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Linear and Nonl inear  Schrfdinger  Equations  
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The Schr6dinger equation for a point particle in a quartie potential and a non- 
linear Schr6dinger equation are solved by the decomposition method yielding 
convergent series for the solutions which converge quite rapidly in physical 
problems involving bounded inputs and analytic functions. Several examples are 
given to demonstrate use of  the method. 

The Schr6dinger equation 

( - h 2 / 2 m )  d2t)/dx 2 + (1/2) ax4O = EiO 

describes a point particle in a quartic potential V ( x ) =  ( I / 2 ) a x  4. If we let 
= -rna/h 2 and fl = 2mEjh  z, the equation becomes 

cl2O/& 2 + ~x4O + t ~  = o 

Assume the energy of each eigenstate has been determined as discussed in 
Ref. 1. Now,  if L = d2/dx 2, we can write 

L~ + ~x4~ + / ~  = 0 

o r  

~,~ = -(~x" +/~)~ 

Denoting by q~ the solution of L~ = O, we have 
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so that, using the decomposition method ~2) 

~0=~ 
I//n+l = - - L  l (~x4 -]- fl) I//n 

for n ~> 0. Then ~ = Y~ ~ n = o 0n is the solution. 
In three dimensions with V(£)= (1/2)~ p?l 4 0, writing Lx=O2/~?x 2, 

Ly=OZ/Oy 2, L==~2/~?z 2, letting ~x, 05, ~z denote the solutions of 
Lx@=0, LyO=0 ,  LzO =0,  respectively, the decomposition procedure 
yields 

[Lx + Ly + L:]  ~ + ~x40 +/~0 = 0 

Solving for the linear operator terms, we obtain 

L x  ¢, = - L y e ,  - L z  ¢, - ~x"¢ ,  - ~¢,  

L y @ = - -  L x @ - -  L z Ill - o~ x 4 O - f l  l~t 

L z ~ ]  = - - L x O  - -  L ) ,  0 - -  O~X41/I - -  ~1~ 

With the inversions, we have 

L x 'L~O = - - (Lx lLx  + LT'L~)O - L lex4O - L x 1BO 

L~- 1Ly ~ = - ( L y  ~L x + L y  ~L=) ~ - L>7 ~x4~9 - L.v ~fl¢ 

L z IL~ $ = - ( L  7 IL  x + L~ 1Ly) t~ - L 7 1~X41/,¢ -- L .  '/3~p 

and so 

Ill = I~D x - -  ( L x 1 L y  "-~ L x 1 L  z ) l i t  - -  L x 10~x4~¢ -- L.~ i/~l// 

t) = q~y - ( L f  ~L~ + L~, ~L~) 0 - L f  ~x4O - L x trio 

The q~x, q~>,, ~z are completely specified by initial/boundary conditions. 
Assuming these are all nonzero, any one of those equations can be used for 
obtaining the solution. °~ Or, we can add the three equations and divide by 
three to get a single equation where 0o = (1/3)(~bx + ~b>. + Cz): 

~ = t P o - ( 1 / 3 ) [ L ~ ' L y  + L~ ~L~ + L,71L~ + L ~ L =  + L= ~L~ + L j t L y ] ~  

-- (1 /3) [L~ -~ + L ~  ~ + L ~ ' ]  (~x4~t - ( 1 / 3 ) [ L ~ '  + L ~  ~ + L ; ' ] / 3 @  
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If, for convenience in writing, we let 

g = -(1/3)[L~- 1Ly -k L.~. 1L: + Ly ~Lx + L;? ~L: + L.~ ~Lx + L j- 1Ly] 

G = --(t/3)[L21 + L ;  ~ + L ;  ~] 

we have 

0 = Oo + go  + G~x~@ + G[~O 

- -  o 7 )  Letting ~ - Z . = o  @,,, we have @o given and 

for n>/0, yielding the components of ~, The n-term expression ~on= 
n--1 Zi=o Oi forms a convergent expression for ~ which becomes @ =Z~=0 @. 

a s  n --> oo.  

It is generally much easier to consider the individual equations for 
rather than their sum since if the boundary conditions fixing 4~, 4y, and 
4_ are general, i.e., when conditions for one independent variable depend 
on the other variables, the solutions for each equation are identical. (3) We 
also note that if an initial term (4~, 4,,, or 4=) is zero, that particular 
equation cannot be used (and the sum of the equations also cannot be 
used). 

Supposing, for example, we use the equation for which 4x can be 
determined from known conditions; then 

= 4 x -  (L71Ly + L2 ~L~) ZOo - L ;  1~x4 ~ ~,  - L21/30 

Then 

0 = 4 x  

0.+1 = - (L21Ly + L2~L-:) tp . -  L~l~x4@,,- L21flO. 

n--i for n~>O and @~=~i=o @i is an n-term approximation converging to 
O=Z2=o~,,. 

Consider the nonlinear Schr6dinger equation 

iu,+2u [ul2+ uxx=O 

which we write 

iL,u + Nu + Lxu=O 
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where L t = O / &  and Lx=~2/~x 2, N u = 2 u l u l  ~ We can solve for either 
linear operator. Thus 

Ltu  = iNu + iL~u (1) 

L x u  = - - iL ,u  - Nu  (2) 

To solve these equations, we apply L71 to (1) and L~ -~ to (2). Equation 
(1) becomes 

u = u(x, O) + iL;- tNu + iL~- IL~u (3) 

and (2) becomes 

u = e(t)  + xt3(t) - iL~ tL ,u  - L ~  1Nu 

Solving (3) by decomposition, we obtain 

U = U o + i L 2 1  ~ A , ~ - i L ~ I L x  u,, 
n ~ O  n = O  

(4) 

where u0 = u(x, 0) and the An are the polynomials defined by Adomian. c~-m 
Now 

us = iLT~Ao + iL71L~uo 

u2 = i L T t A I  + iLT1Lxu l  

un + 1 = iL7  tAn + iL~ tLxun 

Then the solution is u = Z n = 0  n, and cp~=Ze=ou i  
approximation converging to u. 

The solution to (4) is carried out the same way: 

U 0 = O~ "4- f i X  

u,  + l = -iL~.  1Ltu,, - L ~  ~An 

is an n-term 

for n !> 0. The quantities a, fl are fixed by the boundary conditions on x. 
For  example, a is fixed by a given condition at x = 0. If a second con- 

dition was u ~ 0 as x - ,  co, then fi = 0. Or, we could have conditions on u 
given at x = 0 and x = 1. The solution to either equation (called a partial 
solution) is the same and represents the solution of the original differential 
equation so long as u(x, 0 ) = ? ( x ) # 0  and e =e ( t ) ,  fl=fl(t). (3"4~ Thus we 
can solve either to get the solution. Which we choose depends on the best 
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known conditions or which offers the least effort. In this case L, --~ is a 
single integration while L x  1 is a two-fold integration, so (3) is simpler. 

Some specific examples with known solutions may serve to further 
demonstrate use of the decomposition method. 

(1) d2u/dx 2 -  kxPu = g with u(1)=  u ( - 1 ) =  0. Using the decomposi- 
tion method, write L =  d2/dx 2 and Lu = g +  kxPu. Operating with L -1, we 
have L - 1 L u = L - l g + L - l k x P u .  Then if, for convenience, we take g as a 
constant, 

u = cl + c2x + gx2/2 + L - l k x P u  

Let u = Z,, ~_ 0 u~ with u o = c l + c2 x + gx2/2. Then Um+ ~ = L -  I k x  Pu,~ with 
- -  . c o  - Z  co ( L - l k x P ) " u  o or u - Z , , , = o ( L - ~ k x P )  m c l +  m~>0. Thus u -  m=O 

Zn~=O ( L - l k x P )  m c 2 x q- Z ~ =  o (L  - lkxp)m gx2/2, and finally u = cl ~(x) + 
c2~(x) + ~(x), where 

~(x) = ~ kmxmp+Zm/(mp + 2 m -  1)(mp + 2m) 
m = 0  

~l(x)= ~ k"x '~ 'P+2"~+l/(mp+2m)(rnp+2rn+ 1) 
m = 0  

~(x)= ~ (1/2) gkmx"P+Zm+2/ (mp+2m+ 1 ) ( m p + 2 m + 2 )  
t t t  ~= 0 

Since u(1)=  u ( - 1 ) = 0 ,  we have c ~ ( 1 )  + c2~/(1)+ ~ (1 )=0  and c ~ ( - 1 ) +  
c2~( -  1) + ~/(-1)  = 0  or 

t ~(1) t/(1) " ~2 " - ~ ( t ) )  
~(-1) ~(-1) -~(-1 

Thus 

cl = It/(1) ~ ( -  1 ) -  r / ( -  1) ~(1)]/E~(1) r / ( -  1 ) -  r/(1) ~ ( -  1)] 

c2 = [ ~ ( - 1 ) ~ ( 1 ) - q ( 1 ) ~ ( - 1 ) ] / [ ~ ( 1 ) ~ l ( - 1 ) - q ( 1 ) ~ ( - 1 ) ]  

and the complete solution has been determined. Numerical computation 
for the case g = 2, k = 40, p = 1 verified accuracy to seven digits. In numeri- 
cal computation, we see results stabilizing quickly to the required accuracy. 
For analytical results, the solution can be verified by substitution. The 
given examples here are linear; in nonlinear cases, the A~ polynomials used 
to represent nonlinearities" ~2) by writing f ( u )=Zn=o*  An for an analytic 
function f ( u )  have been shown in Ref. 5 to form a generalized Taylor series 
about the function Uo and are convergent, of course. 



988 Adomian and Rach 

Since for f ( u ) = u ,  the Z, ,~oA~ becomes Z , ~ o u ,  or u, the series 
obtained are convergent. 

(2) The special case of Airy's equation y" - ty = 0, y(0) = 1 , / ( 0 )  = 1 
can be simply written in the form Ly - Ry = 0 with L = dZ/dt ~, R = t. Then 
operating with L -~, a twofoid integration from 0 to t, we obtain y ( t ) =  

- -  <x;~ y(O)+ty ' (O)+L-1Ry.  The solution is Y - ~ , , = o Y , ,  where the y,~ are 
defined by 

y o = l + t  

t 3 t 4 1 '1'3 2 - t  4 
Y~=L-~Ry°=L-~t(I+t)=~'3+3.4" 3! + 4 ~  

16 t 7 1 • 4 . 6 .  t 6 

Y 2 = L - 1 R Y l - 2 . 3 . 5 . 6 + 3 . 4 . 6 . 7  6! 
+ - -  

2 . 5 . t  7 

7! 

1 . 4 . 7 . . . ( 3 n - 2 )  t 3~ 2 . 5 . 8 . . . ( 3 n - 1 )  t 3~+1 

Y ' -  (3n)! + (3n+  1)! 

(3) u ~ - u y y = O  on 0~<x~<z~/2, O<~y<~zc/2 given the conditions 

u(O, y)  = o, 

u(x, 0) = 0, 

u(Tz/2, y) = sin y 

u(x, z~/2) = sin x 

Let Lx=SZ/3x z a n d  Ly=~3z/c3y 2 and write the above equations as 
Lxu = Lyu. 

As usual in the decomposition method, {~) we solve for each linear 
operator  term, L~u and Lyu, in turn and then apply the appropriate 
inverse to each: 

L£ 1Lxu = u -  c l k l ( y ) - -  c2kz(y)x = L~ ~Lvu 

L y  1Lyu = u - c3k3(x) - c4k4(x) y = L~-tL=~u 

o r  

u = c l k l ( y )  + c2k2(y)x + L~ ~Lyu 

u = c3k3(x) + c4k4(x) y + L v  IL~u 

(5) 

(6) 

Define q~x = Cikl(y) + c2k2(y)x and ~b~. = c 3 k 3 ( x  ) q- c 4 k 4 ( x  ) y to rewrite 
(1) and (2) as 

u = q)~ + L~ ~ 1Lyu (7) 

u =  qOy+ L~71Lxu (8) 
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One- te rm approx iman t s  to the solut ion u are Uo = q~x in (3) and uo = ¢i_,. in 
(4). Two- t e rm  approx iman t s  are uo + u~, where u~ =LS~L) .uo  in (3) and 
L ; l L x u o  in (4), etc. Thus  u,+ 1 = L 2 * L y u ~  in (3) and LT,~L~u,, in (4) for 
n~>0. 

F o r  the x condit ions u(x, 0 ) - ~ 0  and u(x, rc /2 )=s in  y applied to the 
one- term app rox iman t  uo = q k l ( y )  + c2k~(y)x ,  we have 

C l k l ( y ) = O  

c2k2(y)K/2 = sin y 

or  c2 = 2/~ and  k2(y)  = sin y. 
F o r  the y condit ions u(x, 0 ) = 0  and u(x, r c / 2 ) = s i n x  applied to 

Uo = c3k3(x) + caka(x) y, we get 

c3k3(x ) = 0 

c4ka(x) re/2 = sin x 

Thus  c a = 2/z  and k a ( x  ) = sin x. 
If a one- term app rox iman t  were sufficient, the solution would be e 

q~ l = (1/2 ) { ( 2/rc ) x sin y +  ( 2/rc ) y sin x} 

The next terms for (3) and (4) respectively are 

u~ = L ~  1Lyuo = L ~  ~Ly[c2x sin y ]  

ul = L~71L x u 0 -=  L f  1Lx[C 4 y sin x ]  

We cont inue to obta in  u2, u3 ..... Clearly, for  any  n, 

u~ = (L~- 1Ly)n uo = ca(sin y)( - 1 )" x 2" + ~./(2n + 1 )! 

u. = ( L y  ILx)" uo = ca(sin x)(  - 1 )" ya,~+ 1/(2n + 1 )! 

Lett ing ~Pm represent  the m- te rm approx imant ,  we have for the two cases: 

m - - I  

~0,~ = c2 sin y 
n = 0  

m -  i 

~o., = ca sin x 
n = O  

( - 1 )n x 2. + 1/(2n + 1 )! (9) 

( - 1 ) " y > ' + ~ / ( 2 n +  1)! 0o) 

An n-term approximant is (p ~ ~272o I 0~. 
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We can now apply the conditions ~0m(rC/2, y ) =  sin y for (5); thus 

e, k t ( y ) = O  

,,-1 
c z sin y ~" (~/2)2"+'/(2n+ 1)! =s in  y 

n = 0  

1 
C 2 ~  m - 1  

~],=o ( - 1 ) "  (~/2)2"+1/(2n+ 1)! 

As m ~ ~ ,  we get sin re/2 so that e2 ~ 1. The sum in (5) approaches sin x 
in the limit. 

Now applying the conditions ~Om(X, 0 ) = 0  and ~Om(X, r~/2)= sin x, we 
have 

e3k3(x) = 0 
m-1 

c4 sin x ~ ( - 1)" (re/2) 2" + 1/(2tl + 1)! = sin x 
n = 0  

1 

e4 - Z~_ol ( _ 1 )'~ (re/Z) z"+ '/(2n + 1)! 

Again as m ~ ~ ,  c4 ~ 1 and the sum in (6) becomes sin y. We can now 
write the exact solution 

u = (1/2)(sin y sin x + sin x sin y )  

o r  

u = sin y sin x 

since for this case, the series is summed. Thus, we see u is indeed the 
solution and that the approximation ~p, = ZT-o  ~ u~ becomes u in the limit 
as claimed. 

Final Remarks. The principal advantage of the method applied here 
to Schr6dinger's equation is its generality in solving wide classes of 
problems. The general case in physical systems is nonlinear and stochastic, 
and the basic method is generalized to solve such cases without lineariza- 
tion, perturbation, closure approximations, and assumptions of special 
processes not existing in nature, as shown in Refs. 2, 4, and 5. Thus, in 
a method developed basically for stochastic and nonlinear systems, it is 
interesting that special cases (linear, deterministic) are handled by the same 
method. The alternative approach to linear deterministic problems can 
have computational advantages even when problems are solvable by other 
methods. 
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