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Linear and Nonlinear Schrodinger Equations

G. Adomian' and R. Rach’

Received December 11, 1990

The Schrodinger equation for a point particle in a quartic potential and a non-
linear Schrodinger equation are solved by the decomposition method yielding
convergent Series for the solutions which converge quite rapidly in physical
problems involving bounded inpuis and analytic functions. Several examples are
given to demonstrate use of the method.

The Schrodinger equation

(—#22m) d*dx* + (1)2) ax*y = Ep

describes a point particle in a quartic potential ¥{x)=(1/2) ax®. If we let
«= —~mafh? and B =2mE,/h*, the equation becomes

dA/dx* +axhy + By =0

Assume the energy of each eigenstate has been determined as discussed in
Ref. 1. Now, if L=d?%/dx? we can write

Ly +oax*y + B =0
or

L= —(ax* + B)y

Denoting by @ the solution of L =0, we have
Y=@—L Yoax"+ )y
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so that, using the decomposition method!®’

Yo=o
Yosr=~L Hoax*+p)

for n20. Then ¢ =32, ¥, is the solution.

In three dimensions with V(%)= (1/2)a |%|*y, writing L = 0%dx>,
L,=/dy*, L.=08%/0z letting &,, ®,, &, denote the solutions of
Loy=0, Ly=0, Ly=0, respectively, the decomposition procedure
yields

[Lo+L,+L1Y+oxty+py=0
Solving for the linear operator terms, we obtain
L= —L~Ly—ax®y—py
L= —L—Ly—axty— By
L= —~Ly—L—ax™y— By
With the inversions, we have
LWL = —~(L7'Ly+ L)Y — L tax®y — LBy
Ly 'Lyy= —(L, 'L+ L7 L)Y — L tax™y — L7 By
Lo'Ly=—(L7 'L+ L7'L )Y — L ax™y — LBy
and so
Y=0,— (L Ly+ L L)Y —L ax™ — LBy
Y=@,— (L 'L+ L7 L — L ax™y — LBy
Y=&,~ (L 'L+ L7 'L — L7 ax® — LBy

The @,, @,, @, are completely specified by initial/boundary conditions.
Assuming these are all nonzero, any one of those equations can be used for
obtaining the solution.®®’ Or, we can add the three equations and divide by
three to get a single equation where Yo = (1/3)(®, + @, +D.):

p=vyo— (/L' L+ L L+ L' L+ L L+ L7 'L+ LWL Y
— ()L + L+ L7 Jax™y — (13)[ L+ Ly + LT By
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If, for convenience in writing, we let
K= ~(13)[L;'L,+L'"L.+ L' L +L; 'L+ LWL +L]'L,]
G=—~(1/3)[L + L + L]

we have

Y=o+ Kif + Gox"y + Gpy
Letting ¢y =>_, ¥,, we have i, given and

Vo1 =K, + Glax* + ) ¥,

for =0, yielding the components of . The n-term expression ¢, =
>4 ¢, forms a convergent expression for  which becomes =3 .,
as n— .

It is generally much easier to consider the individual equations for
rather than their sum since if the boundary conditions fixing &@,, @,, and
& are general, ie.,, when conditions for one independent variable depend
on the other variables, the solutions for each equation are identical.”) We
also note that if an initial term (&,, ®,, or @.) is zero, that particular
equation cannot be used (and the sum of the equations also cannot be
used).

Supposing, for example, we use the equation for which @, can be
determined from known conditions; then

lp = ¢x“ (Lx—IL» + L; ILz) Z tj]n - L: 10064 Z wn - L;lﬁlg‘(
Then

tf!l() = éx
Unir=—~(LT'Ly+ LOL) Y~ L taxy, — LBy,
for n>0 and @,=3774 ¥, is an n-term approximation converging to
lf/ = Zf;o:() n-
Consider the nonlinear Schrodinger equation
i, 4 2u lul? +u,, =0
which we write

iLou+Nu+L,u=0
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where L,=08/0t and L, =06%/0x?, Nu=2u|u|>. We can solve for either
linear operator. Thus

L,u=iNu+il u (1)
L.u= —ilL,u— Nu {2)

To solve these equations, we apply L' to (1) and L' to (2). Equation
{1) becomes

u=u(x,0)+iL '‘Nu+iL 'L.u (3)
and (2) becomes
u=ao(t)+xp(t)~il 'L,u— L 'Nu (4)

Solving (3) by decomposition, we obtain

o< @0
u=ug+iL;7'' Y A,—iL7'L. Y u,
0

B n=0

where u,=u(x, 0) and the 4, are the polynomials defined by Adomian.**
Now

uy=iL Ay +iL;'L.u,
uz=iL;'1A1+iLf1Lxul

Uy =il "4, +iL 'Lu,

Then the solution is u=Y% ,u, and @,=Y""gu, is an n-term
approximation converging to u.
The solution to (4) is carried out the same way:

Ug=oa+ fx

T 1
Upypt = mZL:c Lrun_Lx An

for 12 0. The quantities «, § are fixed by the boundary conditions on x,
For example, « is fixed by a given condition at x=0. If a second con-
dition was u — 0 as x — 0, then f=0. Or, we could have conditions on u
given at x=0 and x=1, The solution to either equation (called a partial
solution) is the same and represents the solution of the original differential
equation so long as u(x, 0)=7(x)#0 and «=«(?), f=p(2).°* Thus we
can solve either to get the solution. Which we choose depends on the best
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known conditions or which offers the least effort. In this case L' is a
single integration while L' is a two-fold integration, so (3) is simpler.

Some specific examples with known solutions may serve to further
demonstrate use of the decomposition method.

(1) d*ujdx®— kxPu= g with u(1)=u(—1)=0. Using the decomposi-
tion method, write L =d?*/dx* and Lu= g+ kx”u. Operating with L~!, we
have L 'Lu= L 'g+ L~ 'kxPu. Then if, for convenience, we take g as a
constant,

u=c,+c,x+ gx*2+ L kx?u

Let u=Y*_,u, with ug=c; +c,x+ gx’/2. Then u,,, =L 'kx?u,, with
m>0. Thus u=Y2_ (L7%kx""uy or u=3%2_ (L %kx?)"c,+
@ ALkx?)" cyx+ Y 2o (L7 kx?)" gx?/2, and finally u=c,&(x)+

esn(x) + £(x), where

E(x)= i k™x™ 2 [(mp + 2m — 1)(mp + 2m)

m=0

p{x)= Z kmxmr2m mp 4 2m)(mp + 2m + 1)

me=0

L{x)= i (1/2) gk™x™P 22/ (mp + 2m + 1)(mp + 2m + 2)
m=0
Since u(1)=u(—1)=0, we have ¢, (1) + c,n(1)+{(1)=0and ¢, &(—~1)+
e {(—1)+n(—1)=0or

}é(l) n(t) |
H=1) n(~1)

Cy

] ~U(n)
~U~1)

¢
Thus

¢ =[N (=) =n(=1) LD VLM n(—=1)=n(1) &(~1)]
¢ = [C(=D) D) —n() (=D VM) n(=1)—n(1) &(~1)]

and the complete solution has been determined. Numerical computation
for the case g=2, k=40, p=1 verified accuracy to seven digits. In numeri-
cal computation, we see results stabilizing quickly to the required accuracy.
For analytical results, the solution can be verified by substitution. The
given examples here are linear; in nonlinear cases, the 4, polynomials used
to represent nonlinearities® by writing f(u)=3Y7_, 4, for an analytic
function f(u) have been shown in Ref. 5 to form a generalized Taylor series
about the function u, and are convergent, of course.
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Since for flu)}=u, the 3 ° , A, becomes 3.7 ,u, or u, the series
obtained are convergent.

{2) The special case of Airy’s equation y" —#y=0, y(0)=1, y{0)=1
can be simply written in the form Ly — Ry =0 with L=d?/dt>, R=1t. Then
operating with L~ !, a twofold integration from 0 to ¢, we obtain y{¢)=
y(0)+ 1y'(0)+ L™'Ry. The solution is y=Y7_,»,, where the y, are
defined by

Yo=1+1
P % 1.2 2.4
— L 'Ry,=L"" =23t T a5
yi=L7'Ryo=L""t(1+1) 73t3a 3 T
/5 {7 1-4.6-4° 2.5.7
= -1 = =
Vo=LT Ry = ety e S o 7

1.4.7.--3n—2)" 2.5-8...(3n—1)1>+!
B (3n)! (3n+1)!

(3) up—u,,=00n0<x<n/2, 0< y<n/2 given the conditions

u(0, y)=0, u(n/2, yy=sin y
u(x, 0)=0, u(x, n/2)=sin x
Let L,=2*0x*> and L,=0/0y> and write the above equations as
Lu=L,u.
As usual in the decomposition method,"") we solve for each linear

operator term, L,u and L,u, in turn and then apply the appropriate
inverse to each:

L7'Lu=u—cik(yY—coko{y)x=L;"L.u
L7'Lu=u—csky(x)—coky(x)y=L'L.u
or
u=cik(p)+crko(v)x+ L 'L,u (5)
u=csky(x)+ ciky(x)y+ L' Lou (6)

Define @, =c k(y)+ c2ko(y)x and @, =cyks(x)+csky{x)y to rewrite
(1) and (2) as

u=® +L;'Lu (7)
u=®,+L; 'L (8)
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One-term approximants to the solution u are uy= @, in (3) and u, = @, in
(4). Two-term approximants are u,+u,, where u; =L 'L u, in (3) and
L;'L uy in (4), etc. Thus u,, ;=L 'L,u, in (3) and L 'L,u, in (4) for
nz0.

For the x conditions u(x, 0)=0 and u(x, n/2)=sin y applied to the
one-term approximant = c k;(y)+ c,k5(y})x, we have

c1ki(y)=0
Corko(y)m/2 =5in y

or ¢y=2/n and k,{y)=sin y.

For the y conditions u(x,0)=0 and wu(x, n/2)=sinx applied to
Uy == c3k3(x) + caka(x) y, we get

c3ks(x)=0

Cakg(x)7/2 = sin x

Thus ¢, =2/r and ky(x)=sin x.
If a one-term approximant were sufficient, the solution would be?

@, =(1/2}{(2/n)x sin y+ (2/n) y sin x}
The next terms for (3) and (4) respectively are
uy=L'"Luy=L;"L,[c,xsin y]
uy=L,;'Loug=L;"L[csysinx]
We continue to obtain u,, u,,... . Clearly, for any n,

up= (LI L,)" ug=cyfsin p)(—1)" x*+1/(2n + 1)!
U, = (L7 L) ug=cy(sin x)(— 1) p>+1/(2n + 1)!

Letting ¢,, represent the m-term approximant, we have for the two cases:

m—1

Pn=cysiny 3 (—1)"x""Y(2n +1)! (9)
n=0
rr—1

qo,,,=c4sinx Z (_l)ny2n+l/(2n+1)! (10)
n=0

> An n-term approximant is ¢ = Y720,
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We can now apply the conditions ¢,,(n/2, y)=sin y for {5); thus
ciky(y)=0

m—1

cysiny Y (@/2)”Y(2n+ 1) =sin y

1
nlo (=1 @2y 2+ 1)

Cy =

As m — 00, we get sin /2 so that ¢, — 1. The sum in (5} approaches sin x
in the limit.
Now applying the conditions ¢,,(x,0)=0 and ¢,,(x, n/2)=sin x, we
have
c3ka(x)=0
m—1

casinx Y (—1)" (/2) /(2 + 1)l =sin x

n=0
1
me (1) (w2 (20 + 1)

C4=

Again as m — o0, ¢, — 1 and the sum in (6) becomes sin y. We can now
write the exact solution

u=(1/2){sin y sin x +sin x sin y}

or

u=sin ysin x

since for this case, the series is summed. Thus, we see u is indeed the
solution and that the approximation ¢,=2>7_, u, becomes  in the limit
as claimed.

Final Remarks. The principal advantage of the method applied here
to Schrodinger’s equation is its generality in solving wide classes of
problems. The general case in physical systems is nonlinear and stochastic,
and the basic method is generalized to solve such cases without lineariza-
tion, perturbation, closure approximations, and assumptions of special
processes not existing in nature, as shown in Refs. 2, 4, and 5. Thus, in
a method developed basically for stochastic and nonlinear systems, it is
interesting that special cases (linear, deterministic) are handled by the same
method. The alternative approach to linear deterministic problems can
have computational advantages even when problems are solvable by other
methods.
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