 2 -  L ~ v -  L y V -  L.v 

- -  N 2 - -  L , v -  L y v  - L~v 

- N ~ -  L ~ v -  L~v-  L.v  

- N 2 - L ~ v  - L y ~  - L~v 
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Ltw = g3 - N3 - L x w -  Lyw - Lzw 

L x w =  g 3 -  N 3 -  L t w -  L y w -  Lzw 

Lyw = g3 - N 3  - L~w - Lfw - L~w 

L~w= g 3 - N 3 - L x w - L y w - L t w  

It has been shown by Adomian and Rach (s) that, when the boundary con- 
ditions are general (when conditions on any one variable depend upon all 
the others), to solve for u, v, w we can use any of the four operator equa- 
tions depending on the given conditions and integrations required. If we 
know initial conditions, the equations involving the operator L, on the left 
side will be simplest since only a single integration will be required. ~6) We 
can also solve the system as a boundary value problem using any of the 
equations involving L~, Ly, or L~ on the left side using the recent exten- 
sions of decomposition by Adomian and Rach. (9'12) Hence, using the first 
equation of each set above and operating with L 71 we have 

u= u(O) + Li-l  g l -  L ~ I N 1 -  L j l ( L x  + Ly + Lz) u 

v = v(0) + L~  l g  2 - -  Lt- 1N~ - L~ I(L x + L y  + L~) v 

w = w(O) + L [  Ig3 -- Lt- ~N3 -- L7  ~(Lx + Ly + L~) w 

Now write, according to the Adomian decomposition, ~6'7) 

n = 0  n = 0  n ~ 0  

also, write N~, N2, N3 in terms of the Adomian (A.) polynomials, ~s'7) and 
finally identify 

uo=u(O)+ L ~ l g l  

Vo=v(O)+ Lt-lg2 

w o= w(O)+L~lg3  

The remaining components of u, v, w for n >~ 0 can now be determined: 

u,,+~ = - L ~ A , , { N I } - L t - ~ ( L x +  Ly+ L~) un 

w.+ l = - L [ 1 A , , { N 3 }  - LTt (L~ + Ly + L~) w. 

where the notation A,~ {- } refers to the A~ for the quantity in brackets. We 
now have a completely calculable system which, if we ignore stochasticity 



Analytic Solution of Navier-Stokes System 839 

oe b/ _ _ ~ o e  ce W for the moment, and write u=Y~.= o n , v -  n=oV. , ,w=K.=o  . and 
approximate by n term approximations ~0(2)=Ei= 0 ui, ~ - ~=o v~, 
q~(w) n -  1 = ~ = o  w~, we have found u, v, w to n-term approximations. 

In the stochastic case, the expressions for u, v, w are stochastic series, 
i.e., series containing stochastic processes which we must solve for first- and 
second-order statistics where the velocity components are replaced by a 
sum of a deterministic component velocity and a stochastic component. As 
pointed out previously, (~3) the equation obtained by replacing velocities 
with stochastic processes may not be correct although we will do this in 
this paper. An example of this is the problem of wave propagation in a 
random medium where it is incorrect to simply replace the velocity in the 
d'Alembertian operator with a stochastic quantity, i.e., a stochastic model 
must be derived which has the deterministic model as a limit rather than 
using the deterministic model to obtain a stochastic model. Thus, we must 
obtain 

(u)-- (Uo>+ <us)+ (u:>+ . . .  

( v ) = < V o ) + ( v , ) + ( v ~ > +  . . .  

( w ) =  ( W o ) +  ( w ~ > +  ( w ~ ) +  . . .  

remembering that g~, g2, g3 are stochastic since F and p are stochastic and 
the A n are stochastic. 

The two-point correlation for each velocity component u, v, w is 
obtained by averaging the product of series for velocity components at two 
space-time points. If we consider, for example, fixed space position and that 
the time scales are such that stationarity can be assumed, the ergodic 
hypothesis may hold so that ensemble averages can be replaced with time 
averages of observations. 

Since the nonlinear terms contain both functions of a single variable, 
such as f(u), and also functions of two variables, such as f(u, v), our 
previously given algorithm for A m for f(u) needs generalization here to An 
for f(u, v). For convenience, we repeat 

A~{f(u)} = i c(v, n)f(~)(Uo) 
v = l  

where the second index in the coefficient is the same as the order of the 
polynomial being calculated, and the first index progresses from 1 to n 
along with the order of the derivative. We see that the sum of the sub- 
scripts in each term of the A m is equal to n. The c(v, n) are products, or 
sums of products, of v components of u whose subscripts sum to n and 
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divided by the factorial of the number of repeated subscripts. Thus c(1, 3) 
can only be u3. c(2, 3) is uiu2. c(3, 3) = (1/3!) u~. Now an analyticf(u) can. 

U oo be expressed by f (  ) = ~ ,  = o A n- 
The result is 

Ao=f("o) 

A I = ul(cl/ClUo) f('o) 

A2 = u2(d/duo) f(uo) + (u2/2! )(dZ/du~6) f(uo) 

A3 = u3(d/duo) f(uo) + ul u2(d2/du g f(uo) 

+ (u~/3!)(a3/du 3) f(uo) 

Calculation of A~ {f(u, v)} and A~{f(u, v, w)} is discussed completely 
in Ref. 12. We can use the An{f(u, v)} since the NI, N2, N3 can be 
considered term by term. Now the coefficients wilt involve three quantities, 
the derivative is f(u,~), and the summation is over u, v. The result is 

Ao = f(o,o) 

A ~ = u~ f (1'°) + v l f (°'1) 

A2 = (u12/2!)f(2,o) + u, vl j , ( l ,~+ (v2/2!)f(o,2) 

+ u 2 f  (1'01 + v 2 f  (0'1) 

A 3 = (u~/3!)f(3'°)+ (u2/2!) vtf(2") + v~/2!) u l f  (1'2) -~- (v~/3!) f  (°,') 

+ ul u2f  (a'°) + vt u2 f  (1" 1) + v~ v2f  (°,z) + u 1 v2 f  (1, i) + u3f(1,o) q_ t~3 f(0, D 

Reference t2 is a complete reference for functions such as f (u ,  v) or 
f (u ,  v, w), so, either way, the system is completely solvable. This represents 
a general solution. It is known that smooth solutions (to the incom- 
pressible problem under consideration) do exist for short times and are 
continuously dependent on the initial data. The next step (to be 
investigated) is the use of specific conditions and calculation of the results 
for comparison with known results for simpler cases solvable by current 
techniques or, more to the point, to show experimentally verifiable 
phenomena such as the onset of turbulence. 
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5. SOME T H O U G H T S  ON THE ONSET OF TURBULENCE 

Consider first a very simple equation whose solution is clearly trivial. 
Thus consider dy/dx = ( y -  1 )2 with y ( 0 ) =  1 which obviously is satisfied by 
y = l .  

Now consider the effect of a 1% change in a parameter by writing 
dy/dx=(y-1)2+.O1.  4 This now yields a periodic solution y = l + 0 . 1  
tan(x/10) which has vertical asymptotes at (2k + 1)5r~, k = 0 ,  + 1, +2,... 

Now, let's make a 1% change in the initial condition, or y(0) = 1.0t. 
We now have a hyperbola y =  1 - 1 / ( x - 1 0 0 )  and only one vertical 
asymptote at x =  100. 5 Thus the effect in a nonlinear equation of even very 
small changes in inputs or parameters can result in large effects on the 
solution. 

Suppose now that very small fluctuations are present in the input and 
parameter because of small inherent randomness. Then the solution could 
change randomly between the possibilities above and appear very complex 
indeed. 

Now considering the Navier-Stokes system with its nonlinear terms 
where there could be small fluctuations in density, pressure, viscosity, and 
velocities, it is clear we can expect similar effects and a "chaotic-looking" 
or turbulent case. 

The nonlinear terms cause small fluctuations to become large fluctua- 
tions while friction terms tend to remove differences in velocities. The 
Reynolds number is a measure of the ratio of nonlinear terms to frictional 
terms, so it is reasonable that if the number becomes large, the tendency to 
turbulence increases. However, factors such as smoothness of boundaries 
and the magnitude of initial fluctuations also influence the resulting flow. 

In the simple deterministic case, consider one nonlinear term u ~u/~x 
divided by a molecular friction term v ~ 2u/dx2. If u and Ou/~x are assumed 
to be of the order U and L is a typical distance over which the velocity 
varies by U, the ratio is of the order (U2/L)/(v . U/L2)= U.L/v or the 
Reynolds number. 

In the general case, if we have a fluctuating v or v, we can see that 
large changes can occur in the tendency to turbulent behavior. 

The best way apparently to determine when turbulence starts is to 
solve the stochastic Navier-Stokes system as we have outlined and study 
the behavior as a function of the parameters of the flow. A comparison of 
a deterministic solution and a stochastic solution with varying conditions 
should illuminate the problem of onset of turbulence. 

4 See f o o t n o t e  2. 

s If  y ( 0 ) =  0.99,  the  a s y m p t o t e  m o v e s  to  x = - 1 0 0 .  

825/21/7-6 
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Suppose we consider flow in a flat channel as an idealization of a pipe 
in a plane. We have 

- t / / / / / / / /  
flow direction 

Assume @/gx  = O. Replace x by x~ f to make the half-width unity. Using 
decomposition, write 

Ltu  = v ( a 2 / a x  2) u - u(a/(~x) u 

n~O n=O 

where the A~ polynomials are generated for the nonlinear term. Then 

uo = u(O) + tu'(O) 

u,,+ 1 = L~-%(Ozfi ?x2) u,~ - L [  tA,~ 

for n >/0. If v is constant and Uo is deterministic, u is deterministic. If Uo has 
a random component, this component will cause new terms to keep 
appearing because of the expressions on the right side of the equation for 
u~ +1 for any n >10, especially from the term involving An. This is obvious 
by inspection of the A, for increasing n. (The effect of physically unrealistic 
change in the solution by a linearization is also clear(S'6).) 

Consequently, as a result of any randomness and the nonlinearity, the 
flow is radically altered--the effect increasing as the fluctuation becomes 
larger. Random boundary conditions resulting from roughness in the walls 
will have the same effect. 

A basic question is whether the Navier-Stokes equations are an ade- 
quate model for real turbulent fluids. (4'13) The linear constitutive law used 
in the derivation means that derivatives of the velocity components u, v, w 
are necessarily small. Secondly, stochasticity cannot be considered as an 
afterthought; it must be considered in the initial modeling. A more general 
model due to Ladyzhenskaya has partially addressed this issue by allowing 
nonlinearity in the constitutive law and leads to a global uniqueness for 
nonstationary three-dimensional flow. A truly nonlinear stochastic model 
coupled with the decomposition method of solution may resolve remaining 
difficulties. The general problem may have random initial/boundary condi- 
tions. The quantity p is generally taken as a constant and set equal to 
unity; however, compressibility becomes a factor with increasing depth. 
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