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It is argued that quantum mechanics is fundamentally a geometric theory.. 7"his is' 
illustrated by nroans o f  the connection and sympleetic structures associated with 
the projective Hilbert space, using which the geometric phase can be understood. 
A prescription is given for obtaining the geometric phase from the motion of a 
time dependent invariant along a closed curve in a parameter space, which may be 
finite dimensional even for nonadiabatic cyclic evolutions in an infinite dimensional 
Hitbert space. Using the natural metric on the projective space, we reformulate 
Schr6dinger's equation for an isolated system. This metric" is generalized to the 
space of all density matrices, and a physical meaning is proposed. 

1. I N T R O D U C T I O N  

This paper is based on the view that the world is ultimately geometrical. 
We know that in some  fields of physics, especially general relativity, 
geometric ideas have been very useful. But the deepest physical theory we 
have today is quantum theory where geometric ideas are not readily 
apparent.  Some quantum theorists have therefore argued that we must 
regard gravity quantum mechanically as a spin-2 field and that the beauti- 
ful geometry in general relativity is really not needed. I wish to reverse this 
argument in this paper. I shall argue that there are interesting geometric 
structures in quantum theory also, and that perhaps we should look at 

Based on the talk delivered by the author at the Conference on Fundamental Aspects of 
Quantum Theory to celebrate 30 years of the Aharonov-Bohm effect, Columbia, South 
Carolina, December 14-16, 1989, published in Quantum Coherence, J. S. Anandan, ed. 
(World Scientific, 1990). 

2 Department of Physics and Astronomy, University of South Carolina, Columbia, South 
Carolina 29208, and Max-Planck-Institute for Physics and Astrophysics, F6hringer Ring 6, 
D-8000 Munich 40, Germany. 

3 Alexander yon Humboldt fellow. 

1265 

825:2] 1 I-I 0015-9018/91/1100-1265506.50/0 ~) 1991 Plenum Publishing Corporation 



1266 Anandan 

quantum theory as a geometric theory, like special relativity formulated 
using Minkowski space-time. 

The important role played by geometric ideas in quantum theory may 
be illustrated by examples beginning with the creation of quantum theory 
itself. As is well known, an important role was played in this creation by 
Hamilton's reformulation of classical mechanics, which inspired De Broglie 
and Schr6dinger to discover wave-particle duality and quantum mechanics. 
What was Hamilton's motivation for doing this even though Newton's 
original formulation of classical mechanics was very intuitive and physical? 

The answer is that Hamilton originally studied geometric optics in 
which the central question is the following: Given a set of rays entering an 
optical system, what is the set of outgoing rays? Each set of rays may be 
parametrized by the coordinates x, y of the point at which a typical ray 
intersects a fixed plane perpendicular to the optical axis and by Px, Py that 
are the corresponding direction cosines of the ray at this point multiplied 
by the refractive index. (In the wave description, Px and py are proportional 
to the components of the wave vector along the x and y axes.) In modern 
terms, he found the transformation between the two sets of rays to be 
symplectic, (1/ i.e., it preserves the symplectic structure in the space 
{(x, y, Px, Py)}. A few years later it occurred to Hamilton that if the opti- 
cal axis is taken to be the time axis, then classical mechanics in two spatial 
dimensions can be reformulated using the same symplectic geometry, which 
is easily extended to any number of dimensions of the configuration space. 
Using this symplectic structure, the Poisson bracket between any two 
observables is formed. And the well-known Dirac prescription to replace 
Poisson brackets by commutators gives quantum mechanics. 

The second example that I wish to give is the Aharonov-Bohm (AB) 
effect. (2) The most important lesson to me from this effect is that the 
classical electromagnetic field should be described geometrically as a 
connection, which is discussed elsewhere. (3) Then the AB phase factor is the 
hotonomy transformation when the value of the wave function at an event 
in the interference region is parallel transported with respect to the electro- 
magnetic connection around a closed curve, which passes through the 
interfering beams. 

Whereas the above two examples have been studied in great detail 
over the years, the third example which I wish to mention is of recent 
origin. This is the geometric phase. Suppose a quantum system undergoes 
cyclic evolution, by which I mean that its state vector l~9(t)) obeys 
Schr6dinger evolution in the interval [0, z] such that 1O(z)) = e i~ 10(0)). 
It was shown (4'5) that there is a part fi of the total phase ~b acquired which 
is geometric in the sense that it depends only on the motion of the system 
given by a closed curve C in the set of rays of the Hilbert space 3¢f, which 
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is called the projective Hilbert space ~ ,  and is independent of the 
particular Hamiltonian used to obtain this motion. 

This fi can be understood in two ways. First, e ~p is the holonomy 
transtbrmation for parallel transporting around C in ,¢', or around a closed 
curve 7 in a parameter space defined in Section2, with respect to the 
natural connection given by the inner product in jr.(5,6) From this view- 
point, fl is like the AB phase. Alternatively, fi is the "area" of any surface 
spanned by C with respect to the natural symplectic structure in N deter- 
mined by this inner product. (3'7~ Interestingly, this symplectic structure 
when restricted to the submanifold of Gaussian wave packets with constant 
width, which may be identified with the classical phase space, is the sym- 
plectic structure found by Hamilton in the latter space. (3) Therefore, what 
Hamilton found, which made his reformulation of Newtonian mechanics so 
powerful, was a "shadow" of a geometric structure in quantum mechanics. 
Similar to how Hamilton's geometric reformulation of classical mechanics 
paved the way for quantum mechanics, perhaps, a geometric reformulation 
of quantum mechanics may lead to a new physical theory which we need 
today for a proper description of gravity, consistent with quantum 
phenomena. 

2. GEOMETRIC PHASE AND CONNECTION 

The geometric phase is a consequence of just the inner product and is 
independent of the particular equation of motion which is first order in 
time/8) But for simplicity, we shall now obtain it as a consequence of the 
Schr6dinger evolution 

d 
ih ~ le(t)> = H(t) I~,(t) > (1) 

where H is the Hamiltonian and { tp( t ) lO(t ) )= 1. Given the cyclic evolu- 
tion described above, choose J~(t)) such that tO( t ) )=  ~(t)I~(t)),  where 
the function (9) ~(t) has complex values with unit modulus, and l~}(z))= 
I~(0)). Then (1) implies 

(d d ) 
ih ~ ÷  <~(t)l ~ I/~(t)> ~(t)= <¢(t)l H Iq4t)> ~(t) (2) 

The left-hand side of (2) does not depend on the Hamiltonian and 
suggests the introduction of the covariant derivative: 

D d d 
d r -  dt + < ~(t)L ~ I~(t)) - v. v 
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where V = d +  {~t d I{~), d being the exterior differential operator on ~ ,  
and v is the "velocity" in ~ ,  i.e., v is the tangent vector to the curve C in 

parametrized by t, representing the evolution. Here 1/}) is a "section" 
defined in some neighborhood U of C and (~1 d 1~) represents the "con- 
nection form" with respect to this section. ~ ]  d 1~) is analogous to ieA, 
where A is the electromagnetic vector potential, which is a connection form 
over space-time. The normalization ({} I ~ ) = 1 implies that (~l  d [~) is 
pure imaginary. If a different section J ~ ' ) =  e e 1~) is chosen, where g is a 
real differentiable function on U, then { transforms to e-'g~ - and (/}1 d 1~) 
transforms to (~t  d I ~ ) +  i dg, which is analogous to the electromagnetic 
gauge transformation. Clearly, (2) is covariant under this "local gauge" 
transformation. 

Equation (2) can be integrated immediately to yield 

~( r )=exp - ~ 1  d [ / ~ ) - ~  (~'l H(t')[~,) dt' ~(0) (3) 

The real phase 

f l -  i fc (~ ld~ ) =i i~. (d~I A Ida) (4) 

where X is a surface spanned by C and [d~)=d[~), is called the 
geometric phase, because e ia is the holonomy transformation associated 
with C with respect to the connection mentioned above, i.e., if we parallel 
transport a function t/ around according to the rule Dtl/dt = 0, then it 
acquires the phase factor e ia. Also, e i~ is invariant under a change of section 
similar to how the Aharonov-Bohm (2) phase factor expE(ie/h)~ A~, dx ~] is 
invariant under gauge transformations. 

It may appear at first sight that it would be necessary to solve the full 
quantum mechanical problem in order to determine the path C and 
thereby predict e iB. But this is not the case. I shall show now that for an 
arbitrary H(t) it is possible to determine e i/~ by solving the classical 
problem and an eigenvector problem for a set of invariants defined below. 
Suppose we have a class of Hamiltonians of the form H(R) = hR~J~ where 
R ~ are real variables and iJ~ generate a subgroup of the unitary group G 
determined by the Lie algebra relations 

[J~, Je] = iCJJ~ (5) 

Therefore, C ~  is totally antisymmetric, with the index being lowered using 
the metric 6~e. Let I(S)= S=J~, where S ~ are a set of parameters. Each 
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S=($I,$2,...) is a point in a parameter space 5 ~. Now, let In(S)) be a 
complete set of orthonormal eigenstates of a Hermitian operator I(S): 

I(S) In(S))= I,,(S) tn(S) ) (6) 

Suppose [O,(t)) evolves according to Schr6dinger's equatiofi, i.e., 
lO,(t)) =- U(t) JO,(0)), where U(t) is the time evolution operator: 

U(t)= Texp { -  h foH(t') dt' } 

where T denotes time ordering. Let S(t) be a curve in Y in the interval 
[0, ~], such that each IO,(t)) is an eigenstate of I(S(t)) with a constant 
eigenvalue I,.  This curve is not unique. But on requiring that I(S(t))= 
U(t) I(S(O)) Ut(t)- S~(t)J~, S(t) is unique for a given S(0). Then 

(31 i 
0t h [/ '  H]  = 0  (7) 

i.e., l(S(t)) is an explicitly time-dependent Schr6dinger observable which 
is an invariant of the motion. (1°) Conversely, if I satisfies (7), then by 
reversing the steps, it follows that if IO(t)) was initially an eigenstate of 
I(S(t)) then it continues to be in an eigenstate with the same eigenvalue. 

Suppose that the curve is closed, i.e., S( r )=S(0) ,  and denote the 
unparametrized closed curve by 7. In general, l~n(0)) and ]~n(~)) need 
not belong to the same eigensubspace of I(S(O))= I(S(v)). For example, if 
I has an infinite spectrum, then it is possible for the nth state to go into 
the (n + ! )th state during the cyclic evolution of L But this is very unusual 
and we shall suppose here the usual case of them belonging to the same 
eigensubspace. I assume for the present that I(S) is nondegenerate for every 
S. Then [~n(~) )=e  i~" [~n(0)) for some ~b~, Then, as shown by (3), ql n is 
the sum of the dynamical phase and the geometric phase/~,.(m JO.(t)) is 
proportional to [n(S(t))), and therefore I(S(t))=52, I~ [O,,(t))(O,(t)[. 
Also,/~,, may be obtained from (4) by replacing 1~) by In(S)): 

<,(S)l d,(S) >= i < d,(S)l A Idn(S)> (8) 

where a is a surface spanned by ~, and d is now the exterior differential 
operator on parameter space. Geometrically, e its" may be regarded as the 
holonomy transformation with respect to a connection in a line bundle 
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over the space 5 ~, whose fiber over Se  5 e is the eigensubspace of I (S)  with 
eigenvalue I , (S) ,  and the pullback of the connection form by a local section 
In(S)) is ( n ( S ) l d n ( S ) ) .  

To determine y, we obtain from (5) and (7), 

d S  c~ 
dt = - C /~.¢ ~ S/~ R 7 (9) 

It follows that S~ S  ~ is a constant of motion. Therefore, for inessential 
economy, we may restrict our parameter space to the sphere 5 e' in 5 e 
defined by the condition S~S~= 1. The line bundle and the connection 
described above may accordingly be restricted to be over 5 ~'. Equation (9) 
can be given the following classical interpretation: Let H c= _ R~T~ be the 
classical Hamiltonian obtained by replacing hJ~ in H by a set of classical 
observables T~ which obey the Poisson bracket relations 

{:r, ~ }  = c ~ T ~  (10) 

The T~ may be regarded as the classical limit of the quantum observables 
hJ~. Also, replace I by the classical observable IC(t) = S~(t) T~ which is 
required to be an invariant of the evolution under He: 

c3F 
c--7+ {IC, He} = 0 (11) 

On using (10), (11) yields (9). Hence (9) may be regarded as the classical 
equation of motion for SL By solving it, the curve 7 and hence the 
geometric phase (8) can be obtained. 

From (6), 

( I , ( S ) - I m ( S ) ) ( m ( S ) l d n ( S ) )  = (m(S)l d I ( S ) I n ( S ) ) ,  m e n  (12) 

Therefore, Eq. (8) may be rewritten, after inserting a complete set of states 
and using (12), as 

[3,=i ~jo ~, (nl d I l m )  /x (ml d I l n )  
m~n ( I" - - Im)  2 

(13) 

There is no contribution m = n in the summation over m in (13), because 
( n ( S ) J d n ( S ) )  is pure imaginary, due to the normalization of In(S)), and 
therefore its wedge product with its complex conjugate vanishes. The 
prescription (13) has the advantage that In(S)) need not be chosen dif- 
ferentiably or even continuously over the parameter space, unlike the 
prescription (8). This is similar to the prescription given by Berry ~4) to 
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evaluate the geometric phase in the adiabatic limit using the parameter 
space N consisting of possible values of R ~ with the Hamiltonian H(R) 
playing the role of I(S). In this limit, the evolving state may also be taken 
as an approximate eigenstate of H(R). Then S ~ may taken to be parallel to 
RL But we prefer, even in this limit, to regard 5 ° as the parameter space 
for the evaluation of the geometric phase instead of N. Because, even when 
the curve in N defined by H(R(t)) is not closed, the evolution may still be 
cyclic because the corresponding curve S(t) in 50 satisfying (9) is closed. 
Also, the present approach gives the freedom to take more general states 
which are not eigenstates of H, even in the adiabatic limit. We can always 
construct an explicitly time-dependent invariant operator I(S(t)) whose 
eigenstate 1~9(t)) is, and the geometric phase for a cyclic evolution may be 
obtained from the above prescription. 

As an example, consider the precession of an arbitrary spin in an 
arbitrary magnetic field B(t). (~2~ Then the Hamiltonian may be written as 
H =  -rlhB.3,  where U~ generate SU(2). Therefore, here R~= - t /B ~ and 
(9) is 

dS 
-~-= t/S x B (14) 

Here, the parameters S ~ may be given a classical meaning as the com- 
ponents of a spin vector; then /~--r/S is the magnetic moment. Equa- 
tion (14) is the classical equation of motion for spin. By solving it, we 
obtain a curve in 50 which is unique for given initial S, The curve lies in 
50' which is the sphere in 50 with its center at the origin and its radius 
equal to the magnitude of the initial vector S. When this curve ~ is closed, 
the evolution is cyclic. The geometric phase is obtained now from the 
holonomy transformation associated with 7 with respect to the connection 
defined over 50', or it may be evaluated using (13). It can be shown (H) that 
fin = jna ,  where a is the solid angle subtended by 7 at the origin. 

Another example is a finite-dimensional Hilbert space J f  of dimension 
N with H being an arbitrary Hermitian operator in Yt ~. A Cartan sub- 
algebra of U(N), which acts on Yf, is generated by matrices Jk, k = 1,..., N, 
where the only nonzero element of Jk is the kth diagonal element which is 
equal to 1. Let I o = ~  Nk=~ )~kJ k, whose eigenvalues )k are chosen to be 
distinct. Given the orthonormal basis of initial states { [~0n(0))}, there is a 
unitary transformation V which maps this basis onto the normalized 
eigenstates of I o. Then I(S) ~ WIo V -  S~J~ has {[0~(0)) } as eigenstates 
with distinct eigenvalues 2 k, where {J~} is a basis for the Lie algebra of 
U(N), i.e., {J~} generates the set of all N x  N Hermitian matrices. The 
geometric phase for each I 0 , )  can be obtained from the holonomy of the 
connection over 50 as described above. 
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We therefore have now the following general prescription for obtain- 
ing the geometric phase: Given an arbitrary cyclic quantum evolution of a 
state, associate with it a motion of an explicitly time dependent invariant. 
This motion is obtained as a closed curve in the space 6 e of possible values 
of the corresponding classical quantity, by solving the classical equations of 
motion. There is a natural connection over ~ for parallel transporting 
eigenstates of this invariant. The geometric phase factor is the same as the 
holonomy transformation associated with this curve with respect to this 
connection. There are an infinite number of Hamiltonians which give rise 
to a given motion of the invariant, defined by an unparametrized curve 
in ~ .  An adiabatic Hamiltonian, for example, is one way of achieving this 
motion. But the geometric phases for the eigenstates of I are a property of 
this motion and independent of the particular choice of the Hamiltonian. 

More generally, if I(S) is degenerate, then the cyclic evolution of I(S) 
may be associated with the cyclic evolution of an eigensubspace whose 
dimension m may be greater than one. The geometric phase factor is then 
generalized to an element of SU(m), which is described elsewhere. (13) 

3. SYMPLECTIC STRUCTURE 

Another geometric meaning can be given to fl as the symplectic area 
enclosed by C determined by the natural symplectic structure on 
inherited from the symplectic structure in 3f  due to the inner product. (3) 
More specifically, define the canonical coordinates and momenta Q J= ¢] 
and Pj=ihej, where ~,j are the components of 1¢) in an arbitrary 
orthonormal basis and the overbar denotes complex conjugation. Then (4) 
may be rewritten as 

1 1 

Here h is used in the definition of Pj only in order that the integral in (15) 
has the dimension of action. 

On the other hand, the action for the Schr6dinger field is 

Then the momentum conjugate to the canonical coordinate QJ is 

(16) 

OAf 
• = ih j = , ' : ' j  ~QJ 
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Thus we obtain, using dynamical considerations, the same pairs of canoni- 
cally conjugate coordinate and momentum obtained earlier by purely 
geometric considerations; i.e., the symplectic structure given by the 
Lagrangian density A ° is the same as the symplectic structure given by (15). 
In general, this is true whenever the equation of motion is first order in 
the time derivative. Therefore, in some sense, the geometry is prior to the 
dynamics here. Also, the procedure of second quantizing the Schr6dinger 
field by imposing canonical commutation relations between P/ and Qj, 
regarded as operators, uses the above symplectic structure determined by 
the inner product on ~ .  

We can go in the opposite direction of taking the classical limit of the 
first quantized theory. This may be done by using isotropic Gaussian states 
centered around a classical phase space point (q, p) with a constant width 
Aq in coordinate space: 

{ (x -q )2  i } 
~q,p(x) = {27c(Aq)2}-l/4exp (2 Aq)~ + ~ p - ( x - - q )  (t7) 

In the classical limit, the quantum system has a large enough mass for the 
spreading of the wave packet to be negligible during the time interval of 
interest. Then its state may be assumed to remain in the form (17), up to 
phase, with (q, p) changing with time, to a very good approximation. 
Therefore, the submanifold <g of N consisting of the states (t7), for a fixed 
zfq, may be identified with the classical phase space {(q, p)}. 

Consider a cyclic motion (q(t), p(t)) that is a closed curve C in ~¢. 
Then 

d 1 dq 
i%@q.), p(,)l ~ I~q(r).po))=~P "-~- (18) 

Hence the geometric phase for this motion, using (4) and Stoke's theorem, 
is(3, 7) 

/~=~ dp A -dq (19) 

where S is a surface in cg spanned by C. On comparing (19) with (t5), it 
is clear that ( l /h)dp A .dq is the restriction to <g of the symplectic form 
in ~ ,  defined above. Hence, /3 may be regarded, in this classical limit, 
as the symplectic "area" in the classical phase space and is therefore a 
canonical invariant. 

The above treatment of the geometric phase therefore suggests why 
Hamilton's reformulation of classical mechanics should be much closer to 
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quantum mechanics than Newton's original formulation: The symplectic 
structure used by Hamilton is close to the inner product in Yf, whereas 
there is no such geometric structure in Newton's formulation. Hamilton's 
equations of motion determine a family of trajectories in the classical phase 
space cg for a given Hamiltonian, which generates a 1-parameter family of 
transformations along these trajectories which preserve the symplectic 
structure. When the theory is quantized, the classical states may be 
represented approximately by Gaussian wave packets; but it now becomes 
possible to take superpositions of them to form the Hilbert space W. These 
wave packets can spread and therefore Hamiltonian classical mechanics 
should be regarded as the geometric optics limit of quantum mechanics. 
But in W, there is a symplectic 2-form (2 = (l/h) dPj A dQ j, which gives 
£20p,~b)=-2Im(~l~b)  for any two tangent vectors ~,~b of J& Since 
Schr6dinger's equation preserves the inner product, it must preserve £2. As 
seen above, the classical limit of/2 is ~o = d& A dq j, which determines the 
symplectic structure in cg. Therefore we expect c9 to be preserved in the 
classical limit, which is satisfied by Hamilton's equations• 

4. METRIC 

The inner product also gives the following distance function on ~:  The 
distance s between any two points p and p' in ~ is defined by 

s(p, p, )2  = 4(1 - I  (4, [ ~,')l 2) 

where I g') and I~')  are two normalized states contained in p and p'. 
Clearly, s(p, p')>~O with equality holding if and only if p=p' .  Also 
s(p, p ')= s(p', p). The triangle inequality 

s(p, p') + s(p', p") >~ s(p, p") 

can be shown to be valid for any p, p' and p" in ~ .  Hence s is a metric on 
.~. Physically, s(p, p') represents the probability of a system initially in 
state t~)  remaining in the same state after a measurement is made to see 
if it is in state t~').  To gain further geometric insight into this metric, 
consider the projective space P~(~) corresponding to the subspace spanned 
by 10) and [~9'). The above metric when restricted to Pl(Cg) enables it 
to be regarded as a 2-sphere with unit radius embedded in a real three- 
dimensional Euclidean space, and s(p, p') is then the straightline distance 
between p and p' on this sphere. 

Suppose that p and p' are separated by an infinitesimal distance ds 
in ~:  

dse= 4(1 - I  (~91 6')12) (20) 
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We may alternatively define a Riemannian metric on N by (20). This is a 
Kahler metric, called the Fubini-Study metric. (15) For  the purpose of a 
result in Section 5, I now use fiber bundles to give in a natural manner 
the latter metric as well as the connection and the symplectic structure 
discussed in Sections 2 and 3, respectively. Alternative definitions of this 
metric are also given in (24) and (31). 

Suppose ~ has dimension N + t, where N is a nonnegative integer. 
The unitary group U(N+ 1) acting on ~ = c ~ N + I  can be identified with 
the set N of orthonormal bases of ~ because each element of B can be 
obtained from a fixed element of N by the action of a unique element of 
U(N+ 1). On defining an equivalence relation between two orthonormal 
bases whenever the first element of both bases is the same, the correspond- 
ing quotient set of N, which is the same as U(N+ 1)/U(N), may be iden- 
tified with the set of unit vectors of ~ f  and is called a Stiefel manifold Su. 
The equivalence relation on S N identifying any two unit vectors related 
by multiplication by a phase factor gives the quotient set U(N+ 1)/ 
U(N)xU(1) which can be identified with ~ = P N ( ~ ) ,  i.e., the 
N-dimensional complex projective space. Now, U(N + 1 ) is a principal fiber 
bundle over SN with projection map ~ (say) and structure group U(N). 
Also, SN is a principal fiber bundle over N with projection m a p / 7  (say) 
and structure group U(1), which is sometimes called the Hopf  bundle. 
Also, U(N+ 1) may be regarded as a principal fiber bundle over N with 
projection map H45 and structure group U(N)x U(1). 

There are natural metrics on the above bundles defined as follows: A 
tangent vector X of U(N + 1) is an ( N +  1 )-dimensional Hermitian matrix. 
Define the metric h in N by the condition h(X, Y) = 2 tr(XY), where X and 
Y are tangent vectors at any point in B = U(N+ 1). It is easily verified that 
this metric is real and positive definite, and when restricted to the 
SU(N+ 1) subgroup it is the Cartan-Killing metric. Let g be the metric in 
SN such that • is a Riemannian submersion, i.e., dq~ is an isometry when 
restricted to the orthogonal complement of the kernel of d~. Similarly, 
define a metric f on ~' such that H is a Riemannian submersion. This f is 
the Fubini-Study metric. There are now natural connections on each of the 
three bundles defined as follows: the horizontal space at each point is 
orthogonal to the fiber at that point with respect to the metric in that 
bundle. The connection over the parameter space 5 ~ or 5 ¢' defined in 
Section 3 may also be understood as follows. Let e be the map from 5 P into 

which takes each S e 5 ~ into the one-dimensional eigensubspace of I(S) 
corresponding to the eigenvalue In(S). The pullback of S~. with the above 
connection by the map e is a U(1) principal fiber bundle over 5 ~ with a 
connection. The closed curve 7 is mapped by c~ into the closed curve C. The 
geometric phase factor (5) e i~ is obtained as the holonomy transformation, 
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i.e., parallel transport around C in N with respect to the connection in SN 
or around 7 in 5 ~ with respect to the last mentioned connection. 

Suppose that 10> and 10'> are such that H([0>) and H([0'>) are 
separated by an infinitesimal distance ds in ~.  Then, it can be shown 
that (t4) ds 2 is given by (20). To obtain the metric coefficients, consider a 
smooth curve 10(0) in ~ such that [0(t)> and 10(t+dt)> project to 
H(10 >) and H(IO' >), respectively. Now, 

(O(t)lO(t+dt))=l+dt 0 -£t 0 +~dt 0 - ~ 0  +0(dt3) (21) 

Also, differentiating (0(t)] 0(0 ) = 1 twice, we have 

and 

/ dt \ , i t  I dt 
=0  

(22) 

From (20), (21), and (22), 

( d s ' ~ 2  d 0 ) - 4 ( d 0  0 ) ( 0  d 0 )  (23, 

Therefore, in terms of an arbitrary section 1~ >, the metric can be written 
as  

ds2=4(<d~ld~)-<d~l~)<~ld~>)=2g~d~" dz " (24) 

where z ~ are complex coordinates in N and the metric coefficients 

constitute a Hermitian matrix. (I6) It can be verified that (24) is invariant 
under change of section /~> ~ [~'> = e e  I~>. It may be regarded as an 
alternative definition of the Fubini-Study metric which is valid also for an 
infinite-dimensional ~f. A unitary or anti-unitary transformation leaves the 
absolute value of the inner product invariant and is therefore an isometry 
in ~ .  

Equation (23) and hence the expression (24) for the metric may also 
be obtained in another way. The horizontal component of the tangent 
vector (d/dO 10> is (d/dt)10 ) -  (01 d/dt 10> 10). Since the Fubini-Study 
metric on ~ is obtained by requiring that H be a Riemannian submersion, 
twice the norm of the latter vector with respect to the inner product in 
is ds/dt. This gives (23). 
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Also, the restriction of this metric to the submanifold ~ of ~ consist- 
ing of Gaussian wave packets of constant width Aq, defined in Section 3, 
yields an Euclidean metric (7) on cg, identified with the classical phase space, 
which can be written as 

ds 2 = 2 dq 2 + 2 -  l dp2 

where 2 = Ap/Aq = 2 Ap2/h = hi2 Aq 2, Ap being the uncertainty in momen- 
tum. If g~¢ are the coefficients of the inverse of this metric and co~ the 
coefficients of the usual symplectic 2-form in the classical phase space cg, 
then it is easily verified that 

is a complex structure on ~, i.e., J satisfies 

5. G E O M E T R Y  O F  Q U A N T U M  E V O L U T I O N  

I shall now give a geometric description of quantum evolution, which 
need not be cyclic, by means of the Fubini-Study metric on ~ described in 
Section 4. Suppose T0(t)) undergoes Schr6dinger evolution. Then from (1) 
and (23), the speed of the quantum system in ~ is (14'17) 

ds AE 
- -  = 2 - -  ( 2 6 )  
dt h 

where AE is the uncertainty in energy: A E 2 = ( ~ ( t ) f H 2 1 t p ( t ) ) -  
(t~(t)l H I~(t))  2. Hence the Fubini-Study distance s traveled during the 
time interval (tl, t2) is 

C t2 AE(t) d 
s = 2 J t  ' ~ t (26') 

Suppose So is the distance along the shortest geodesic joining 
/7(jr) (t 1 ) ) ) and H( t t~ (t 2) ) ), which I shall call the displacement between the 
two states. Then, 

s ~> So (27) 

But the above geodesic is also a geodesic on the sphere PI(C), the projec- 
tive space of the subspace spanned by I~( t l ) )  and I~(t2)), which is an arc 
of a great circle. (5'14~ Therefore (27) is the same as 

f ';  AE(t) > 
dt-t- cos-1([ (~b(t 1)10(tz))I) (27') 

Now, define the "uncertainty of time" At = (TZ/So)(tl .-t2), assuming So =>a 0. 
This amounts to rescaling the actual time interval by the ratio of the dis- 
placement ~z between two orthogonal states to the displacement So during 
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the actual evolution. Then, in the special case where the initial and final 
states are orthogonal, At = t l -  t2. Conversely, the latter condition may be 
used to constrain the rescaling factor. Then, (27) reads 

h 
( A E )  At >~ ~ (28) 

where h is Planck's constant and ( A E )  is the tame-averaged uncertainty of 
energy in the interval (tl, t2). This is in the form of a time-energy uncer- 
tainty relation, which was previously obtained for the special case where 
the initial and final states are orthogonal. (14) But (28) is valid more 
generally when the system does not pass through orthogonal states. The 
usual problem in deriving the time-energy uncertainty relation is that time 
is not an operator in quantum mechanics, as ordinarily formulated. This 
prevents a canonical definition of the "uncertainty of time" At. In the pre- 
sent geometric approach this problem is solved by using the displacement 
between orthogonal states as the "standard" for defining At. The important 
physical result here is that the left-hand side of (27'), for arbitrary quantum 
evolutions between given initial and final states, must have a lower bound, 
and this may be interpreted geometrically as a distance or an angle. 

Consider now the Schr6dinger evolution of an orthonormal basis 
under the action of a constant Hamiltonian H which is given by a geodesic 
curve in the bundle ~ defined in Section 4. The projection C of this curve 
in ~ is the Schr6dinger evolution of one of the states of this basis. Let F~v 
be the curvature of the connection in ~ ,  regarded as a principal fiber 
bundle over ~ ,  which takes its value in the Lie algebra of the structure 
group U(1)× U(N). By writing the geodesic equation in ~ and projecting 
it to ~ ,  the equation of the curve C is obtained to be 

dye'-  ~ ~ p 2 ~ T r ( H F ~ v )  v ~ (29) -'~-S t l  ~pP V = 

where v t~ = dz~/ds = (hi2 AE)(dz~/dt) is the unit tangent vector to C which 
is proportional to the covariant velocity dz#/dt, and FU~p = gU~(Oga~/c~zP ) 
are the connection coefficients formed from the Fubini-Study metric. 

Equation (29), which replaces Schr6dinger's equation (1) in # for an 
isolated system, has the advantage that it is formulated in terms of the 
geometric quantities g~  and Fu~, which are obtained from the inner 
product in off and independent of the Hamiltonian H. The evolution is a 
geodesic if and only if H is such that the right-hand side of (29) vanishes. 
Equation (29) is analogous to the equation of motion of a classical particle 
in curved space-time in an arbitrary gauge field, (18'19) with H playing the 
role of the gauge field charge (color, isospin, etc.). This is the generalization 
of the Lorentz force law for a charged particle in an electromagnetic field 
to an arbitrary gauge field. In this case also, the trajectory of the particle 
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in space-time is the projection of a geodesic in the corresponding Kaluza- 
Klein space. (18~ 

Neither Planck's constant nor the time t, which occurs in (1), appears 
explicitly in (29). From (20), the Fubini-Study distance measures how far 
the state of the system moves from the originM state as determined by its 
diminishing overlap with the original state. Therefore, if we measure time 
by the motion of a quantum system, we would directly measure the 
Fubini-Study distance. Time really represents the correlation between the 
distances measured by different systems. This is similar to how money was 
invented to replace what was originally a direct exchange of goods and 
services, which gives new meaning to the old statement that "time is 
money"! On the other hand, (29) is nonlinear, unlike (1). Hence, the 
introduction of time allows the evolution to be treated linearly. 

6. MIXED STATES 

There is the following profound difference between classical and quan- 
tum physics: In classical physics, if a system is in a pure state, then any 
part of that system is also in a pure state. But in quantum physics, the sub- 
system can be and usually is in a mixed state. This is because in classical 
physics a system is in a mixed state due to our own ignorance of the state 
of the system, so that we need to give a probability distribution for the 
possible states, e.g., a gas of molecules in classical statistical mechanics. If 
the state is completely known (pure state), then the state of each subsystem 
is also completely known. But consider now the state of two quantum 
systems which can always be written as 

N 

Z cklOk)1~) 
k = l  

where [Oi) and I~bj) are the states of the two individual systems satisfying 
( ~ ' 1 0 j )  = 6ij and (~b~l ~bj) = 6,:j. If two or more coefficients c~ are nonzero, 
then the combined system is said to be in an entangled state and each sub- 
system is in a mixed state. This is different from the mixed state for a classi- 
cal system because an experiment can be performed to verify, in principle, 
that the combined quantum system is in a pure state and therefore we do 
have the maximum possible information of the combined system. This 
entanglement is of very great physical importance because different types of 
entanglements lead to Bose and Fermi statistics, the EPR paradox, and the 
violation of Bell's inequalities which a local realistic system should obey. 

The density operators for the two subsystems are (2°) 

N N 

P l =  ~ [cki 2 [~'k)(0kl and p~= ~ [ckl 2 [~bk)(~bkt 
k = l  k = l  
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In the special case where only one of the coefficients is nonzero, each sub- 
system is in a pure state. For  this to happen, it is necessary and sufficient 
that the density operator of either subsystem obeys p2= p. But since no 
system is completely isolated from its environment, a quantum system 
would in general be in an entangled state. It follows therefore that a 
description of a quantum system as a pure state is grossly inadequate and 
we should extend our description of the geometry of pure states given 
above to mixed states. 

Let N denote the set of density operators representing the states (pure 
or mixed) of a given quantum system, i.e. ~ consists of the set of Hermitian 
operators in the Hilbert space of this system with nonnegative eigenvalues 
and trace equal to 1. 

It is known that ~ has a topology and an affine structure with respect 
to which it is a convex set with the pure states contained in the bound- 
ary. (21) Since the set of pure states can be identified with the projective 
Hilbert space, this part of the boundary has a natural metric, namely the 
Fubini-Study metric. It is therefore reasonable to extend this metric to the 
rest of N. To this end, write (20) in terms of the pure state density 
operators p = ] ~ ) ( ~ l  and p ' =  ]~b')(~,'{ as 

ds 2 = 4(1 - tr(pp')) = 2 tr(p - p,)2 (30) 

where the last equality follows from t r (p2 )= t r (p ' 2 )=  1. It is therefore 
reasonable to introduce the following metric on all of 

dSZ-- 2 tr(dp 2) (31) 

which when restricted to the pure states is the Fubini-Study metric. The 
metric (31) is a flat metric on N. But its restriction to ~ has nonzero 
curvature because of the nonlinear condition pZ= p which defines N as a 
curved submanifold in ~.  

A special case of a density operator is a "total mixture" for which p 
is of the form p = (1In)P, where P is the projection operator which projects 
to a subspace of ~f~ of dimensions n. The set of all such p's, for a fixed n, 
may be identified with the Grassmannian Gn, m that is defined as the set of 
n-dimensional subspaces of • whose dimension is n + m. This manifold 
has a natural metric, (22) which generalizes the Fubini-Study metric corre- 
sponding to n = 1, that may be defined as follows: Let {[~k)} and { [~ . )}  
be orthonormal bases in two subspaces of dimension n which are separated 
by an infinitesimal distance dS in G,.m. Let Z~ = ( 0 ; 1 0 j ) .  Then 

dS2=~_ ~4 (n - tr Z*Z) =4n (n - tr PP') (32) 
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where P=SZ"~=I I~'k><¢~l and P ' = Z ~ = 1 1 4 4 > < ¢ ; I  are the projection 
operators for the two subspaces. Hence, d S 2 = 2 t r ( p - p ' )  2, where 
p ' =  ( i /n )P ' ,  which shows that (31) restricted to the submanifold of total 
mixtures of rank n is the usual metric (32) on Gn.m. By means of an 
argument similar to the one which gave (24), we have 

) d S 2 = 4  ( d ~ l d ~ )  - (d/~il ~j)( /}j l  d¢ i )  
k 1 i = l  j ~ l  

= 2G~ dZ e dZ v (33) 

where {J~;k)} is a smooth choice of orthonormal frame field in a 
neighborhood of G . . . .  Z ~ are complex coordinates in G .... and the metric 
coefficients 

i ~ l  j = l  

It follows from (1) that the density operator p satisfies the evolution 
equation 

dp [H, p] (35) ih --~ = 

Therefore the velocity in ~ satisfies, from (31), 

dS']2 = 2 tr{(p2H2)-(pH) 2 } (36) 4 
dt J tr t-d} 'J = 

For a pure state, (36) is the same as (26); indeed, this is a simpler deriva- 
tion of this result if (31) is used as the definition of this metric. To under- 
stand the physical meaning of this result, note that the uncertainty of 
energy for quantum mixed state has two parts to it. There is the "classical 
part" which exists even when [II, p] = 0, because of the energy spread of 
the common eigenstates of H and p. There is in addition a purely quantum 
mechanical uncertainty of energy AEQ which exists merely because [H, p] 
is nonzero. It is therefore reasonable to define AE o by 

AE~ = --tr{ [H, p]2} = 2 tr{ (p2H 2) - (oH) 2 } (37) 

Then 
dS AEQ 
d--7 = 2 h (38) 

which generalizes (26) to mixed states. 

825/21/11-2 
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To generalize the inequality (27) to mixed states, note first that the 
evolution of a density operator p(t) according to (35) lies in a submanifold 

of ~ consisting of density operators with the same eigen values. The 
corresponding Cayley-Hamilton equation, which in general is non linear, 
is satisfied by every density operator belonging to N. Hence, in general, 

is a curved submanifold in ~.  Clearly, 

S ~> So (39) 

where S is the distance along the actual evolution between the states p(tl) 
and p(t2) and So is the distance along the shortest curve lying entirely in 

joining these two states. Now ~ may be regarded as a Hilbert space with 
the inner product between pl and P2 belonging to ~ being 2tr(plp2) ,  
and .~ is contained in the sphere, 2 tr(p 2) =constant .  Hence (39) can be 
rewritten, on account of (38), as 

,2 AEQ(t) dt>~cos_l(itr{p(t~) p(t2)}l/tr{p(tl)2}) 
h 

(39') 

which generalizes (27') to the space of mixed states. 

7. DISCUSSION 

There are two fundamental conceptions of geometry. One is Rieman- 
nian by which I mean broadly a geometry defined on a manifold by local 
structures such as a metric, connection, and torsion. The other is Kleinian 
which is the conception of Felix Klein in his Erlanger program according 
to which a geometry is a set of properties that are invariant under a group 
of transformations. The Riemannian conception of geometry is very useful 
in physics basically because the fundamental laws of classical physics are 
local. Gravity and gauge fields, classically, are described using the Rieman- 
nian conception. On the other hand, quantum mechanics is formulated in 
the Hilbert space of states of a quantum system on which a symmetry 
group acts. The state of a single particle may be regarded as a wave 
function on physical space, which reflects a fundamental nonlocality of 
quantum mechanics, particularly when a measurement is made. The success 
of quantum theory often appears to be due to the application of sym- 
metries rather than the specific dynamical model used which has these 
symmetries. Therefore, it is the Kleinian conception of geometry which 
seems to be appropriate for quantum theory/TM The task of constructing 
a quantum theory of gravity appears to be grounded in the problem of 
bringing these two conceptions of geometry together. 
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But the geometric structures in quantum theory described above from 
a Riemannian point of view may also be understood from a Kleinian point 
of view: The projective geometry on ~ is invariant under the group of 
linear transformations in ~ and may therefore be regarded physically as 
due to the principle of superposition. The metric on ~ is invariant under 
unitary and anti-unitary transformations in ~ .  The connection and the 
symplectic structure are invariant under transformations in ~ which leave 
invariant the imaginary part of the inner product, including unitary trans- 
formations. But they are not invariant under anti-unitary transformations, 
e.g., time reversal. Consequently, the geometric phase is not invariant 
under time reversal (it changes sign). However, all four geometric struc- 
tures are invariant under the group of unitary transformations. Therefore 
the quantum geometry described by them is analogous to the Minkowski 
space-time geometry, which may also be regarded as a Riemannian 
geometry with zero curvature or as a Kleinian geometry invariant under 
the group of Poincar6 transformations on space-time. Unlike for 
Minkowski geometry, time-reversal transformation is not a symmetry 
of this quantum geometry, which is interesting because time-reversal 
symmetry is violated in any case by weak interaction. 

However, the geometric structures in ~ ,  regarded as Riemannian 
structures, are "local" in ~ ,  but not local in the sense of space-time locality 
which gives rise to the Riemannian space-time. Since ~ represents the 
physical states of the system, it is more closely related to the classical phase 
space rather than classical space-time. On the other hand, the classical 
phase space can be constructed from particle states represented on space- 
time which has no analog in quantum theory. That the geometry of ~ is 
fundamentally different from space-time geometry may also be seen from 
the following observation: A free classical particle moves along a geodesic 
in space-time. But it is neither necessary nor sufficient for a quantum par- 
ticle to be free in order to move along a geodesic in ~.  Therefore, it seems 
that there must exist a more general quantum geometry which reduces to 
space-time geometry when Planck's constant tends to zero. Also, from the 
quantum states in this geometry it should be possible to construct the 
above geometry in N when the gravitational field is negligible. Such a 
geometry (24) may enable us to obtain in a natural manner a quantum 
theory of gravity. 
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