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The determination of the past and the future of a physical system are complemen- 
tar A' aims of measurements. An optimal determination of the past of a system can 
be achieved by an informationally complete set of physical quantities. Such a set 
is always strongly noncommutative. An optimal determination of the future of a 
physical system can be obtained by a Boolean complete set of quantities. The two 
aims can be reconciled to a reasonable degree with using unsharp measurements. 

1. I N T R O D U C T I O N  

Assume that a measurement  is performed on a physical system and a cer- 
tain result is obtained. This result may  be used to infer which properties the 
system had before the measurement,  or it may  be used to deduce which 
properties the system possesses after the measurement.  We refer to these 
two aspects of a measurement  as the determination of the past and the 
determinat ion of the future of a physical system. Here they will be 
investigated within the Hilbert space formulat ion of quan tum mechanics. 

In quan tum mechanics pure states represent maximal collections of 
properties which a physical system may  possess at a time. Thus an optimal 
determinat ion of  the past or of the future of the system is obtained when- 
ever the measurement  result, or  results, lead to the specification of  a pure 
state of the system, either in its past or  in its future. It turns out  that  in 
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quantum mechanics these two aspects of a measurement are mutually 
exclusive in the sense that an optimal determination of the past of the 
system requires measurements of strongly noncommutative quantities 
whereas an optimal determination of the future of the system can be 
obtained only via the preparatory measurements of maximal quantities, or 
complete sets of commuting quantities. On the other hand, the constitution 
of physical systems requires their persistence from the past to the future, 
even in the course of measurements, showing thus that the two aspects of 
measurements are equally important for a full description of a physical 
system. The determinations of the past and the future of a physical system 
then form a new mode of complementarity in quantum mechanics. 

In Sec. 2 of this paper the problem of determining the past of a physi- 
cal system is investigated by means of the notion of informational com- 
pleteness. As it is reviewed in Sec. 2.2, informationally complete sets of 
physical quantities allow optimal determinations of the past of the system. 
After giving the basic formal definitions in Sec. 2.1 we show that no single 
physical quantity nor any set of commuting quantities is informationally 
complete. A necessary condition for a set of physical quantities to be infor- 
mationally complete is that the quantities are strongly noncommutative 
(Thin. 2.1.8). However, even total noncommutativity of a pair of physical 
quantities is not sufficient for the informational completeness of this pair. 
This observation then leads to a search for informational completions of 
pairs of totally noncommutative quantities. In Sec. 2.3 this is done in the 
important case of complementary position and momentum observables, 
whereas in Sec. 2.4 the same is done for the spin quantities of a spin-l/2 
system. In both cases, the informational completion of the totally 
noncommutative pairs is obtained only via replacing the pairs with 
informationally equivalent unsharp but coexistent pairs. The existence of 
an informationally complete joint observable of a coexistent unsharp pair 
of quantities then depends on the degree of unsharpness involved. 

The optimal determination of the future of a physical system via the 
preparatory measurements of maximal quantities (or complete sets of 
commuting quantities) is already well-understood in the quantum theory of 
measurement. But in order to compare the two aspects of measure- 
ments--the determinations of the past and the future--it becomes relevant 
to study the maximal degrees of certainty of the values of totally non- 
commutative quantities and to consider the introduction of unsharp values. 
Theorem 3.2.1 of Sec. 3 gives necessary and sufficient conditions for the 
existence of the so-called maximal information states for pairs of physical 
quantities. It also gives a complete characterization of such states. It is then 
demonstrated that the introduction of unsharpness, which is necessary for 
an informational completion of a noncommutative pair, cannot increase 
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the maximal information on the values of such quantities (Secs. 3.3 and 
3.4). 

Section 4 finally summarizes the results of the paper in discussing the 
new mode of complementarity which manifests itself in the competing aims 
of determining the past and the future of a physical system in quantum 
mechanics. 

We close this introduction with recalling the basic notations and 
terminology of the Hilbert space formulation of quantum mechanics used 
in this paper. 

In the Hilbert space formulation of quantum mechanics the descrip- 
tion of a physical system 6 p is based on a (complex, separable, generally 
infinite dimensional) Hilbert space ~f~, with the inner product ( - I '  ). Any 
physical quantity of the system is represented as (and identified with) a 
self-adjoint operator A in jtf. The spectral measure of A is denoted by 
EA: M(~) ~ ~ ( ~ ) ,  where ~ ( ~ )  is the Boral a-algebra of the real line 
(M(~e) that of R2), and LP(~¢ ~) is the set of bounded linear operators on 
H .  Any state of the system is represented as (and identified with) an 
element of T of 3-~(.~) ~- of positive normalized trace class operators on A '~. 
In this representation the pure states of the system appear as the one- 
dimensional projection operators P[q)] (P[q) ]O=((P lO)q) )  on Yt ~, 
q) s J4 ~, so that they may be identified, modulo a phase factor, with the unit 
vectors of i f .  ~ denotes the set of unit vectors of ~1(& 

Any pair (A, T) of a physical quantity A and a state T defines a 
real normalized measure on the Borel a-algebra M(R) of R, i.e., 
EAr: ~(R)--* [0 ,1] ,  X~-~EAr(X):=tr(TEA(X)). According to the Born 
interpretation, EAr is the probability measure of the possible values of the 
quantity A in the state T, i.e. EAr(X) is the probability that the value of A 
is (in) the set X when the system is in the state T. 

The concept of a physical quantity as a (real) spectral measure E A (or 
self-adjoint operator A) is unnecessarily restricted. In fact, it is insufficient 
for a quantitative analysis of the topic of this paper. As a natural 
generalization one defines a physical quantity as a semispectral measure 
E : d ~ ( W )  on a measurable space (£2,~¢), like (R,M(R)), i.e., a 
positive operator valued measure for which (0 ~< E(X) <~) E(t2)= I. Spec- 
tral measures are then exactly those semispectral measures E for which 
E(X)=E(X) 2 for any Xe~¢. The unsharp quantities are examples of 
generalized quantities. Clearly, any pair (E, T) of a generalized physical 
quantity E and a state T again defines a probability measure E r  for which 
the Born interpretation may be adopted. 

In the course of this work we shall also refer to the usual formulation 
of the quantum theory of measurement. In that theory a measurement of 
a physical quantity A, say, on the system 5 e is represented as a quadruple 
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(iteM, AM, Tn ,  V), where -3~M is the Hilbert space of the measuring 
apparatus J¢/, AM is the pointer observable of ~t' (i.e. the quantity of ~//¢ 
which corresponds to the measured quantity A of 5P), TM is the initial (or 
premeasurement) state of ,~,  and V is the state-transformation represent- 
ing the measurement coupling between 5 ~ and J¢'. For further details, see, 
e.g., Beltrametti et  aL, (]) or Beltrametti and Cassinelli. ~2) In the latter 
reference the reader will also find a more systematic exposition of the 
Hilbert space formulation of quantum mechanics as it is used in this paper. 

2. INFORMATIONAL COMPLETENESS 

2.1. General: Mathematical Aspects 

Let ~ be a complex separable Hilbert space, S ( J ~ )  the set of 
bounded operators on ~ ,  and ~ , ( ~ ) ,  5°(~g) +, and ~7 + Js(J'C)l its subsets 
of self-adjoint, positive, and positive normalized trace class operators, 
respectively. A positive operator valued measure E: d - - , 5 ° ( ~ )  + on a 
measurable space (£2, d ) ,  the value space, is a semispectral measure if 
E(O) = L A semispectral measure E is a spectral measure if E(X)= E(X) 2 
for any X~ d .  This is the case exactly when E(Xc~ Y)= E(X) E(Y) for any 
X, Ye d .  If the value space of a spectral measure E is the real Borel space 
(R, ~(N)),  then E defines a unique self-adjoint operator A in ~ .  According 
to the spectral theorem each self-adjoint operator A in a f  is so determined. 
Thus, when a spectral measure is defined on the real value space (~, ~ (R) )  
we denote it as E A to indicate that it uniquely determines and is uniquely 
determined by the self-adjoint operator A in .3¢. 

Let 5 ° c £ a ( a f ) .  In the physical applications considered here 5 a 
usually appears as the union of the ranges ~ ( E ) =  {E(X):Xe sg} of some 

07- + semispectral measures E: d ~ 5¢(Jg) +. Let T~, T 2 s J s ( ~ ) ~  • States T~ 
and T2 are L-equivalent (cf. Jauch C3)) if 

tr(TIL)=tr(T2L) for any L e S ¢  (1) 

If T~ and T 2 are ~,¢-equivalent states, we denote it as TI ~ o  T 2. The 
relation ~ is an equivalence relation in ~(~f~)( .  [In fact, it is an 
equivalence relation in any subset of states J -c~(~ut~) i  +. Cf. 
Remark 2.1.1.] For a given 2 '  c Y ( ~ )  we denote 

ET] se = {T' e ~ ( a ¢ ) ~ :  T' ,-,~ T} (2) 

for any T e  ~ + Js (J 'g) l .  If ~c~°=N(E1)u-- .  u ~ ( E " ) ,  or ~ = ~ ( E  A) we 
simply write IT] e~''e", or IT] A instead of IT] e(eb . . . . .  .e~e,), or IT] e¢eA~, 
respectively. 
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Let ( T ~ ) ~  ~ ~(~¢f);- be a countable subset of states, with a coun- 
table index set J ,  and assume that T~~~ T~ for any i, j e J  for some 
2" ~ 2 " (~ ) .  Then for any i ~ J ,  T; --- ao ~ ~ ~ t~ T~ for all (t~)~ ~ ~ ~ ~ + such 
that ~ t~= 1. Thus [T]  ~e is a a-convex set for any 2 '  c 2"(Yf), ~nd for 
any T e . ~ ( ~ ) ; - .  Let Ex([T]  ~)  be the set of extreme points of [T]  ~. 
Clearly, Ex(¢~(~) l  ~ ) c~ [T]  -~ ~ Ex([T]  ~)  for any Te ~ ( J f ) i  ~. But the 
converse inclusion need not hold true as Ex([T]  ~) may be nonempty even 
though IT]  ~e contains no pure states. In fact, this is the case whenever 2" 
is informationally complete (see the following) and T is a nonpure state, 
for then [T]~e= {T} - ¢ ~ =  [T]~e~Ex(J~(~f) ; - ) ,  and Ex[T]~e= {T}. 
However, we note that for any 2" ~ 2"(ovf) 

IT] se= (") [T] L= 0 clconv{P[q~]'q~e~,P[q)]~seT} (3) 
L~-c  ° L ~ . y  ~ 

(Hadjisavvas, (4) Theorem 3). This result is based on the following fact (ibd., 
Corollary 2): For any r E  W,(YF); ~, T =  2P[q)] + (1 - 2) T1 for some 2 > 0, 
~ 0 ~ ,  if and only if ~o~(T1/2). 

Let 2 " , 2 ' ' ~ 2 " ( Y f ) .  If ~ c 2 ' ' ,  then [ T ] - ~ = [ T ]  ~' for any 
TmJ~(Yt~)i ~. In other words, we have the following set-theoretical 
inclusions: 

J~(ovg~)~-=[T]r°";=[T]~=[T]~e'=[T]~C~)={T} (4) 

for any T ~ ( d ¢ ~ ) ~  -. 

2.1.1. Remark 

Instead of I-T] ~, T~ ~ ( ~ ) ~ - ,  2" c ~(~f~) we might also consider the 
following equivalence classes [ T ] f  := [ T ] ~ c ~ J  or IT]  ~, T~Y-, for a 
given subset of states j c z~z-t~+~.~ z~. Instead to developing the general 
theory along these options we shall return to them only in some special 
c a s e s .  

Let 2", 2 ' ' c  2"(j'(~). 2" and 2 ' '  are informationally equivalent with 
respect to a set of states Y = J~s(~'~)~- if 

[ T ] ~ =  [T] ~' for any T e J -  (5) 

If 2" and 2 ' '  are informationally equivalent w.r.t, all states TeJ[ tW~ + s~. -11 

then Ao and 2 ' '  are informationally equivalent (cf. Ali and Doebne{5)). 
The subsets ~ ( W ) =  {Pe2"(H) :  P = P +  =p2},  g ( W ) =  {A~£,e(ovf): 
0 <~ A ~< I}, and L~(~,~f) of 2"(Y¢') are informationally equivalent. Moreover, 

IT ]  ~ =  [ T ] ~ I  = [ T]~'¢~>= [ T ] ~ ¢ ~  = {T}  (6) 



638 Busch and Lahti 

for any T~-~(Jf) +, Indeed, if T~ ~ IT]  ~ g / ,  then t r (T~P)=  tr(TP) for any 
P ~ ( H ) ,  so that, in particular, ( ~ o [ ( T ~ - T ) ~ 0 ) = 0  for any ~ o ~ .  
But this implies that T~-T=O, i.e, [T]~(H~={T} .  As ~ ( J f ) ~  
o~(~) = 5¢~(~ ,~) ~ ~ ( J f )  we have Eq. (6) by Eq. (4). 

Let ~ = 5e(Jf) .  If 5f  is informationally equivalent with 5 a ( ~ )  (or 
with any ~ ' = ~ ( ~ ( f ) )  w.r.t, a set of states J ~ ~ O e f  ~+ then s ~, 1 1  , 

[T]  -~= {T} forany T ~ - -  (7) 

In that case we say that ~ is informationally complete with respect to 
Y- c fss(Yg)i ~. If L~ is informationally complete w.r.t, all states T~ ~t3/f~ + s'~ f l  , 

then L~ ° is informationalIy complete (cf. Prugovecki~6~). 
There is an immediate characterization of informational completeness 

of a given ~ = ~ ( ~ )  in terms of the following functional 

(Itr(TL)l } 
~ ( J f ) ~ ,  T~--~IITIl_~:=sup~ ii- ~ : L ~ , L ¢ O  (s) 

Namely, assuming that the identity operator I is in £a, then H" tl .~ is a norm 
on ~-~(~) (the real vector space of the trace class operators on ~ )  if and 
only if ~ c ~ ( Y f )  is informationally complete. Indeed, if H" ]l ~ is a norm 
on ~-~(3/f), then its positive definiteness implies that [T]~e=  {T} for any 
TE Jss(3¢~) +. On the other hand, the functional defined in Eq. (8) is always 
absolutely homogeneous and subadditive. If ~ is informationally complete, 
i.e. IT]  ~ = {T} for any T e  ~ ( ~ ) ; - ,  then also [ITs-  T2II~ = 0 for 
any T1, T2e~(3( f ) ,  only if TI=T2 (for I e ~ ) ,  i.e. II'n~ is a norm on 
~ ( ~ ) .  The physical relevance of this characterization of informational 
completeness of an ~ ~ ~ ( J f )  has been discussed by Busch/7~ 

In the light of the physical applications considered here it is important 
to ask whether 

[ T ] ~ =  {T}, T e  ~ ( Y f ) ~  (9) 

for some physically interesting 5e ~ ~(Y{~), and if not, whether, at least, 

[ r ] ~ =  {r}, r ~ F  (10) 

for some physically interesting ~--c f/oVg~st Jl +, and/or whether 

Ir is'= {r}, r~  ~ ( ~ ) C  (111 

for some physically interesting extension &o, of 5¢. Moreover, as the pure 
states Ex (~ (Yf )  +) ( =  { T e J ~ ( J f ) +  : T =  T 2} = {Te  ~(~f)~-  : T=P[~0]  
for some q~sYt~}) determine all the states ~ +  i.e. ~r + .,t Jl , J , ( ~ ) 1  = cl cony 
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E x ( ~ ( W ) ; - )  (Davies(8)), it should also be important to know whether for 
a given 5 0 c S e ( W )  its informational completeness w.r.t. Ex(~(W)~- )  
already implies its informational completeness, i.e., does the condition 

[T]~= {T} forany  TeEx(~- , (W)~)  

imply that (12) 

[T] '~  = {T} for any T E ~-~AW) ~- 

Clearly, Eq. (12) holds true for any 50 ~ ~ ( J f )  as well as in the case of two 
dimensional Hilbert space W =  C 2 (cf. Sec. 2.4). Whether Eq. (12) holds 
true also in some nontrivial cases is an open question. We shall return to 
that subsequently. 

In Secs. 2.3 and 2.4 we shall give important physical examples of 
the cases for Eqs. (9)-(12). In order to fully appreciate those examples 
we shall first discuss some basic results on the problem of informational 
completeness. 

A semispectral measure E: d ~ 5 0 ( W )  + is commutative if 
E(X) E(Y)= E(Y)E(X) for all X, Y~ d .  Clearly, any spectral measure is 
commutative. But there are also important commutative semispectral 
measures, like unsharp position and unsharp momentum te be discussed in 
Sec. 2.3. Our first result refers to such measures. 

2.1.2. Theorem 

No commutative semispectral measure E: d ~ 5 0 ( W )  + is informa- 
tionally complete, when dim(W)~> 2. 

Proof. For any O~E(X)¢I  there is a q ~  such that 
-eW(X)~o ¢ eia(p for any a ~ ~. Then P [ ~ ]  ¢ P[~0], but t r ( P [ ~ ]  E (Y) )=  

(de(x)~plE(Y)de(x)q~) = (¢p [E(Y)~0) = tr(P[~o] E(Y)) for any YE d ,  as 
E( X) E( Y) = E( Y) E( X) for any X, Y ~ d ,  and thus also em~X)E(Y)= 
E( Y)d e~x) for all X, Y~ ~¢. If E(X) ~ {0, I} for any XE d ,  then E is con- 
stant and [T ]  E = ~-~AW)~- for any T~ ,a- + J s (W) l  so that E is informationally 
incomplete whenever dim(W)/> 2. | 

Any Boolean sub a-algebra ~ of ~ ( W ) ,  the projection lattice of W, 
can be represented as the range of some spectral measure ~(~)--+ 50(W) + 
(Varadarajan, (9) Lemma 3.16). Thus Theorem 2.1.2 has the corollary: 

2.1.3. Corollary 

If ~ 5 0 ( J f )  is an informationally complete set of projection 
operators, then 50 cannot be a Boolean sub a-algebra of ~ (W) .  Especially, 
5 ° cannot be a commuting set of projection operators. 
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As no Boolean sub a-algebra of ~(juf) is informationally complete we 
also have the following corollary. 

2.1.4. Corollary 

No family of mutually commuting spectral measures is inforrnationatty 
complete. Especially, no commuting set ~ c S f j ~ , ~ )  is informationally 
complete. 

There are two physically important special cases of these results which 
deserve to be mentioned separately: No maximal quantity nor any com- 
plete set of commuting quantities is informationally complete. 

Spectral measures E: d - ~  5f(Yt°) +, or more generally Boolean sub 
a-algebra of N ( ~ ) ,  are, of course, physically very important quantities. As 
they cannot be informationalty complete it is important to ask along with 
Eq. (10) what, if any, is the largest set of states y c ~ ( ~ ) ~ -  w.r.t, which 
E, say, is informationally complete. The following theorem answers this 
question. Let Y-(E) denote the set of one-dimensional spectral projections 
of E. As there are at most countably many different one-dimensional 
spectral projections of E we may write Y(E)  as Y(E)  = {P[q)i] : qL E o~¢~, 
P[q~i]=Ei, i e J c N } .  Occasionally, we shall refer to the elements of 
Y-(E) as the nondegenerate eigenstates of E. Clearly, ~-(E) may also be 
empty. 

2.1.5. Theorem 
Let E: d ~ L¢(YF) + be a spectral measure. Then [ T i e =  {T} if and 

only if Te g ( E )  . 

Proof We shall show first that the only pure states P[cp], q)e ~ ,  
w.r.t, which E is informationally complete are the nondegenerate 
eigenstates P[~pi]=Ei, i e J ,  of L\ If Te [P[q~i]]~, then tr(TE(X))= 
tr(P[~pt] E(X))=tr(E~E(X)) for any X e d .  Hence (q0ilT(p~)= 1, which 
shows that T=P[q~] .  Indeed, if T= ~ tkP[tpk] is the canonical decom- 
position of T, then 1 = <q~il Tq~;) = Z  tkl(@klq~i)l z SO that l(OkI P,)I 2= 1 
for any k, i.e. r = P [ q ~ ] .  Assume next that [P [cp ] ]e=  {P[q3]} for some 
q~ e J4~. We claim that P[~0] = P[~0~] for some i e d .  Assume that P[q~] 4: 
P[Pi ]  for any l ed .  If P[q~]<.E(X) for some Xso~,  let P=A(E(X):  
Xes4,  P[q~]~<E(X)) so that dim(P(J¢'))>~2. Then {P[O] :P4 ,=O,  
0 e ~ } c  [p[q)]]e.  On the other hand, if P[q~] CE(X) for any X~s4,  
E(X) 4: I, then for some 0 4: E(X) 4: I, e~E(x)q) 4: e~p for all a e R, which 
again implies that [P[~o ] ] e 4= { p[~0 ] }. Thus the nondegenerate eigenstates 
of E, if any, are the only pure states w.r.t, which E is informationally 
complete. 

Let ~-(E)= ct conv ~-(E). We show next that [T]~-~e)= {T} for any 
TsJ-(E). Indeed, if T, T'e~-(E), and T '~eT ,  then clearly T= T'. 



The Determination of the Past and the Future of a Physical System 641 

Assume further that T ~ ( E ) .  Then [ T I E =  {T} if and only if T=P[~p]  
for some q ~ l .  If T=P[~p] ,  ~Pe~,l, then I-TIE= {T) if and only if 
P[~P]=PE~Pi] for some i ~ J ,  as shown earlier. On the other hand, if 
TEff-(E), and T = Z  tiP[~oi], t i>0 ,  at least for some P[~o~] ¢ P[~0j], iCj,  
then any ~0 = Z (~0i[ ~0)~0i, with I((P~[ q~)l 2= t~ determines a state P[~0] 
I-T] E. Finally, if Tq~J-(E), then T=2PEq~]+(1--2)T~ for some 2 > 0 ,  
q~ ~ ~( Tm), PESo] ¢ Y ( E). As P[~0] ~E P[ em~X)~ o] for some 0 ¢ E( X) ~ I 
for which em~X)~p~e'~0 for any a e ~ ,  we have T'=2PEe'eIx)q~]+ 
( 1 - 2 ) T ~ E T t h o u g h  T ~  T'. | 

This proof contains a partial answer to the question of Eq. (12). The 
set J ( E )  of the nondegenerate eigenstates of a spectral measure E is the 
largest set w.r.t, which E is informationally complete. E is not informa- 
tionally complete w.r.t. ~-(E,) = cl conv Y'(E), though [T]~ce ~ = {T} for 
any T ~ ( E ) .  Thus it still remains open whether the informational com- 
pleteness of an ~=50(~¢~) w.r.t. E x ( ~ ( ~ ) ; - ) i m p l i e s  its informational 
completeness. 

There are two immediate corollaries to Theorem 2.1.5. 

2.1.6. Corollary 

If 5¢ ~ 50(Jr) is a Boolean sub o'-algebra of ~ ( i f ) ,  then for any 
T ~ ( ~ f ) ~  [ T ] ~ =  {T} if and only if T is a pure state corresponding to 
an atom of 50. If 50 has no (one-dimensional) atoms, then it is informa- 
tionally complete w.r.t, no state. 

2.1.7. Corollary 

If a spectral measure has no nondegenerate eigenstates, then it is infor- 
mationatly complete w.r.t, no state. 

It is now clear that a commutative 5f ~ ~ ( ~ )  cannot be informa- 
tionally complete. Our next result characterizes the degree of noncom- 
mutativity which is necessary for the informational completeness of a set 
5 ° ~ ~ . ( ~ ) .  According to the usual terminology, the set 50 ~ ~ ( ~ )  is 
commutative if L~L~ = L2L~ for and L1, L~ e 50. A natural generalization 
of this notion is the commutativity domain of 50, com(50):= { q ~ F :  
L~ ... L~q~ = Lp(~)... Lp(n)q~ for any L~ ..... L ,  ~ 50, and for all permutations 
p of {l,...,n}, n e N } ,  n s N }  (cf. eg. Pulmannova and Dvurecenskij. (~°' 
Clearly, c o m ( ~ )  is a closed subspace of ..~, and 50 is commutative (in the 
usual sense) if and only if com(50)=~f .  In the other extreme case, 
com(L~) = {0}, 50 is said to be totally noncommutative. One immediately 
observes that com(50) is invariant under each Le50 ,  i.e. L(com(50))c  
com(50) for any L ~ 5~. Moreover 50 [~o~(~e)= {LI ... .  ~ :  L ~ 5¢} is a com- 
mutative set. Thus denoting ~ =corn(of)  and P ~  the projection on ~Y~, 
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then {P#cLP~: L E 2  ~} is a commutative set of bounded self-adjoint 
operators on the Hilbert space 0,~. Clearly, for any ~oeyd, (~0tL~0)= 
(~olPKLPKq)) for all L e 5~. By Corollary 2.1.4 we then have the following 
result: 

2.1.8. Theorem 

Let ~ c ~ s ( y d  ). If ~ is informationally complete, then dim 
[com(Se)] ~< 1. 

There are two special cases which deserve to be mentioned separately. 
If Ei: ~ - -*Se(yd)  +, i =  1,2, are any two spectral measures, then their 
commutativity domain com(E 1, E 2) - c o m ( N ( E  1) u N(E2)) reduces to the 
set com(E 1, E 2) = {<p ~ yd: El(X)E2(Y)q~ = E2(Y)EI(x)cp for all X ~ d ~ ,  
Yesuc2}=:com(2)(E1, E 2) (as the relation E ( X ) E ( Y ) = E ( X n Y ) ,  X, 
Yesd ,  holds true for spectral measures E: d - >  ~(yd) ) .  If, in addition, 
E ~ = E A and E 2 = E s for some self-adjoint operators A and B, and if A and 
B are bounded, then com(E ~, E 2) = {~0 e yd: AB~o = BAq)} = com(A, B). If 
E;: s~,.--) &o(yd)+, i =  1, 2, are semispectral measures, then com(E 1, E 2) 
does not reduce to such a simple form. Even in the case of commutative 
semispectral measures E i, i =  1, 2, com(E j, E 2) is usually a proper subspace 
of com(2)(Ea, E 2) (={q )~yd :  EI(X) E2(y)~o=E2(y)EI(X)~o for all 
XE a'l, r ~ 2 } ) .  In any case we have: 

2.1.9. Corollary 

Let U: ~ , .~  5°(H) +, i =  1, 2, be any two spectral or semispectral 
measures. If ~ q ' = O ? ( E t ) ~ ( E  2) is informationally complete, then dim 
[ c o m ( ~ ) ]  < 1. 

The examples of Secs. 2.3 and 2.4 will demonstrate that the condition 
dim[com(E 1, E2)] ~< 1 is not sufficient for the informational completeness 
of the pair (E ~, E2). The final example of this Section demonstrates the 
existence of countable sets of projection operators which are informa- 
tionally complete. Moreover, they can be used to define informationally 
complete discrete semispectral measures or informationally complete coun- 
table families of simple spectral measures (Remark 2.1.11). 

2.1.10. Example 
Let {q~,: n m N} be an orthonormal base of Yd. The collection of 

one-dimensional projection operators # = {P[q~,], P [ ~ ' ~ ( ~ k  + i'~t)]: 
r = 0, 1, 2, 3; n, k, l ~ N, k > I} is informationally complete. Moreover, the 
set ~ is totally noncommutative. 

Proof. Let {~ , : n  ~ N } be an orthonormal base of yd. Then for any 
A E ~ ( Y d ) ,  A = 0  if and only if (~pmlA~0~)--0 for all m , n ~ N .  The 
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polarization identity ((Pm I A<p,) : 1/4 ~ )=o  ir(qgm q- irq~, I A(qgm + ir~0,)), 

m, n E N, then shows that the projection operators P[.~-~(~pm+irqgn)], 
r = 0 ,  1, 2, 3, m, n ~ N form an informationally complete set. In fact the 
set ~ = {PloP,I, P[~I-~(~Pm + K¢,)] :  r = 0, 1, 2, 3; l, m, n ~ N, m > n} is 
already informationally complete, as T * =  T for any T~J~(J / f ) i  + so that 
(qg~lZqgm)= (cPmlZ~o,) for all m,n~N. The set ~ contains mutually 
noncommutative one-dimensional projection operators so that com(~)_a 
com(2)(~ ) =  {0}. I 

2.1.11. Remark 

This Example (2.1.10) can be used to construct a discrete semispectral 
measure which is informationally complete. We omit the somewhat lengthy 
but straightforward proof; it amounts to showing that the set ~ is the 
union of at most countably many subsets ~ ,  each of which contains a 
collection of mutually orthogonal projections adding up to unity. Introduc- 
ing a sequence of positive numbers 2~ > 0 such that 5Z 2~ = 1, then defining 
the sets 2 ~ =  { 2 e P ] P e ~ }  of effects, one shows that Z~Zp,~2iP~j= 
Z Aft= L Thus g = (J 2 i~  is an informationally complete set of effects 
satisfying the normalization condition. Therefore it can be used to con- 
struct a discrete (generalized) observable which then is informationally 
complete. Clearly, this observable is totally noncommutative. 

2.2. General: Physical  Motivations 

Assume that a measurement of a physical quantity is performed on a 
physical system 6 f and a certain result, a real number a, say, is obtained. 
What is the relevance of such a single measurement result on 5°? This 
question splits up in a natural way into two parts according to the modes 
of the past and the future. The result of the presently performed measure- 
ment may be used to infer some properties of the system prior to the 
measurement, or it may allow one to deduce some properties of 
immediately after the measurement. 

According to quantum mechanics the measurement result a ~ ~ means 
that the system ~ was initially, i.e., prior to the measurement in a state 
Ti~ ~-~J~+s~ l l ,  /-initial, in which it was possible to obtain this result, i.e., 
E ~ ( { a } ) ~ 0 .  The measurement could also have left the system in a state 
Tf~ ~ ( J f ) ~ ,  f-final, in which the quantity A has the measured value, i.e., 
EAI({a})= 1. As the pure states P[q~], ~ p ~ ,  characterize the maximal 
sets of properties that the system may possess at a time, it would be most 
favorable if the measurement would lead to a determination of a pure state 
of the system either before or after the measurement. As was said earlier, 
these two options turn out to be complementary aspects of measurements. 
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It is a well-established fact of quantum mechanics that a discrete maxi- 
mal quantity, or a complete set of commuting discrete quantities admit 
measurements which lead to an optimal determination of the future of the 
system. In the case of noncommuting quantities such measurements do not 
exist but still some reasonable determinations of the future of the system 
are feasible. In Sec. 3 such options shall be investigated. Here we shall 
concentrate on the question of the determination of the past, i.e., the 
premeasurement state of the system on the basis of certain measurement 
results. We now drop the subindex i in referring to the initial state of the 
system. 

In general, a single measurement result does not suffice to infer the 
initial state of the system, According to quantum mechanics this is simply 
because there is no projection operator P ~ ( J t  ~) (nor any effect 
E ~ g ( ~ ) )  for which the set of 'possible initial states' {TE.Y~(~'~)~: 
t r (TP)#0}  would be a singleton set {T}. But we may repeat the same 
A-measurement ander the same conditions many times, say N times. This 
then leads to a (factual) finite measurement result sequence A _ 
{al,.-, aN}, where c refers to "the same conditions to which the system 5 f 
is repeatedly subjected." But the situation with FAc.N is not essentially better 
than that with F A We have to take the step of inductive generalization C,I" 

to replace the (factual) finite sequence /-,A with a (conceptual) infinite c ,N  

sequence /'{---{a~,a2,... }. The problems of induction and statistical 
inference are, of course, foremost here. As we do not intend to propose any 
solutions to those questions here we simply omit them now. (There is a 
vast literature on the subject matter, the references to van Fraassen (u) and 
Salmon (21) are relevant illustrations of that.) Rather, we refer to the 
quantum theory of measurement (Ozawa (I3) and to the relative frequency 
interpretation of probability (van Fraassen (~1)) to give the measurement 
statistics interpretation of quantum mechanics (Cassinetli and Lahti(~4)). In 
that interpretation the quantum mechanical probabilities E~ are obtained, 
in a systematic way, as relative frequencies in the measurement result 
sequences F¢ = {al,..., a~,...} obtained in repeating the same A-measure- 
ment under the same conditions, given now by the state 7'., infinitely many 
times; EA(X) = relf(X, F¢)  := limk_ ~ ff',kt=l ~X(/'A (i)), with 1"~ (i) = a~. 

The determination of the past of the system 5 f on the basis of 
measurements on 5 f now appears as the determination of the state T of the 
system from a given measurement result sequence F~-, say. Formally, the 
question could be restricted to determining the state T of the system from 
a given QM-probability measure E A, say. However, the physical motiva- 
tion of the problem is most apparent with respect to the measurement 
result sequences F~.  

Consider a set of physical quantities E~,_., E '~, represented as spectral 
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or semispectral measure ~--+ ~(~vf)+,  i =  1,..., n. The informational com- 
pleteness of the set {E 1 ..... E n} now means that the measurement result 

E l E n sequences F r ..... F r always determine the (initial) state of the system as 
E l E n f in that case IT ]  ..... = ~T} for any T ~ ( J t : ) ; - .  The state distinction 

power of informationally complete sets of physical quantities is optimal. 
Their measurement result sequences can distinguish between all the states 
of the system. According to Corollary 2.1.4, no single physical quantity A, 
represented as a spectral m e a s u r e  E A, nor any complete set of commuting 
quantities A1,..., A, is informationally complete. The measurement result 
sequences F A, or FAI,..., FA ° of such quantities do not suffice to infer, in 
general, the state T in which the sequences were obtained. The sequence F A 
determines the state T if and only if T is a nondegenerate eigenstate of A 
(Thin. 2.1.5). Results of Thins. 2.1.2, 2.1.8, and 2.1.9 show that a certain 
amount of noncommutativity is always needed in order the measurement 
result sequences would lead to an optimal state determination. This already 
shows that optimal determinations of the past and of the future of the 
system are mutually exclusive. In the next two subsections we shall 
investigate the state distinction power of the important pairs of com- 
plementary position and momentum observables and the components of 
the spin quantities. 

2.3. Example.  The Pauli Problem 

In a footnote on p. 17 to his 1933 Wellenmechanik, Pauli ~tS) remarked 
that the question under which conditions the position and the momentum 
distributions I~l 2 and I~[ ~ define the state function ~p uniquely (modulo a 
phase factor) "has still not been investigated in all its generality." This 
problem is now known as the Pauli problem, and it simply refers to the 
question of informational completeness of the canonically conjugate 
position and momentum observables. 

To some extent the Pauli problem is still open, though there is now a 
good number of important results on that. Here we shall attempt to give 
a systematic presentation of the main questions and results related to this 
problem. 

It is to be emphasized that there is a rich literature on investigations, 
both theoretical and experimental, of, e.g., electron spatial and momentum 
distributions. Usually such investigations do not explicitly refer to the Pauli 
problem but they rather develop theoretical tools for determining in some 
important concrete cases the position and momentum distributions of the 
physical system. The experimental investigations are then considered as 
testing the validity of those, usually approximative, methods. However, the 
Pauli problem appears implicitly in some important cases; e.g. in the 
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investigations of the atomic electron densities, the set of admissible states 
is usually restricted to the energy bound states. In such cases the Pauli 
problem appears in a restrictive form (cf. Remark2.1.1), and the 
experimentally obtained spatial and momentum distributions do then, in 
principle, suffice to determine the state of the system. (Cf. Secs. 2.3.3 and 
2.3.4. See e.g. Williams ~16) for a review of the mentioned investigations.) 

Let us introduce Q and P as the usual position and momentum 
observables in the sense of a Schr6dinger couple. Hence without any 
loss in generality we may identify the Hilbert space ~ as the Lebesque 
function space oct°=~2(E, dx). Position Q is then defined as the multi- 
plicative operator (Q~p)(x)=x~p(x) with the domain dora(Q)= {~peYt~: 
~ id2dE~[~]< ~} ,  and with the spectral projections E°(X)q~ :=~x.~0, 
X~ ~(~) ,  ~p e ~ .  (Here Zx denotes the characteristic function of the set X.) 
The conjugate momentum P may then be defined through the spectral 
projections EP(X)=F-IE°(X)F, X~Y)(E), where F is the Fourier- 
Plancherel operator on Yr. (Here we have used the units h/2n= 1.) 
Then P is nothing else than the usual differential operator (P~p)(x)= 
-i(d/dx) q~(x) with the domain d o m ( P ) = F  t(dom(Q)), and with the 
same spectrum as Q. There are two well known properties of the pair 
(Q, P) which follow from their Fourier connection P =F-~QF. Firstly, Q 
and P satisfy the uncertainty relation as Var(Q, T). Var(P, T)/> 1/4 for any 
T~ ~(Jcf)~. (Here, e.g., Var(Q, T) denotes the variance of the probability 
measure E~.) Secondly, Q and P are complementary as E°(X) A EP(Y) = 0 
for any bounded X, Y~ ~(E). (Here A denotes the meet operation in the 
projection lattice ~(Jt~).) Either one of the previous two 'coupling proper- 
ties' of Q and P implies that the pair (Q, P) is also totally noncommutative, 
i.e., their commutativity domain com(Q, P) is the null space {0}. (For that 
see Lahti and Ylinen, C~7) which contains also references to other relevant 
original papers.) 

2.3.1. The informational incompleteness of both the position Q and the 
momentum P is already given by Thm. 2.1.2. But as the point spectra of Q 
and P are empty we also have the stronger result, based on Thm. 2.1.5, that 
neither Q nor P is informationally complete w.r.t, any state, i.e., for any 
T~ Js(J¢)? 

[~ ]o~ {~}, [I ']~ ~ {y} (13) 

Consequently, neither the position measurement statistics F~ nor the 
momentum measurement statistics /"r e ever determine the state T of the 
system. A similar result is well known also in the classical phase space 
mechanics. 
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2.3.2• Position Q and momentum P are complementary and thus also 
totally noncommutative. Hence the pair (Q, P) fulfills a necessary condi- 
tion, Cor. 2.1.9, for being informationally complete. But as already 
remarked earlier, this pair is not informationally complete. Indeed, if 
~o ~ L2(N, dx) is a unit vector for which q~(x) = I~0(x)l e i°(x~, 0 <~ O(x) < 2re, 
I~0(x)l=lcp(-x)l a.e. x e N ,  O ( x ) + O ( - x ) ¢ e o n s t a n t  (mod2rc) then 
q~l(X) :=lop(x)[ e -~°( xl represents another state than ~o(x), i.e. 
P[qh]  yaP[o] ,  but I~o~(x)12 = I(p(x)[ 2 and I~bl(y)i2= ]~b(y)l 2, i.e., Q and P 
do not distinguish between these states. (Here ~b denotes the Fourier 
transform of (p.) (This example can be found in Prugovecki (6) or in 
Reichenbach, (18) but Corbett and Hurst ~ ~9) contains a wider class of similar 
examples.) The informational incompleteness of the pair (Q, P) means, in 
particular, that the combined measurement statistics (F r  e, F r  e) do not, in 
general, suffice to infer the intial state T of the system. This is contra to the 
situation in classical physics, and it may be taken as an illustration of the 
"surplus information" (von Weizsiicker (2°)) coded in a quantum (pure) 
state when compared with its classical counterpart. 

We shall now turn to study questions posed in Eqs. (10) and (11) of 
Subsection 2.1 for the canonical pair (Q, P). Though these questions are 
related to each others we shall study them here separately starting with the 
first one. 

2.3.3. Let ¢p be a unit vector in dom(lQ[ 1/2)(.~ dom(lPJ 1/2). This condition 
quarantees that both Exp(Q, P[q~]) (:=~idEQe~ol) and Exp(P,P[cp]) 
exist and are finite. (Recall also that e.g., the domain of Q is contained 
in the domain of I Q[ 1/2.) Applying the two-parameter family of unitary 
operators Uqp = e i(pQ-qP), (q, p ) E  ~2, o n  (p we obtain the following subset 
of pure states J-(q~):= {P[Uqpfp]: (q, p)E ~2}. We claim that 

[T]Q'?~J--(~o)={T} forany TeJ--(q~) (14) 

• o - E  ° then the expectations Exp(Q, P[Uqpfp])  q Indeed, If Ep[uq,p,~o ] -- f[Uqp~O], ~ -  

and Exp(Q, P[ -Uq ,p , (p ] )=  q' are the same, i.e., q=q' .  Similarly, the condi- 
P __ P t ion  Ep[uqpq,]-Ep[uq,p,,p ] now implies that p = p ' .  We recall that the set 

{Uqpq~: (q, p) ~ ~2} c ~ is overcomplete (i.e., ~2 [Uqpcp)(Uqp~pldq dp = 
2zcI) and its linear span is dense in ~g' (see e.g., Klauder and Skagerstam(m). 

There is an important application of the result of Sec. 2.3.3 referring to 
the so-called coherent or minimal uncertainty states. Consider the uncer- 
tainty product Var(Q, T). Var(P, T) of Q and P. This product has the well 
known lower bound 1/4 (in the units h/2zt = 1) which is reached exactly by 
the pure states (cf. Thirring, (22~ Remark 3.1.14.2) of the form e[Uqpq)G], 
where q~] is the G a u s s i a n  q)~(X)=g-I/4ff-1/2e -x2/4'r with the variance 
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Var(lq~l 2) = 0 "2. The set ~Y-(q~]) is a special case of the earlier sets 3-(~o), 
q~ e dom(IQt t/2) c~ dom(lPl ~/2), so that 

[T-]O'ec~Y-(~o])={T} for any TE J ( ( p ] )  (15) 

The restriction of IT]  Q'P, T~ J~(W)+,  to [T] °-'ec~ Y(q)~), Te ¢-(~oc}), 
has now a special relevance: If the combined measurement statistics 
( F r  ° ,  F P) is such that Var(Fro)-Var(Fre) = 1/4, then Te Y(e~) with a2=  
Var(FrQ), and it is uniquely determined by the expectations Exp(Fr  e) and 
Exp(Fre). We recall that the set J--(q)~) of minimal uncertainty states can 
also be characterized as the set of maximal information states w.r.t, a 
global Shannon type information functional for the pair (Q, P), (For that 
see e.g., Grabowski, (23) cf. also Remark 4.1.I.) 

2.3.4. We next consider the question of Eq. (1t) in Subsection 2.1 asking 
first whether there is some physical quantity A, with the spectral measure 
E A, such that the triple (Q, P, A) would be informationally complete. 
A physically important class of such quantities A are of the form 

A = f ( Q )  + g(P) (16) 

where f and g are real valued Borel functions in • such that f(Q) + g(P) 
is self-adjoint. We note first that if either f = 0  or g = 0 ,  then 
~ ( E  Q) kA ~ ( E  t') ~- ~ ( E  Q) kJ ~t(E e) w ~(EA),  a s  e.g., ~ ( E  f(Q)) c ~ ( E  Q) for 
any f Thus in order A would increase the state distinction power of the 
pair (Q, P), both f and g must be nonzero. Furthermore, as 

[T]eP,A = [T]Q'P c~ [T]A= [T]Q~ [ r ] ~  [ r ]  A ~_ {T} (17) 

for any Te  J~,(Y{~)~ -, the triple (Q, P, A) is informationally complete w.r.t. 
any set Y - c f , ( ~ ) ~  + w.r.t, which either (Q, P) or A is informationally 
complete. Due to the fundamental role of the pair (Q, P) it seems also 
interesting to ask whether the informational completeness of A w.r.t, a set 

57- + J c J , ( H ) l  implies the informational completeness of the pair (Q, P) 
w.r.t, that set. According to Thm. 2.1.5, IT]A-----{T} if and only if 
reJ (A) .  Assuming that J ( A )  is nonempty, i.e., A=f(Q)+g(P) has 
nondegenerate eigenstates, then also 

IT]  e ' '  n Y(A)  = {r} (18) 

for any TeJ(A).  (This should not be confused with the trivial result 
[T]e'ec~ [ T ] A =  {T} for any TeJ(A).)  Indeed, if P[q~i], Pique] E J ( A ) ,  
and E Q - E Q and e - -  P E f ( Q )  - E f ( Q )  and e[~o,]-- P[ /m~]  Ee[~oi]-Epilog], then also p ie , ] -  p[~oj? 
Eg~ P) _ Eg(P) e~,o,]- er~], so that <q~lf(Q)p~> = <q~jlf(Q)~0j> and <q~il g(P)q~> = 
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(pj[g(P)~pj). But then also (~0 i ] ( f (Q)  + g(e))cPi) ---- ( % l ( f ( Q )  + 
g(P))cpj), i.e., the nondegenerate eigenvalues of A associated with PEq)i] 
and P[~Pi] are the same, so that P[~Pe] =P[~Pj]. (Recall, that for any 
PEep,] e J (A) ,  ~p~e dom(A) = dom(f(Q)) c~ dom(g(P)) so that the expec- 
tations like e.g., Exp(f(Q), P[~o/])= (~p~lf(Q)q~i) are now finite.) 

The relevance of the result of Eq. (18) is similar to that of Eq. (15). 
There may be some physical arguments to restrict the study of [T] °'e, 
Te Jss(Of)~-, to those of the form [ T ] Q ' P ~ J  -, 3_ 07- + Ys(fff)l • If for exam- 
ple, A = f ( Q ) +  g(P) represents the Hamilton operator of the system 5 e 
then Y-(A) consists of the nondegenerate energy eigenstates of 5 e and it 
may be justified to study the position and momentum distributions of 5 e 
just for those states in J ( A )  (cf. the discussion in the beginning of this 
Section). 

This result of Eq. (18) is an illustration of the attempts to find an 
informational completion of the pair (Q, P). Some interesting special cases 
of the operators A of the form in Eq. (16) have been investigated in detail 
in the literature (see e.g., Corbett and Hurst~19)). However, no informa- 
tionally complete triplets (Q, P, f (Q)+ g(P)) are known. In the case 
g(p)=p2 and f(Q)E 5a(fff) + the informational incompleteness of such 
pairs have even been demonstrated (Pavicic(24)). In lack of a general result 
we close this subsection with challenging the reader to (dis-)prove the 
following statement: No (Q, P, A), with a self-adjoint A, is informationally 
complete. 

2.3.5. We continue to study the question of Eq. (11) of Subsection 2.1 for 
the canonical pair (Q, P). A physically relevant informational completion 
of ~ (E  °) ~ ~(E e) in ~(fff)  were of the form N(E °) u N(E e) u ,~(EA), 
where A is a physical quantity (a self-adjoint operator) of the form A = 
f(Q) + g(P). Such an extension may single out some interesting subsets of 
states, like •-(A) in Sec. 2.3.4 or Y-(~o]) in Sec. 2.3.3, w.r.t, which the pair 
(Q, P) is informationally complete, at least in a restricted sense as indicated 
e.g., in Eqs. (15) and (18). However, no such extension is known to lead 
to informational completeness. In the most interesting cases, with A = 
P2-t'- V(Q), V(Q)e 5e(yf) +, the triple (Q, P, A) is demonstrably informa- 
tionally incomplete. Thus it seems natural, or even necessary, to seek for 
the informational completion of the pair (Q, P) in the set g(ovf) of effects 
by replacing the pair (Q, P) with an unsharp pair (Qf,Pg). In studying the 
state distinction property of the pair (Q, P) such a replacement is justified 
by the fact that the pairs (Q, P) and (Qf, Pg) a r e  informationally equiv- 
alent, so that they have exactly the same state distinction power (see the 
following). 

Let f :  R ~ N be a probability density function, or a confidence func- 

825/19/6-2 
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tion (i.e., f(x)>10 a.e., x6 ~, ~ f ( x ) d x =  1). The pair (Q, f )  defines a 
semispectral measure EQi: ~ (~ )  ~ ~(Yt~) + through the formula EQ~'(X) = 
(f* Zx)(Q), X~ ~(~) ,  where f .  Zx is the convolution of the characteristic 
function Zx with the confidence function f (see e.g. DaviesCS)). The effects 
EQs(x) are thus obtained by "smearing" the original spectral projections 
zx(Q) with the confidence function f. E ~s is called an unsharp position 
observable, and it is occasionally denoted by Qs" Similarly one defines 
unsharp momentum observables Pu with any confidence function g. The 
physical relevance of such unsharp quantities have been discussed exten- 
sively in the literature, see e.g., Ali and Doebner, ~5) Prugovecki, ~6) Busch 
and Lahti, ~25) or Busch. (26) 

By construction, Qs and Pg a r e  commutative semispectral measures. 
Thus Thm. 2.1.2 holds for them, too. 

The informational equivalence of the pairs (Q, P) and (Qs, Pg), where 
f and g are arbitrary confidence functions, can now be formulated: 

[T]Q.e= [T] Qs'~g forany T~J~(Jf);- (19) 

As IT] ° ' e =  [T]°c~ IT] P, T ~ ( J f ) ~ ,  the result of Eq. (19) follows if 
only 

[T]Q=[T] °s and [TIe=IT] e~ forany T ~ ( Y f ) (  (20) 

Ali and Doebner (5) have shown this for the pure states P[~o], q~ ~ ~ ,  but 
the extension of their proof to all states is straightforward. 

The informational equivalence of the pairs (Q, P) and (Qs, Pg) means, 
in particular, that all the results concerning the pair (Q, P) hold true for 
the pairs (Qs, Pg) as well. Especially, the combined measurement result 
sequences (Fr  °, FT e) and (FroS, F ~ )  have exactly the same state distinction 
power, and, in general, do not suffice to determine the initial state T of the 
system. 

One of the important advantages of replacing the sharp pair (Q, P) 
with and unsharp pair (Qs, Pg) is that the latter pair may have a natural 
informationally complete extension. We shall study such cases next. 

Consider a pair (Qs, Pg) of unsharp position and momentum for 
which the confidence functions are Fourier-related, i.e., f =  I(])12 and 
g = I~1 = for some q~ ~ ~ .  (Here, again, I~bl is the Fourier transform of ~0.) 
In that case Qs and Pg a r e  obtained as the marginal observables of the 
joint observable 

g:~(~2)-+.L~o(~f'~) +, Zt-->E(Z):=(2~)-~fzlUqpq))(gqpcpldqd p (21) 

where Uqp, q, p e N, is the two-parameter family of unitary operators of 
Sec. 2.3.3, and ~oeYt~. Indeed, then E(Xx N)=EQS(X) and E(Rx Y)= 
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Eeg(Y) for any X, Ye~(R) ,  where now f =  tq~[ z and g =  [~bl e (see e.g., 
Davies(S)). As the ranges of Qy and Pg are now contained in the range of 
E we have [T]°J'eg= IT] e for any T e J s ( ~ ) i  ~. But we also have 

I T ] e =  {T} for any Te ~(o~) i  ~ (22) 

whenever E is the joint observable of Eq.(21) with q~edom(Q)n 
dora(P) such that (q)lUqp~0)~0 a.e. ( q , p ) eN  2. Indeed, if T'e[T] e, 
i.e., tr(T'E(Z))=tr(TE(Z)) for any ZeN(N2),  then by Eq.(21) 
~z (Uqp(p](T'- T) Uqp(O) dqdp=O for any ZeN(N2).  But this shows 
that (Uqp~ol(T'--T) Uep(P)=O a.e., ( q , p ) e N  2. Applying here again 
Eq. (21 ) we obtain ~z (q) I Uq._ q, p, p q~ ) ( Uq,p, (121 (T'  -- T) Uqp @ ) = 0 for 
any Z e N ( N  2) and for a.e. (q, p ) e  R 2, i.e., (q) lgq,_q,p, p~) 
(Uq,p,~o}(T'-T) Uqp~o)=O a.e. (q,p), (q ' , p ' ) eN  2. By assumption, 
(~OtUq, q,p, p~O)¢O a.e. (q'-q, p ' - p ) e N  2 so that (Uq,p,q~l 
( T ' -  T) Uqp~O) = 0  a.e. (q, p), (q', p ' ) e  ~2, i.e. T ' -  T=0.  (This proof is 
essentially due to Klauder and McKenna, 127) but see also Prugovecki, (6) 
Klauder and Skagerstam, ~21) or Werner. (28) 

We show next that this joint observable E of Qf and Pg is 
totally noncommutative. As com(N(E)) c com(~(EOS) w ~(Eeg)) c corn(2) 
(~(g Qf) u ~(El'g)) = com(2)(Qf , Pg) it suffices to show that com~2)(Qy, Pg) 
= {0 }. Assume that q~ e com(2)(QF, Pg), q~ ¢ 0, i.e. (E°I(X) Eel(Y) - E&(y) 
E°I(X))(p=O for all X, YeN(N). Due to the covariance of Qy and Pg 
under the Weyl group (i.e. E°f(X+ q)= UqpE°I(X) U ~  ~ for any Xe  N(N), 
q, p e N) we then have also (Uqp tpI (EQe(x) Eel(Y) - Eel(Y) 
E°~(X))Uqpq))=O for any O e ~ ,  and for all q, peN, X, YeN(R). But 
this implies that com(2)(Qf, Pg) = Jt °, i.e., E°I(X) Eeg(Y) = Eel(Y) EQJ(x) 
for all X, YeN(R),  as the linear span of any {Uqp~: q ,p~N},  ~ J f ' ,  

¢ 0, is dense in ~ .  The result com~2)(Qy, Pg) = ~ is known to be wrong 
(see, Busch, Schonbek and Schroeck~29)). Hence com(~)(Qf, Pg)= {0}. 

Results of Eqs. (19) and (22) now have the following physical content: 
The combined statistics {(Er(XxN),  Er(NxY)): X, YeN(N)} are 
"informationally equivalent" with the combined statistics { (E°r(X), E~( Y)): 
X, YeN(R)}.  In general, they do not determine the initial state 
Te~-:~(~)~- of the system. However, the richer statistics {Er(Xx Y): 
X, YeN(N)} always suffice to determine the state T of the system. This 
result is very important as the joint observable E can be taken to describe 
the approximate path of e.g. an electron. ~26) 

2.4. Example. Spin-l /2 System 

As another example of determining the past and the future of a physi- 
cal system through measurements we consider the spin measurements on a 
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spin-l/2 system. It is well known that spin measurements show up similar 
features as position-momentum measurements but in a much simpler form. 
In this subsection we shall discuss mainly the problem of determining the 
past of a spin-l/2 system along the ideas and results of subsections 2.t and 
2.2. The aspects of measurements which address more directly to the deter- 
mination of the future of the system will again be postponed to Sec. 3. 

The spin-l/2 system has been discussed in great detail in the literature. 
As a standard reference and introduction to the topic we shall take Chap- 
ter 4 in the monograph of Beltrametti and Cassinelli. (2) Measurements of 
unsharp spin quantities have also been investigated in detail, the paper of 
Busch (3°) serving as our main reference on that topic. 

Due to the importance of the spin measurements we shall collect here 
a number of known results in attempting to give a systematic exposition of 
the present problem. 

2.4.1. Preliminaries 

We consider here only the spin quantities of a spin-l/2 system. Thus 
the Hilbert space of the system may now be identified as ~ = C 2. In this 
case, like in any finite dimensional Hitbert space, the classification of the 
operators in ~(~,~), 5~.~(Jf), ~ ( ~ ) + ,  # ( ~ ) ,  ~ ( ~ ) ,  and ~(:g~)~ is 
straightforward, and they all can be constructed from the one-dimensional 
projection operators in a simple way. This means, in particular, that the 
ranges of the £¢(Jtf)+-valued spectral and semispectral measures can now 
also easily be characterized. We shall present first these mathematical 
results here, applying them subsequently to the physical problems in 
question. 

Let ~ =  (~rx, ~r~, a~) be the Pauli spin matrices. Then any linear 
operator on ~ = C ~- can be written as 

A = a  .~+a4I (23) 

where a = (ax, ay; a:) e C 3, a 4 E @, and I is the identity operator on .~. The 
self-adjoint operators on ~,~ are thus exactly those operators A in Eq. (23) 
for which (a, a4 ) eN  4. The spectrum of any Ae~s ( J / f )  is then sp(A)= 
{a4--Ilall, a4q-[lal[ }, which shows that A e Y(~.~) + if and only if (iff, for 
short) Ilall~<a4. In the case of positive operators AeLP(J/g) + it is 
customary to write A = a- g + a4I in the form A = e/2(a'  • g + I) = ~A(a'), 
with A(a ' )=  1/2(a'. g + I), e >/0, [[a'tt ~< 1, in which case the eigenvalues of 
A are c~/2(1- Ila'll) and ~/2(1 + Iia'll). With this convention we have: 

A ~ C , f ( ~ )  + iff A = ~ A ( a ) , ~ > 0 ,  a ~  3,tlalt~<l (24) 

Aed°(J~4 '~) iff A=o:A(a),O<<.c~<~2/(l+lla[l),[laH<.l (25) 
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A e ~ ( ~ )  iff A = ~ A ( a ) , ~ = l , I ] a F l = l ,  o r ~ = 0 ,  o r a = 0 , ~ - - 2  (26) 

A e J ~ ( ~ ) l  ~ iff A=A(a) , l [al l~<l  (27) 

We shall now follow this convention. 
As already remarked previously, the one-dimensional projection 

operators A(~), ~e  ~ := {a e ~3: Ilall = 1 } (which are also the pure states 
of the system) determine the whole class 5¢(Jf); they generate the 
base J~(~¢~)+ (=  conv(Ex(~(H)~-)))  of the positive cone 5g(~ff) + 
( = J - ( ~ ) + )  of ~(~)=Sq(Jc t~)+-LP(~ ,~)  + which again determines 
~ ( ~ ) = 5 ° ~ ( A g ) +  iLP~(~). Indeed, any A(a), Hall ~< 1, can be written as 
A(a) = (1 + [radl)/2A(~)+ (1 -I lal[) /2A(--~) .  The projection operator 
A( - f i )  is, in fact, the complement of A(fi), i.e., I - A ( ~ ) = A ( - C t ) .  

Let A(~), B(/~) ~ g~(~).  As A(~) B(g) = B(/~) A(~) = 1/2(fi × b) .~, and 
as (~ ×/~). ~ = 0  iff fi = +/~, the only Boolean subalgebras of ~ ( ~ )  are 
~(~) = {0, A(fi), A ( - d ) ,  I), ~e  ~ ,  and {0, I). Hence the range of any 
nonconstant spectral measure E: ~¢ ---} ~ ( ~ )  is of that form, i.e., ~ (E)  = 
o~(~) for some de  ~3. The spectral measure E: ~ ( ~ ) - .  g~(.~) associated 
with the unit vector fie ~ and with the spectrum {-1 /2 ,  1/2) determines 
the ~-eomponent of  the spin S~= ½ A ( ~ ) - ½ A ( - d ) = 6 - ~ .  The projection 
operators A(fi), de  ~ 3  are the spin properties of the system. The spin 
property A(6) and its complement property A(~) ~ = I - A ( f i ) =  A(--~) thus 
determine the spin component S~. 

Consider the spin components S~ and S~. If d ~ +/~, then com(S~, S~) 
= {0 }, i.e., any two different spin components S~ and S~ are totally non- 

commutative. 
The structure of the semispectral measures E: ~¢--* g ( ~ )  is not as 

simple as that of the spectral measures E: ~¢-~ ~(A, ~) even in the case 
= C 2. There is, however, a similar characterization for any two effects 

A --- ~A(a) and B = fiB(b) to belong to the range ~/(E) of some semispectral 
measure E: ~ ~ g(~ut~), i.e., to the coexistence of A and B. If A and B 
are coexistent, i.e., A = E ( X )  and B = E ( Y )  for some E:~C~g(o~() ,  
X, Y e A ,  then E(Xc~ Y) is an effect satisfying the conditions E(Xc~ Y)<~ 
E( X)  = A, E( X ~ Y) <~ E( Y) = B, and A + B - E( X ~ Y) = E( X) + E( Y) - 
E ( X ~  Y) = E ( X w  Y) <~ 1. On the other hand, if for given A, B e g(ggY) there 
is an effect C e g ( ~ )  which satisfies the above conditions, i.e. C ~< A, C ~< B, 
A + B - - C  ~< I, then A and B are coexistent. Indeed, then e.g., the map E: 
i--} Ei, i = 1, 2, 3, 4, with E1 = C, E 2 = A - C, E 3 = B -  C, and E4 = 
I -  A - B + C defines a semispectral measure ~({1, 2, 3, 4}) ~ g ( ~ )  with 
A = E ( { 1 , 2 ) )  and B=E({1 ,  3)). (Note that if A, B e ~ ( ~ ) ,  A ~ B ,  then 
necessarily C = 0 ,  and A + B ~ < I  iff f i - ~ + / ~ - ~ = 0 ,  i.e., fi=--/~, i.e. 
AB = BA.) 

This coexistence condition can be explicated further for the case 
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a = fl = 1 with using the special form in Eq. (25) of the effects on J f  = C 2 
and the fact for any two effects C and A, C ~< A iff tr(TC) ~< tr(TA) for any 
T e ~ ( ~ ) ~ ,  where now e.g., tr(TC)=v/2(t.e+l),  with T = T ( t )  and 
C =  vC(e). This then leads to the following geometric characterization of 
the coexistence (cf. Busch(3°)): Effects A(a) and B(b) are coexistent iff 

[la ÷ bll + t la-bl l  ~<2 (28) 

Moreover, any effect C~<yC(c), with ½1[a÷bll~<7~<l-½11a-b/I, is an 
effect satisfying C ~< A, C ~< B, A + B - C ~< I. 

The condition of Eq. (28) shows that a maximal violation of coexistence 
of A(a) and B(b) is expected when a . b = 0 .  There are two special cases 
which deserve to be mentioned separately: (i) If A = A(ti), then the only 
coexistent B(b) are those for which /~.~= _+1; (ii) If A = A ( a ) ~ ( ~ q ~ ) ,  
[La[I < 1, then Eq. (28) can be satisfied in any direction/~ for some b. 

These results do by no means characterize all the semispectral 
measures E: d ~ ~(~'~). They give only necessary and sufficient conditions 
for some pairs of effects A, B~M(~cg) to belong to the range of some 
E: ~ - ~ g ( ~ ) .  However, with respect to sharp as well as unsharp spin 
quantities this characterization is sufficient. We recall (see Busch (3°)) that 
an effect A = ~A(a) is an unsharp property if its eigenvalues satisfy the con- 
ditions: ~/2(1 + Ha[[)> 1/2 and c ( 2 ( 1 -  [La[I)< 1/2. An unsharp property 
A = c~A(a) is an unsharp spin property if A ± =  I - A  = ~A( -a ) .  This 
is the case exactly when c~ = 1. An unsharp spin property A(a) and its 
complement property A ( - a )  determine again a simple unsharp spin 
quantity N ( a ) =  {0, A(a), A ( - a ) ,  I}. The semispectral measure Ea: 
~({  -1/2, 1/2 }) ~ g(J~f), with Ea({ 1/2 } ) = A(a), might again be taken as 
the canonical representation of ~(a).  The condition of Eq. (28) charac- 
terizes now the coexistence of any two simple (sharp or unsharp) spin 
quantities N(a) and ~(b),  or E" and E b, with Ilall ~< 1, Hbll ~< 1. There is 
also a canonical way to construct a joint observable of the coexistent 
unsharp spin quantities E" and E b. Indeed, if A(a) and B(b) are coexistent, 
and if C is an effect with C~<A(a), C~< B(b), and A(a) + B(b) - C<~I, then 
E: ~ (  { 1, 2, 3, 4} ) --, g ( ~ ) ,  as defined previously, is a semispectral measure 
generated by C. The function f :  {1, 2, 3, 4} ~ {1/2, -1 /2}  x {1/2, -1/2},  
with f(1)=(1/2,1/2), f ( 2 ) = ( 1 / 2 , - 1 / 2 ) ,  f(3)=(-1/2,1/2),  f ( 4 ) =  
( -1 /2 ,  -1/2) ,  induces then the semispectral measure E/-: ~({1/2, -1 /2}  x 
{ 1/2, - 1 /2} )  ---, g(Jg), X--, EF(X ) := E(f-I(X)) which is a joint observable 
of E" and E b, i.e., E a and E b are its marginal observables. We denote it as 
Ea, b;C. 

2.4.2. We shall now turn to study the question of informational complete- 
ness of the spin quantities starting with the usual (sharp) spin quantities 
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Sa, or ~(6), h e ~ .  For any T---T(t)E~-'~(~gt~)~ , [ T ] ~ = [ T ] ~ ) =  
[T]  A~) = {T(t') ~ ~(~¢~)~-" ( t ' - t ) . 6  = 0}. Identifying ~ ( ~ ) ~ -  with 
[~3 = {t' e ~3: lit'It ~< 1 } the equivalence class [T] ~ )  appears as the sec- ~<1 
tion of the unit sphere ~3 by the plane {t 'e ~3: ( t ' - t ) . 6  =0}. Clearly, ~<1 
[T]~(~)={T} only when T=A(6)  or T = A ( - 6 )  (cf. Thm. 2.1.5). 
Similarly, [T]S~'s~= [ T ] ~ ) ' ~ ) =  [T ]a~a~  [T]  ~6) is the interval 
defined by the two sections [T] ~ )  and [T] ~ ' ) .  Again, the class IT] s~'s~ 
reduces to {T} only if T is one of the eigenstates A(6), A( -6 ) ,  B(~), or 
B(-/~) of S~ and $6. Thus any two spin quantities ~(6) and ~(/3) are 
informationally incomplete, even though they are totally noncommutative, 
whenever 6-~ +/~ (cf. Cor. 2.1.9). 

The measurement statistics F s~ of a single spin quantity S~, 6 ~ t;13 
3 determines, in general, only one component of the state T(t), t ~ ~ ~ ,  the 

projection of t along 6. For a full determination of t three linearly 
independent directiots are needed, in general. In other words, 
[ T ] ~ ) ' - ' ~ ; ~ ( e )  = {T} for any T~ Y-]=(~F) + iff the vectors fi,/~, and 6 are 
linearly independent. This is the well known result (see, e.g., von 
Weizs/icker ~3~) that no single (usual) spin quantity Se is informationally 
complete and that a minimal informational completion of Sa among the set 
of all (usual) spin quantities is {S~, S~, S~}, with (6x/~)-~¢0.  In other 
words, no N ( 6 ) c ~ ' ( Y f ) c g ( ~ )  is informationally complete and a 
minimal informational completion of N(6) in ~(~f) ,  ~vf = C z, is of the 
form ~ ( h ) u  N(/~)w N(~), with linearly independent 6,/;, and ~. 

As in the case of the Pauli problem it is possible to find other physi- 
cally relevant informational completions of Sa, or ~(6), with replacing the 
spin quantity Sa, or ~/(fi), with some of its informationally equivalent 
unsharp counterparts ~(a), a s ~ 3  We shall discuss these options next. ~<1" 

2.4.3. Consider a (sharp) spin quantity ~(6) and any of its unsharp 
counterparts ~(a), a = ah, 0 < a ~< 1. Clearly, [T] ~a~ = [T]  ~a) for any 
TE 9-~=(~f)~, i.e. ~(6)  and ~(a)  are informationaUy equivalent. The state 
distinction powers of ~(6) and ~(a)  are the same. Consider next two spin 
quantities ~(6) and ~(b). From this we know that ~(6)w~(/~) is not 
informationally complete and it is informationally equivalent with any 
~(a)  u ~(b), with a = a& 0 < a <~ 1, b = b/~, 0 < b ~< 1. Take then any ~ ~ ~ .  
If 6, b, and ~ are linearly independent, and thus also (a x b). c ¢ 0, with 
e = c6, 0 < c ~< 1, then 

for any T~ ~ ( J g ) ~ .  
To determine the initial preparation (state) of a spin-l/2 system we 
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may collect the measurement statistics of three independent (mutually 
exclusive) spin measurements: F r  sa, F s~, F s~. The same can be achieved by 
the statistics (F~;, F sb, FS°), as well, In the first case the spin 6-, ~-, and 
g-measurements are always mutually exclusive and they can never be com- 
bined as a joint measurement of the spin quantities Sa, St,, and Se. This 
means, in particular, that there is no combined spin (gz,/~, 6)-measurement 
to provide any information on the pre- or postmeasurement states of a 
spin-l/2 system. To obtain informationally complete measurement statistics 
F s~, F sE, F s~ we need three mutually exclusive spin measurement program- 
mes which cannot be combined to determine the future of the system. But 
to determine the past of the system via the measurements of the unsharp 
spin quantities N(a), N(b), and N(e) opens also the possibility to deter- 
mine the future of the system, at least to some reasonable degree. Indeed, 
if e.g. Yg(a) and ~ (b )  are coexistent, i.e. 

[la + bl[ + I la -b [ I  ~<2 (29) 

then there are joint observables E "'b;c of ~ (a )  and ~(b)  and if 

Ila + bll + lla - bll < 2 (30) 

(and if lin span{a, b} = []~2) it is always possible to choose E "'b,c such that 
it is informationally complete (i.e., it is possible to choose C = 7C(e) such 
that (a x b) -e  ¢0) .  For the given directions fi and /~, a = a& a >0,  and 
b = b/~, b > 0, may always be so chosen that Eq. (30) is satisfied. The quan- 
tity ~(e )  above may then be taken to be the one associated with the chosen 
lower bound C of A(a) and B(b) which generates the joint observable 
E "~b:c. Then clearly 

[ T ] ~ ) ~ t , ~ )  = [ T ] ~ C ' ~ b ~ J  ___ [r]E"'~c= {T} 

for any T6~-'j~(.Y¢~)~. What is gained here is, indeed, that the informa- 
tionally complete measurement statistics can be obtained not only through 
three mutually exclusive spin measurements but also by measuring a single 
unsharp observable E "'b:c. A (preparatory) measurement of the observable 
E "'b;c leads to a postmeasurement state of the system (the determination 
of the future of the system) in which we also have probabilistic information 
on the three independent (unsharp) spin quantities N(a), ~(b),  and ~(e),  
as well as on the three mutually exclusive (sharp) quantities S~, St,, and St. 
Clearly, the observable E "'b;c is again totally noncommutative. Finally we 
remark that Busch ~32~ discusses realizable proposals of informationally 
complete spin measurements. 
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2.5. Remarks  on Higher Spin 

We note first that for no value s (>0)  of spin a pair like {Sx, ST} is 
informationally complete, although the necessary condition of 
Corollary 2.1.9, in always satisfied: com(E s-~, E sT) = Vs, with v s = 0 for half- 
integer s and v, = 1 for integer s. In the following we shall specify for which 
values of s the triple {S~, ST, St} is informationally complete. 

2.5.1. Theorem 

Let ~s (=  Cn) be the n-dimensional Hilbert space hosting an 
irreducible unitary representation of the rotation group SO(3) (n = 2s + 1, 
s = 0 ,  1/2, 1, 3/2,...) with the self-adjoint generators Sx, ST, S~. The set 
{Sx, Sv, S:} is informationally complete if and only if s ~< 1. 

Proof The case s = 0  is trivial. The case s =  1/2 was treated in 
Sec. 2.4.2. For the remaining cases we proceed as follows. Informational 
completeness of the set 50 = ~ ( E  sx) w N(E  s~') ~ N(E  s'-) ~ 50,(~s) is 
equivalent to the equation span(50)= 50~(~). In fact, if this equation 
holds, then clearly 50 is informationally complete. Conversely, if L~ = 
span(50)¢L~e~(~) then choose an orthonormal basis {L;li---1,..., N} of 
LP,(~,) such that {L~li = 1,..., No < N} is a basis of 5¢. Recalling that now 
~-~(~) = ~ . ( ~ )  we then have for any T =  z tiLi and L = 2  ljLj, tr(TL) = 
Z~ t j l j t r (L iL j )=~ t~ l~ .  Thus, for any 0 ¢ T ~  ±, t r ( T L ) = 0  for all 
L e A°; in particular t r (T)=0,  as I e  £~. Thus LP, and therefore 5 °, is not 
informationally complete. Now we observe that 50 is in the span of the set 

2P= {E~lv=x,  y, z; i= - s ,  - s  + 1 ..... s -  1, s} 

(Here we use the notation E~--ES~({i}).) Moreover this set  is already 
spanned by 

~o = 5~ w {I}\{E~ 0, E~, E~0}, ioe {-s,... ,  s} fixed 

500 contains N =  3 n -  2 elements, and we find: 

n = 3: N =  7 > d im[50 , (~) ]  = 6 

n = 4: N =  10 = dim [50,(2tf3/2) ] = 10 

n/> 5: N <  dim [50~(J4~)] 

This shows that for n ~> 5 (i.e., s >t 2) the set 50o cannot be informationally 
complete. We turn to the remaining two cases. 

Case n = 3. We show that the sel ~o = 50o\{I} = {E~, EL~, E~', EL~, 
E~, E ~ }  is linearly independent. Assume that 

~xE~+flxE':I+~yE~+fl .vEY_~+~E~+fl~E~_~=O (31) 



658 Busch and Lahti 

This is of the form 

~(S) = f(Xx) + g(Sy) + h(S~) = 0 

Applying rotations about the x, y, and z axes by an angle rc shows that the 
functions f g, h are symmetric (functions on { - s ,  - s +  1 ..... s - 1 ,  s}). 
Thus 

f ( S ~ )  = c~xE[ + BxEX_~ = e:,(E~ + EX_l) ~ -  o~xS ~ 

g(Sy) = ~ y E (  + flyEL1 = O:y(E;+ EZ_,) = C~yS 2 

Applying rotations by an angle ~z/2 yields e~ = % = e: = a. Therefore, 

~ ( s )  = a(S~ + s~ + s } )  = o 

But the commutation relations for the S~ give the well-known relation 

S 2 + S  f + S  2 = s ( s +  1)I ( # 0  f o r s > 0 )  (32) 

Therefore a = 0, and all the coefficients in Eq. (31) must vanish. 

Case n = 4. Introducing the notation P~ = E~/2 + E2~/2, P~ = 
E~3/2 + E~3/2 (v = x, y, z), Eq. (32) reads (note: s = 3/2): 

9(p~ + p~, + p ~ ) +  ¼(p~ + p~, + p~l) = ~ I  

Substituting P~ = I -  P~ yields: 

0 = 3 I -  2[P~ + P~' + P~] 

which shows that the set {/, E3X/2, E ~ E y E -~' E~3/2, E ~ --3/2, 3/2, --3/2, --3/2} iS 
linearly dependent; therefore its extension to any set of the form &a 0 (above) 
is linearly dependent, too. i 

Referring again to Theorem 2.1.8 or Corollary 2.1.9, we remark that 
the informational completeness of {S~, Sy, S.} for spin 1 goes along with 
dim[com(E x, E y, E~)] =0.  Thus so far we encountered only instances of 
informational completeness in connection with total noncommutativity. 
(Note added: in a forthcoming paper it will be shown that total 
noncommutativity is a necessary condition for informational complete- 
ness. ) 

3. STATES OF MAXIMAL INFORMATION 

3.1. General Considerations 

We shall now turn to the problem of determining the future of a physi- 
cal system 5 e on the basis of a measurement performed on it. We remark 



The Determination of the Past and the Future of a Physical System 659 

first that the pure states P[cp], (p ~ ~ ,  of 5 ° are its maximal information 
states in the folowing obvious sense: 

P[q)] --=A { P e  ~(Jt~) : (qo [ Pq o ) = 1} 

( = A  {EeW(~f)  : (qolE~o)= 1}) 
(33) 

In other words, the pure states of 50 are in one-to-one onto correspondence 
with the maximal sets of properties (effects) which the system may posses 
(with probability equal to one) at a time. (Cf., e.g., Beltrametti and 
Cassinelli, 12~ Piton, (33) or Mittelstaedt. (34'35)) An optimal determination of 
the future of 50 is thus obtained whenever 50 is prepared in a pure state. 
It is one of the basic assumptions of quantum mechanics--consistent with 
the quantum theory of measurement-- that  50 can be prepared in any pure 
state (cf. below). Here we shall be concerned with the question of preparing 
50 in pure states with some particular properties. To motivate our 
approach we shall start with considering the sequential measurements of 
pairs of physical quantities A and B within the quantum theory of measure- 
ment. 

Assume that a measurement (J~fM, AM, TM, V) of a quantity A on 50 
in a (initial) state Ti is performed. This measurement induces a transforma- 
tion of the state of 50: Ti ~ IAv(R)Ti, where IA(R)T~ is the state of 50 after 
the A-measurement but before reading of the actual measurement result. 
Assuming that the actual measurement result is the set X e ~ ( R ) ,  then 
tr[TiE~(X)] ~0 and TF-tr(TiEA(X)) 11A(X)T~ is the final (or post- 
measurement) state of 50. (Here the possibility of "reading the actual 
measurement result" shall not be questioned, at all. Beltrametti et al. (1) 
contains a systematic analysis of this question and there can also be found 
references to some other relevant work.) The probability that the measured 
quantity A has the measured value X in the postmeasurement state Ty 
of 50 is now tr(TuEA(X))=tr(TiEA(X))-ltr(I¢(X)2Ti), which shows 
that tr(TIEA(X))= 1 if and only if tr(I¢(X)2Ti)=tr(I¢(X)Ti) (as 
tr(T~EA(X)) = tr(IAv(X) Ti) v a 0). Thus a measurement (~M,  AM, TM, V) 
of a quantity A on 50 may or may not leave the system 50 in a state Tf in 
which the measured quantity has (with probability equal to one) the 
measured value, i.e. tr(TfEA(X))= 1. Also, T s may or may not be a pure 
state. 

It is a basic result of the quantum theory of measurement that any 
discrete quantity A, i.e., a quantity with a pure point spectrum, admits this 
type of pure preparatory measurements (see e.g. Beltrametti et aL,°)). The 
von Neumann-Liiders measurement of (a discrete quantity) A is the well 
known prototype of such measurements. In particular, any property 
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P ~ @ ( H ) ,  like p=EA(X) or P = P [ c p ] ,  q~ovt~, defines such a quantity 
through the range {0, P, P~, I}. 

Assume next that a measurement of the quantity B follows the earlier 
A-measurement, which lead to the state Tf. Then tr(TfE~(Y)) -1 
IBw(Y) 7~ = tr(Iw(B y) iv(X Ti ) 1 I~.(Y) I~,(X) T i -  T is the postmeasure- 
merit state of 5 p with the condition that the B-measurement (with the 
instrument I~v ) lead to the result Y e ~ ( R )  (so that, again, tr(TIEB(Y)) 
¢0).  Again, tr(TEB(Y))=I if and only if tr(I~v(Y)2Iav(J()T~)= 

tr(I~r(Y) IAv(X) T,-) ( ~ 0), and the state T may or may not be a pure state. 
We come now to the following question: Under which conditions does 

the sequential measurement ("first the A-measurement with the result X, 
then the B-measurement with the result Y") lead the system to a state T 
in which EA(X)= EBT(Y)= 1. A necessary and a sufficient condition is that 

.~(T) =EA(X) A E~(Y)(fff) (34) 

where EA(X) A EB(Y)(Jf) is to be nonzero. If the projections EA(x) and 
EB(Y) are disjoint, i.e., EA(J()/x EB(Y)=O, then Eq. (34) can never be 
fulfilled. This is most typical for complementary pairs of observables, like 
position and momentum or the different spin quantities of a spin-t/2 
system. For such quantities we may still ask what is the maximal informa- 
tion that can be obtained on them e.g. with this type of sequential 
measurements on Y. This is exactly the question which we aim to study 
here. To answer this type of question a suitable "information functional" 
T~--,INFO(EAr(X), EBr(Y)), or T~-~ INFO(E A, E~r), should be given with 
respect to which the posed question could be analyzed. Here we shall be 
concerned with the problem of information on the values of the quantities 
A and B so that we consider a functional of the form T~--~ INFO(EA(X), 
E~-(Y)), the so-called local information functionals, and for that we simply 
choose the map 

T ~-~ tr(TE A (X)) + tr( TEe(Y)) (35) 

A state T06Y~.(Jf)~ is a state of maximal information of A and B 
associated with the value sets X and Y if tr(To(EA(X)+EB(Y)) = 
sup{tr(T(EA(X) + Es(Y)): T~ ~-;~(Cgf); ~ }. If such a state T O exists, and if it 
is pure, i.e. To = P[q~], for some ~0 ~ ~ ,  then the positive outcome of the 
yon Neumann-Lfiders measurement of the elementary quantity {0, P[rp], 
P[rp]±, I} would lead the system into a (pure) state To= P[~0] in which 
the information on the values X and Y of A and B is maximal. If 
EA(X) A EB(Y) = 0, then clearly the question of the existence of such a To 
becomes relevent. Theorem 3.2.1 will give necessary and sufficient condi- 
tions for the existence of such states To as well as a complete description 



The Determination of the Past and the Future of a Physical System 661 

of them. The results will then be illustrated with the position-momentum 
(See. 3.3) and the spin quantities (See. 3.4). 

3.2. M a t h e m a t i c a l  Inter lude  

In this subsection we shall present some results from the operator 
theory which are relevant for the problem of the existence of the maximal 
information states. When no explicit reference is given here the results can 
be found in the standard texts like Halmos, <36) Dunford and Schwartz, ~7~ 
or Kato. ~38~ 

The map 5 ° ~ ( ~ ) ~  ~(Jt~) *, A ~-~ tr(-A) is an isometric isomorphism. 
In particular, this means that the norm of an A ~ ( ~ ) ,  IIAll :-- 
sup{ []Aq~]]: ~p e ~ }, equals the norm of the functional T~+ tr(TA), i.e., 

I I AI] = sup { I tr( TA )l: T ~ ~ ( J f ) ,  l] TIll = 1 } (36) 

The norm of A c ~ . ( ~ )  can also be given e.g. by its numerical range or by 
its spectrum. They all are of use for us. 

The numerical range of A is, by definition, the set w(A) := { (q) iA~0): 
~0e-~l} which is a subinterval (as a convex set) of [-l lAl[,  [tAlk] (for 
( ( p i A ~ 0 ) ~  and I(~0]Acp)l ~< HAll for any ~0~5fl). Let v(A)= {tr(TA): 
T ~  + Ys(~'¢~)l }, so that w(A)cv(A) for Ex(~(~,~)~-)= {P[~0]: ~ o e ~ }  and 
tr(P[cpJA)=(q~lA~o). From Eq. (36) v~e get that also v(A)c[-IIAII, 
IIAll]. Moreover, it is a (r-convex set of reals, for ~ ( s f ) i  ~ is a a-convex 
subset of ~( j4f)  (in the II" II ~-topology). Let t e v(A) so that t =  tr(TA) for 
some Te~(~4~)( .  According to Hadjisavvas (4) (Thin. 3) T has a decom- 
position T=~o~iP[~pi], ~i>0,  5 ~ = 1 ,  ~Oi~l, such that (q~,lA~p~)=t 
for any i (cf. p. 2-2). Hence tew(A), as well. Thus we have the result: 

w(A) = v(A) (37) 

In particular, this result shows that w(A) is not only a convex set but also 
a a-convex set of reals. It is important to note that the set v(A) (=  w(A)) 
need not be a closed one. Indeed, if e.g. A = EQ(( -  o% x ] ) +  EP(( - oo, y]) ,  
x, y e ~ ,  then v(A)= w(A) is the open interval (0, 2) (cf. subsection 3.3). 

The spectrum of A is, by definition, s p ( A ) : = { 2 e C :  A - 2 I  is not 
invertible}, and it now equals the support of the (real) spectral m e a s u r e  E A 

of A, i.e. sp (A)=  supp(E A) :=N {Xe~J(N): X closed, EA(X)=I}. For 
bounded self-adjoint operators A the spectrum sp(A) is a compact subset 
of N. Let Spp(A) denote the point spectrum (the eigenvalues) of A. Then 
clearly Spp(A)c w(A), but only sp(A)c  w(A), where w(A) is the closure of 
the set w(A). 
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a s  

In addition to Eq. (36) the norm of A E ~ ( ~ )  can now be expressed 

(a) ]]AH =sup{lt]:  t~v(A)} 

(b) =sup{la]:a~w(A)} (38) 

(c) = max{12[: 2 ~ sp(A)} 

The equality of Eq. (38c) shows, in particular, that at least one of the num- 
bers _+ I]AII belongs to sp(A) (, and thus IIAll esp(A) whenever A >~0). We 
note also, that if A is compact then IIAII = 1211, where 21 is the maximal (in 
absolute value) eigenvalue of A. However, in general neither -[IAll nor 
flAIl need be an eigenvalue of A. (Cf. the example A=E°( ( -oo ,  x])+ 
Ee((-oo, y]),  x, y ~ ,  where IIA]I =2,  but spp(A)~w(A)=(O, 2).) 

Assume that lal = IIAII for some aew(A). Then a is an eigenvalue 
of A. Indeed, if a =  ((plA(p), ( P ~ I ,  and [1All = lal = I((plAcp)I ~< 
Ilq~ll IIA(pll ~< ]IAI[, we have, in particular, that I{~olA~o)[ = II~oll IIAq~H. But 
this is known from the Cauchy-Schwarz inequality to be the case only if 
A~o = 2q~ for some (eigenvalue) 2. Now )o = ((p 12q~) = (q~ I A~o) = a, which 
shows that a e Spp(A). (Consequently, then IIA H, or -I]A II, is an eigenvalue 
of A.) 

Let k e r n ( A -  21)= EA({2})(H) be the eigenspace associated with the 
eigenvalue 2espp(A). If (q~i) is a sequence of unit vectors in kern(A-21) ,  
then tr(TA) = 2 for any T = ~2 c~iP[q~], ~i >/0, Z ei = 1. On the other hand, 
if T e ~ ( ~ )  [ is such that t r (TA)=2  then T can be decomposed as 
T=Z/~/P[~bi] ,  /~/>0, 32/~i= 1, such that 0 ; ~ k e r n ( A - J . I ) n  ~ for any i 
(cf. again Hadjisavvas, (4) Thm. 3). Together with the earlier results, this 
now shows that for any A E 5e~(H): If t al = I IA II for some a ~ w(A) = v(A), 
then a=tr(TA) exactly for those T e ~ ( ~ ) ~ -  for which N ( T ) c  
kern(A - aI). 

The following theorem, based on these results, is useful in studying the 
existence of maximal information states of pairs of physical quantities. 

3.2.1. Theorem 

Let A ~ £,e(~) +. The following four conditions are equivalent: 

(a) tr(ToA ) = sup{tr(TA): T~ ~(J f )~-  } for some T o s J s ( ~ ) ~  

(b) [IA II is an eigenvalue of A 

(c) IIAltew(A) 
(d) IIAJI ev(A) 

If one of these conditions, and thus all are satisfied, then a state To satisfies 
(a) if and only if ~(To) c kern(A -- 4[A[[ I). 



The Determination of the Past and the Future of a Physical System 663 

In this work we shall apply Theorem 3.2.1 to study the existence of 
maximal information states for some pairs of projection operators, i.e., 
A=P+R,  P, RE~(o~), and for some pairs of effects, i.e., B=E+F, 
E, F s  g ( ~ ) .  Before entering the physically relevant special cases we shall 
point out some general features of such cases. First of all, both A and B are 
positive operators and their norm is at most 2. Hence their numerical range 
is in [0, 2] .  

Let A=P+R,  P, Re~(2/f). Clearly, IIP+RI[ = 2 ~ w ( A )  if and only 
if P A R ¢ 0 (and 0 e w(A) if and only if P~ A R i ¢ 0). On the other hand, 
I I P + R I I = I  if and only if ( P A R = 0  and) P ~ R  ±. Then kern 
((P+ R ) - I ) =  P ( ~ ) O R ( ~ ) .  Thus the nontrivial case occurs only if the 
projection operators P, R e ~ ( J f )  are disjoint (i.e., P A R = 0 )  but not 
orthogonat (i.e., P ~; R±). In that case lIP+ RII may or may not belong to 
w(A). Nontrivial examples of both cases will appear next. 

Let B=E+F, E, Feg(~) .  Again, IIE+FII=2ew(B) if and only 
if Eq)--q~ and F~o=q~ for some ~0e.~.  In that case 1.b.{E,F} 
( := {Geg(2/f) :  G<~E, G~<F})¢  {0} (recall, that g ( ~ )  is not a lattice), 
but the converse need not hold now since an effect G need not have the 
eigenvalue 1. (Similarly, 0 e w(B) if and only if kern(E) n kern(F) ¢ {0}.) 
In the case of effects E, Fsg(~g,f/), the nontrivial case thus occurs when 
k e r n ( E -  I) n k e r n ( F -  I) = {0}. 

3.3. Example. The Posit ion-Momentum Pairs 

As the first physical application of the results of the previous section 
we shall study the existence of the maximal information states of the spec- 
tral projections E°-(J() and E?(Y) of Q and P, and of their unsharp coun- 
terparts EQ:(X) and Eeg(Y), associated with the given sets X, Ye ~(N). 

The degree of commutativity of the spectral projections of Q and P 
have been investigated in detail (see e.g. Lenard, (39) Busch and Lahti, (4°) 
and Busch, Schonbek, and Schroeck(29)). Also the question of the existence 
of the maximal information states for the pairs (EQ(X), E?(Y)), 
X, Ye ~ ( ~ )  has already been discussed (Lahti, (41) Busch and Lahti (42)) so 
that here we may be content with stating the relevant results, only. 

Let 35, Y e ~ ( N )  be bounded. This is a nontrivial case for now 
EQ(X) ̂  Ee( Y) = E°(X) j- ̂  EP( Y) = EQ(X) A Ee( Y)a = 0 (though, of course, 
all the involved projection operators are nonzero). In this case Ee(X)±A 
EP(Y)±¢0  so that 0ew(A),  with A=EQ(X)+EP(Y). Moreover, ItAll 
( <  2) is an eigenvalue of A, so that w(A)= [0, [IA II ] for any A = EQ(X)+ 
EP(Y) with bounded X, Ye~(N) .  According to Thin. 3.2.1, any 
To e J~,(ovg) ~ such that N(T0) c kern(A -- II AII I) is now a maximal infor- 
mation state for Q and P associated with the value sets X and Y. 
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The eigenvalue I[EQ(X)+EP(Y)II and the corresponding eigenspace can 
also be constructed explicitly e.g. via the compact operator B =  
Ee(Y) EQ(X) Ee(Y): ]IEQ(X) + Ee(Y)JJ --- 1 + 20, where 2o 2 is the maximal 
eigenvalue of B, and kern((EQ(X) + Ee(Y)) - (1 + 2o)1) = kern(B - 2o21) c~ 
EP(Y)(X/f). We emphasize that this result holds true for any bounded value 
sets X and Y. Thus, though EQ(X)/x EP(Y) = 0, and EQ(X) ~ EP( Y)±, for 
any bounded X, Ye~(R) ,  the system Y may always be prepared in a pure 
state P[,~00], say, in which tr(P[,q~0] Ee(X)) + tr(P[,p0] EP(Y)) 
(=  1 + 20, 2o = 2o(X, Y)) is maximal for given X, Ye N(R). (We note also 
that for any e > 0 there are bounded X, Ye ¢J(R) such that 1 + 2o > 2 - e  
(Maczynski~43)). 

The other interesting case are the pairs (E°-(X), Ee(Y)) associated 
with the half-lines like I ' =  ( - 0 %  x], Y= ( - o %  y],  x, y e N ,  for such 
projection operators are totally noncommutative, i.e. EQ(X)/x Ee(Y)=- 
EQ(X) ± A EP(Y)= EQ(X) /x E e ( Y ) I =  EQ(X)J. A EP(Y) I=  0. In that case 
w(EQ(X) + EP(Y)) is the open interval (0, 2), so that JIEQ(X) + Ee(Y)IJ = 2 
and no maximal information state exists now. It may be appropriate to 
note also that w(EQ(X)+ EP(Y))= [0, 2], whenever X and Y are periodic 
sets, X--X+d, Y= Y+ 2~/d. They are exactly those (nontrivial)spectral 
projections of Q and P which commute (Busch, Schonbek, Schroeck, (29~ 
see also Ylinen(44~). 

In studying the Pauli problem in Sec. 2.3 it turned out that an infor- 
mational completion of the pair (Q, P) may be obtained with replacing this 
pair with an informationally equivalent pair (Qs, Pg)" Thus it becomes 
important to ask whether such an informational completion of (Q, P) also 
leads to an increase in the information on the values of such quantities. To 
answer this question we shall next attempt to compare the numbers 
(q~l(Ee(X)+ Ee(Y))q)) and (qo[(EeJ(X)+ Ee~(Y))q~), q~eYt~, of the 
pairs (Q, P) and (Qz, Pg) associated with the value sets X, Y ~ ( ~ ) .  

Let A = Ee(X) + Ee(Y) and B = Eee(X) + Eel(Y), X, YE N(R). 
Clearly, w(A) as well as w(B) are contained in the interval [--0,2]. If 
X, YeN(R)  are bounded, then w(A)= 1-0, [[AI[], with ]IAII = 1 + 20 < 2. We 
shall demonstrate first that for bounded X, YeN(R)  also 2~ w(B). In fact, 
we shall show here that w(B)c[O, tlAII] in any case, i .e.  for all 
X, YeO](R). But the case 2¢w(B), with bounded iV, Y~N(N), is of 
interest in itself, as now 1.b. {EeZ(X), Eeg(Y) } # {0} (with Fourier-related 
confidence functions f and g), though Ee(X)/x Ee(Y) = 0. The fact that 
2 $ w(B) implies that the system 5 ° cannot be prepared in a state in which 
it would have (with probability equal to one) the unsharp (coexistent) 
properties E°-J(X) and Eee(Y). Assume now that 2ew(B). Then 1 is an 
eigenvalue of both EQs(X) and Eel(Y), with a common eigenvector tp, 
say. But 1 is an eigenvalue of EQI(X)=(f*)~x)(Q) if and only if the 
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corresponding spectral projection of ( f*zx) (Q)  is nonzero, i.e. 
OCE(S*s~)+QJ({1})=EQ((f *zx) ' ( { 1 } ) = E Q ( { x e ~ :  (f *Zx)(x)=l}). 
Similarly, El'( { y e ~: (g • X ~)(Y) = I } ) @ 0. As j" f :  .[ g : 1, these relations 
show that s u p p ( f ) = X ,  and s u p p ( g ) c Y  (as e.g. (f.)~x)(X):= 
~ e f ( x -  y) )~x(Y) d y = ~ x f ( x -  Y) dy a.e. x e  R). But 1.b.{EQe(X), EP~(Y)} 

f = t0~ for any bounded X, Y~N'([R) whenever f and g have compact 
supports (Busch(45)). Thus 2ew(B)  leads to a contradictory result 0 ¢  
P[gs] ~l.b.{EO/(X), EP,(Y)} = {0}. 

Assume next that 0 e w(B). Then, as shown previously, one obtains: 
s u p p ( f ) c ~ \ X ,  and s u p p ( g ) = ~ \ Y .  If X and Y are bounded, and if 
supp(f)  = supp(g) = 7~, as was the case in See. 2.3.5, then 0 ¢ w(B), though 
OE w(A). 

There is no general result on the order of magnitude of the numbers 
(4 o I A~p ) and (4o I B4O ), with A and B as earlier. However, it turns out that 
the introduction of unsharpness cannot increase the maximal information 
on the values of the complementary position and momentum observables 
Q and P. In fact, w(B)c [0, ]IAII] for any A =EQ(X)+Ee(Y) and B =  
EQ~(X) + EPg(Y), X, Ye.~(R). Indeed, for any 49 e ~6~, 

< 4o I B4O > = ( 4O I (E°¢(X) + EP"(Y)) 4O ) 

= f ~ f  f (x)  g(y)(4OI(Ee(X+ x)+ EP(Y+ y))4O) dxdy 

(" f" 

~< j~j f(x)g(y)tlAIl dxdy<~ltAtl, for 

EQ(X+x) +EP(Y+ y) 

= eiXPEQ(X)e- ixe + eiVQEP(y) e- iyQ 

= eexPeiYQ[EQ(X) + Ee( Y)] e-'Y°e-iXe, x, y e ~, and 

(4o t (Ee(X+ x) + E"(Y+ y))4O) 
= (4OIeiXPeiYQ[EQ(X) + EP(Y)] e iyQe-iXP4o ) 

<<. IIEQ(X)+EP(Y)tl for any 4 o e ~ ,  and for allx, y e  

As an important special case of the above result we obtain the 
following: 

w(A)= [0, tlAII] and w(n)~(O, IIAII] 

with A = E°~(X) + Ee(Y), B = E°J(X) + Eel(Y), whenever X and Y are 
bounded value sets and s u p p ( f ) =  supp(g)= ~. With this result we close 
our discussion of the position-momentum example. 

825/19/6-3 
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3.4. Example. Spin-~ System 

We continue to study the spin quantities of a spin-½ system of Sec- 
tion 2.4. Now the Hilbert space W = C z is finite dimensional so that the 
operators A eA~(Jg) + are compact, and thus the maximal information 
states are exactly those states To for which Y/(T0) is in the eigenspace of the 
maximal eigenvalue LtAI[ of A. In spite of this trivial character of the 
problem it seems worthwhile to explicitly give the maximal information 
states associated with the complementary spin properties A(fi), B(/;), 6, 

3 b~ ~ and their unsharp counterparts A(a), B(b), a, b e  ~<l-  
From Sec. 2.4.1 one immediately gets that w(A(6)+B(D))= 

{l + ½t . (6 + D): tiff3.<1}, and []A(6)+B(~)II=I+½116+bI],  which is 
attained by the pure state T = ½(i-6 + I), with i = (fi +/;)/lla +/;II. Clearly, 
IIA(a)+B(/;)I] = 2  only if ti=/). E.g., for the two orthogonal spin com- 
ponents Sx and Sy, IIA(i2)+B(j~)I[ =1  +,,//~, with i , j= + , - ,  and the 
corresponding (pure) state of maximal information is T=½(ix/-~ax+ 
jx//~ay + I), i, j=  +,--. 

In Sec. 2.4.3 the introduction of unsharpness was again seen to lead to 
an informational completion of a pair of (complementary) spin quantities 
~(~)  and ~(/;) (or Se and S~), fi, b e  ~ ,  6./~ • +t .  Consider thus an 
unsharp (informationally equivalent) counterpart (~(a),  ~(b) )  of (~(~), 
~({))), with a=afi, b = b/~, 0 < a ,  b <  1. Again, w(A(ia)+B(jb))= {1 + ½t. 

3 ( i a + j b ) :  t ~ l } ,  i , j= +, - ,  so that [[A(ia)+B(jb)[] = 1 +½[[ia+jb[!,  
which is again attained by the pure state along the vector i a + j b ,  
i , j = + , - - .  

In case of the position-momentum pair we observed that with intro- 
ducing unsharpness the maximal information on the values of the quan- 
tities cannot be increased. In the present case this is, however, possible. 
Indeed, e.g., the condition llA(a)+ B(b)ll > IIA(d)+ B(/~)]I can be satisfied 
with an appropriate choice of the directions fi and/)  and of the lengths of 
a and b even together with the coexistence condition t[a + bl[ + l [ a -  bl[ ~< 2. 
(For example, the case ft./~ = -0.98, a = 0.8, b = 0.6 is such.) In the impor- 
tant case of orthogonal spin quantities (fi . /~=0) we always have 

IlA(ia)+B(jb)ll = 1 + ½ x / ~ + b Z ~  1 + x/~2! = IlA(ifi)+B(jb)[[, i , j= +, - .  
The coexistence condition (x/ax/~b2~< 1) and the condition for the 
existence of an informationally complete joint observable of N(a)  and 
~(b)  ( ~ + b 2 <  1) then give IIA(ia)+B(jb)l[ < IIA(i6)+B(H))[[ for all 
i , j = + , - - .  
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4. THE PAST AND THE FUTURE IN QUANTUM 
MEASUREMENTS - -  A NEW M O D E  OF COMPLEMENTARITY 

According to Pauli C15) quantum mechanics might have been called the 
theory of complementarity. This was to emphasize the importance of the 
idea of complementarity in the foundations of quantum mechanics. Several 
aspects of quantum mechanics which are related to Bohr's intuitive ideas 
on complementarity have been discussed in detail in the literature. For 
example, the notion of complementary physical quantities has been 
analyzed carefully and its measurement-theoretical content is now well 
understood (see e.g. Busch and Lahti, (46) and Lahti (47) which also contain 
references to other relevant work). The investigations weighing the 
possibilities of defining the state of a physical system, on one hand, and of 
making observation on the system, on the other hand, formed the central 
theme in Bohr's analyses on the viewpoint of complementarity 
(Bohr(48"491). The determination of the past and the future of a physical 
system in quantum mechanics exhibit features which suggest to formulate 
a new quantitative mode of complementarity, and which may be related to 
the intuitive ideas of Bohr on the complementarity between definition and 
observation. In fact, defining (preparing) a physical system in a pure state 
implies that it is isolated from its environment. Therefore, strictly speaking, 
it cannot be observed, since an observation entails an interaction which 
amounts to suspending the system's isolation. Rather than developing here 
a systematic theory, we shall be content with illustrating the "complemen- 
tary but exclusive features" (Bohr (48)) of the past and the future of a 
quantum mechanical system, referring to and summarizing the results of 
Sections 2 and 3. 

A measurement of a physical quantity yields values which provide 
information on the state of the system. In classical mechanics 
measurements can always be devised such that they do not "disturb" the 
system. The observables of the classical systems assume objective values at 
all times. In contrast to this, quantum mechanics has taught us (a) that 
prior to the measurement a physical quantity need not be objective, i.e., it 
need not have a value (namely if the premeasurement state is no eigenstate 
of the measured quantity), and (b) that in general a measurement will 
change the state of the system. Furthermore, as we have seen in Sec. 2, a 
single measurement result does not generally allow to infer the (initial) 
state the system. This leads to the following distinction of the purpose a 
quantum measurement can serve: a measurement yields a value of a physi- 
cal quantity, and it is intended to provide information on the state of the 
system; both the values as well as the inferred states may refer to either the 
past (premeasurement situation) or the future (post measurement situa- 
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tion). Therefore we distinguish between the determination of the past 
values (DPV) or state (DPS) and the determination of the future values 
(DFV) or state (DFS). We shall see that the determination of the past 
(DP) and the determination of the future (DF) possess complementary 
features. 

Corresponding to the above two points (a) and (b) there are two 
mutually exclusive requirements to be imposed on quantum measurements: 
(1) the objectification of the measured quantity (which will amount to DF; 
DFV, DFS), and (2) the preservation of the state of the system during the 
measurement (so that the measured value would also refer to the past; 
DPV, DPS). [We recall that the objectification-requirement simply means 
that the measurement should objectify the measured quantity, i.e., after the 
measurement the measured quantity should have a well defined though 
possible subjectively unknown value. The objectification-requirement is 
related to the problem of "reading the actual measurement result" which 
was already mentioned in the beginning of Sec. 3. We do not apply the 
quantum theory of measurement to analyze the possibility of the objec- 
tification (for that see again Beltrametti et alJ 2)) but we take it here for 
granted.] Both of the two requirements are necessary preconditions for the 
constitution of a quantum system, and as such they have been analyzed in 
a realistic approach to quantum mechanics (Busch, 171 Mittelstaedt(5°~). 
They can be reconciled only if the set of premeasurement states is known 
to be restricted to the set of eigenstates of a (sharp) quantity A (cf. Thin. 
2.1.5). In such a situation an ideal measurement can be performed to detect 
the actual (eigen) value of A--which is already objective--without chang- 
ing the state of the system. In that case the aims DPV and DFV are 
simultaneously satisfied, too. Moreover, if the eigenvalues of A are non- 
degenerate, then the detected value determines also the associated unique 
eigenstate of A, in which case the aims DPS and DFS are satisfied as well. 
Clearly if the quantity A under consideration is maximal then this all is 
optimally satisfied. (We recall that a maximal quantity A, or equivalently 
a complete set of commuting quantities, determines a maximal Boolean sub 
a-algebra of N(~f). Hence such a quantity A may be called Boolean com- 
plete.) If the premeasurement state is no eigenstate of the measured quan- 
tity, then the objectification (requirement (1) for DFV) can be achieved by 
a repeatable measurement which then forces the system into an eigenstate 
of the measured quantity. The requirement (2) must then be given up; the 
state of the system was changed under the measurement. We refer to this 
as the destruction of the history of the system. (In the literature one finds 
the related terms "collapse," "reduction," or "quantum jump.") 

In the following we investigate the possibility of realizing the three 
pairwise exclusive goals of the determination of the past (DP), the future 
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(DF), and the preservation of history (PH), and we shall point out the 
prices to be paid for optimizing either of them. 

4.1. Determination of the Future 

We are now seeking for an optimal determination of the future (DFV, 
DFS) of the system by means of a measurement on it. Assume thus that an 
E-measurement ( ~ ,  AM, TM, V> is performed on 50 and the result 
X ~ ( ~ )  is obtained. Then Tf:=tr(TiE(X))-II~(X)Ti is the post- 
measurement state of 3 ,  when T~ was its initial state. Though the state Tf 
is here uniquely given by the E-measurement we do not consider this as an 
optimal DFS (or DFV). This is because in the state T s we have, in general, 
only probabilistic information on E~ the condition tr(TfE(X))= 1 need not 
hold now. If this condition would hold then the E-measurement would 
have led to an optimal DFV. As it was already pointed out in Sec. 3.1, 
tr(TfE(X)) = 1 if and only if tr(I~(X) I f (X) Ti) = tr(IEv(X) Ti). If this 
condition holds for all possible value sets X and for any (initial) state T~, 
then the measurement (or its instrument) is repeatable. Repeatable 
measurements are thus exactly those measurements which lead to an 
optimal DFV. But it is known that the repeatability condition can only be 
realized for discrete quantities E:~i~-~Ei (Ozawa(13)). However, the 
repeatability condition does not yet guarantee that from the measured 
value cok, say, the postmeasurement state could be inferred in a unique 
way. The condition tr(TfE~)= 1 leads to a unique determination of Tf 
only if the 1-eigenvalue of Ek is nondegenerate, i.e. the eigenspace 
{~P ~ • I Ekq~ = q~ } is one-dimensional. But then quantum theory of 
measurement teaches us that, in essence, only the von Neumann-Lfiders 
measurements T~--~ I~vL({ai}) T= P~ TP~ (of discrete sharp quantities 
A = ~ a~P~) realize these requirements (Beltrametti et alJl)). To guarantee 
the unique future state inference, the measured sharp quantity must also be 
maximal (Boolean complete) so that the spectral projections P~ associated 
with the eigenvalues a~ are one-dimensional. 

We shall illustrate next a possibility to quantify the degree of the 
determination of the future values (DFV) of a physical quantity. Consider 
a discrete sharp quantity A with the spectral m e a s u r e  E A and with the 
eigenvalues a~, i = 1 , 2  ..... Let T~Y-~(JF)~. The Shannon information 
of the discrete probability measure EAT is defined as INFOs(E~)--  
INFOs(A, T) : - -E  E~-({af})ln E~({ai}), where now E~({a;}) = 
tr(TEA({a~})). Assume that the yon Neumann-Lfiders measurement of A 
is performed on the system 5 P in the state T. Then I~xL(~)T= 
Z EA({a~}) TEA({a~}) is the postmeasurement (objectified) state of 50 
before the reading of the actual value of A. The objectified state 
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("Gemenge") A IvuL(~)T represents the ignorance about the actual value 
I~NL(R)T ) which shows that the of A. Now INFOs(A, T)=INFOs(A, A 

amount of information contained in EAT and characterized by INFOs(A, T) 
has been made accessible through the von Neumann-Liiders measurement 
of A and it can be obtained by reading the actual result. This justifies to 
interpret INFOs(A, T) as the potential information gain in determining the 
values of A in the state T. Hence we denote 

IvuL(R ) T) (40) PIG(A, T) := INFOs(A, T) = INFOs(A, a 

and we take it as a quantitive measure of the degree of DFV. 
The potential information gain PIG(A, T), Te ~ (o~) i  ~, is the bigger 

the "finer" the quantity A is. Indeed, if B is another (sharp) quantity such 
that ~ ( E  B) c ~ ( E  ~) (so that B = f(A) = Z f(ai) EA({ai}) for some Borel 
function f )  then it can easily be verified that 

PIG(B, T) ~< PIG(A, T) (41) 

for any Ts~(gt~)~ -. Thus the potential information gain is maximal for 
maximal quantities, in which case also DFS is optimal. 

4.1.1. Remark 
The definition of the Shannon information of a probability measure 

E~ does not require that this measure is discrete. However, the interpreta- 
tion of INFOs(A, T) as the potential information gain PIG(A, T) refers 
explicitly to the von Neumann-Liiders measurement of A, i.e. INFOs 
(A, T)= INFOs(A, I~NL(R)T). This then requires that A is discrete. E.g. in 
case of position Q (as well as for the momentum P) we have INFOs 
(Q, P[~0])=~ Iq0(x)12 In ko(x)lZdx for any unit vector ~ 0 e ~ =  5°2(~, dx) 
but INFOs(Q, P[q~]) cannot be interpreted--along the above ideas--as 
PIG(Q, P[~0]). Instead of Q we may then consider "discretized" position. 
Let {Xi: i=  1, 2,...} c ~ (~ )  be a countable disjoint partition of R, the spec- 
trum of Q, i.e. N = U X~, and Xi c~ X/= ~ for all i ¢ j. Let f denote the 
Borel function on ~ with the property f (x)= i whenever x e X~, for all i. 
Then f(Q) is a discrete position with the eigenvalues i = 1, 2 .... and with the 
eigenprojections Ef<Q)({i} )= EQ(f-a( {i} ))= EQ(X,), i= 1, 2 ..... Clearly, for 
any such f(Q) we have P I G ( f  (Q), T)= INFOs(f(Q), T)= INFOs(f(Q), 
I [ ~ 1 ~  T), and P I G ( f  (Q), T) <~ PIG(g(Q), T), Te 3-~(~f)f, whenever g 

v N L  ~. l 

refers to a finer (countable disjoint) partition of ~. As none of the discrete 
positions f(Q) is maximal we do not obtain, in general, an optimal DFS 
with them. 

We shall next estimate the price for obtaining optimal DFS, which is 
two-fold. First, Boolean complete quantities A allow only rather poor 
DPS: such A are informationally complete only with respect to their set of 
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nondegenerate eigenstate (cf. Thin. 2.1.5). Nevertheless, among the set of 
sh~irp discrete quantities they allow relatively optimal DPS. Indeed, if A is 
a maximal quantity and B = f ( A )  for some Borel function f, then IT]  a __ 
I-T] B for any Te~-~,(~)~ (as N(EJ(A~)c_~.(E A) for any f ) ,  i.e. A is more 
informative than B (in the sense that the state distinction power of A is 
higher than that of B's). The second price for optimal DFS is the maximal 
destruction of history. Consider again a discrete (sharp) quantity 
A =2aiPi  (with Pi=EA({a;}))  and let B=f(A)=2f(a i )P~ (so that B 
can be interpreted as a coarse-grained version of A). The spectral projec- 
tions of B = f ( A )  can now be given as/5 i = v{Pj: f(aj) =f(ai) }. If P[q~] is 
a premeasurement pure state of 5 p, then P[~o~] =-P,P[q~]Pi/tr(PiP[~o]) 
and P[q)~]-P~P[~o]Pi/tr(P~P[cp]) are the potential postmeasure- 
ment pure states of 54 after the von Neumann-Liiders measurements of A 
and B, respectively. (Here we assume that e.g. tr(P~P[q~])¢0, i.e. a~ 
is a possible result when an A-measurement is performed on 5e in the 
state P[q~].) We observe next that for any two pure states P[q~] and 
P [ ~ ] ,  IIP[cp]- P[t~]lli = 2 ( 1 -  [(~0r ~)12) ~/2. Hence llP[~0] - P[q)i]II1 = 
2(1 - (q~lP[~0,]~0)) ~/2 = 2 I ] ( I -  e[q~;])~0ll and IlP[-cp] - P[q~,]lll = 
2ll(I-P[~o;])~011. But for any i, P[~oi]<<.P[~o,], and thus I-P[q)~]~ 
I -P[~o¢] ,  which then gives 

liP[q)] - /5[rpi]  It, ~ l iP[e]  - P[q~] II~ (42) 

for any q ~ ,  ttpll = 1 and for all i. This result shows that the more 
refined the preparatory measurement is the larger the distance between the 
past and the future states will be. In other words, to improve the preserva- 
tion of history one has to use coarse-grained quantities, i.e. give up the 
optimal determination of the future values. 

4.2. Determination of the Past 

In general, the measured quantity is not objective in the premeasure- 
ment state of the system. Hence a single measurement result does not 
usually provide much information on the past state of the system. There- 
fore one has to make use of statistical methods for determining the past 
state of the system. (Cf. Sec. 2.2; for examples of some practical inference 
procedures for determining the past state, see Busch and Lahti, ~51) and 
Busch and Schroeck. (52)) 

We have seen that an optimal determination of the past state of the 
system is possible by means of an informationally complete set of physical 
quantities (Sec. 2). Such a set is necessarily strongly noncommutative 
(Thin. 2.1.8). Therefore, as sharp quantities, they are not jointly 
measurable. The price for obtaining informational completeness in this way 
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is then obvious: one has to make independent measurements of noncom- 
muting quantities (to get DPS) and will not achieve a simultaneous 
preparation of the values of all the quantities (i.e. DFV). This motivates the 
introduction of unsharp quantities which, in fact, allow one to reconcile an 
optimal DPS (informational completeness) with a reasonable, though 
necessarily unsharp DFV. 

Let E be a (generalized) physical quantity. If E is informationally com- 
plete, i.e. it admits an optimal determination of the past state of the system 
(DPS) (cf. Sec. 2.1-2.2), then E is necessarily strongly noncommutative, i.e., 
~ (E)  is strongly noncommutative (Thin. 2.1.8). This implies that E does 
not admit repeatable (completely positive) instruments, or conversely: if a 
(generalized) physical quantity E admits a repeatable (completely positive) 
instrument then E is neither informationally complete nor totally noncom- 
mutative. In fact, the existence of such an instrument implies that E is dis- 
crete, i.e., £2 can be chosen as a discrete set g2= {c01, co~,...} (OzawaC13~). 
Put Ei = E( {coi} ). By repeatability, each Ei has an eigenvalue 1. Let (pi¢ 0 
be an eigenvector of E i such that Ei(Pi= q)i. Any such ~0~ is in corn(E) as 
Ek~oi = 0 for k ¢ i. Assuming that E is nontrivial (N(E)¢- {0, I}) shows that 
there are at least two different effects El,  E2 in N(E) with corresponding 
(Pl, (P2 ~ corn(E) • But (~0~1 q~2)= (El(P~ [fP2)= (q)llEI(P2) = ((Pll 0 )  =0,  
so that dim[com(E)]~>2. This excludes informational completeness 
(dim[com(E)]~<l)  as well as total noncommutativity (corn(E)= {0}). 
The following two examples will illustrate the degree of unsharpness of the 
values of a quantity which is needed for its informational completeness. 

4.2.1. Let E a'b:c be an informationally complete joint observable of any 
two orthogonal unsharp spin quantities N(a) and .~(b) (cf. Sec. 2.4). Due 
to the coexistence of ~(a )  and N(b), and due to the informational com- 
pleteness of E "'b;c the vectors a and b satisfy the Eq. (30) which puts a 
limitation on the lengths of a and b. In particular, neither a nor b is a unit 
vector: [lall < 1 and Ilbil < 1. Thus their "reality degrees" (in the sense of 
maximal possible probabilities) are less than one. Also the maximal infor- 
mation on the values of ~(a )  and N(b) is not optimal, i.e. NA(ia)+ 
B(jb)[I < 1 + ½ < 1 + ~ = I[A(ifi) + B(jb)i/ for all i, j = +, - (cf. Sec. 3.4). 

4.2.2. In Section 2.3 we saw that position Q and momentum P admit an 
informational completion by means of a phase space observable E (defined 
by Eq. (21)), whose marginals are the unsharp position Qs and the unsharp 
m o m e n t u m  Pg with Fourier-related confidence functions f and g. The 
decreasing sequence 

[T]  Q/e~  [T]  (Q'e) = [T](QJ'e~)~ [T] E= {T} (43) 
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T ~ J f ) ~ - ,  then show the increasing state distinction powers of the 
relevant quantities. By means of the instrument 

IE(Z) T =  fz Tqp tr( TTqp) d#(q, p) (44) 

where Tqp = UqpP[q~]U+~ and d#(q, p) = (1/2r0 dq dp, one can achieve the 
preparation of "almost pure" states if one reads the "points" (q, p), i.e. 
"'small" sets Z = Z(q, p) containing (q, p): 

Ie(Z(q, p)) T~ t~(Z(q, p)) tr(TTqp) Tqp (45) 

(For the technical details, see Busch and Lahti~5~). We call these readings 
Z(q, p) maximal determinations of the future values of E as they 
approximately lead to the pure state Tqp; they are not optimal as they are 
unsharp values, which implies that they cannot be reproduced with 
probability comparable to one. (In fact, we have tr(TqpE(Z(q, p ) ) ) =  
(1/2re) ~ Z(q. ;) tr( Tq,p, Tqp ) dq' dp' <<. #( Z( q, p ) ) ~ 1.) This shows that the 
price to be paid for the informational completeness (i.e. optimal DPS)  is 
that only a rather poor DFV is possible. 

The unsharpness needed for the informational completeness of the 
joint observable E of Qf and Pg was specified in subsection 2.3.5; the con- 
fidence functions f ( =- I ~012) and g ( = I qsI 2) satisfy the uncertainty relation, 
i.e. Af. Ag >1 1/2. Furthermore, the condition (~o I Uqp~O) ¢ 0 a.e. (q, p) ~ N2 
implies that the confidence functions f and g are nonvanishing (a.e.). In 
(Busch and Lahti ~sl)) an operational characterization of the unsharp (q, p)  
values is given: in order to have tr(TE(Z))>/1-e for some small positive 
number e, one needs g(Z)~> 1. (Note that e cannot be zero!) Furthermore, 
as e = 0 is impossible, one can only realize (e, 6)-repeatability: although the 
instrument I E practically leads to the pure state Tqp upon reading the value 
Z(q, p), this reading cannot be confirmed (with a high confidence). In 
order to have tr(TqpE(Z))>~l-~ one has to choose a "large" set Z, 
#(Z) ~> 1, containing Z(q, p). This shows again that an optimal determina- 
tion of the past state of the system with the quantity E is connected with 
a poor determination of its future values. The second price for informa- 
tional completeness in the present case is a strong destruction of the 
history, in particular in the case of "fine" readings Z(q, p). In general, the 
measurement in question transforms a pure state P [ ~ ]  into a mixture 
of the s t a t e s  Tqp with the weights (@tTqp~l), i.e. Ie(Z)P[~9]= 
~z Tqp t r(P[O ] Tqp) dl~(q, p). 
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4.3. Preservation of the History 

Assume that a measurement (:~fM, AM, TM, V )  of a quantity E: 
~ / ~  5 ¢ ( ~ )  + on the system 5 ~ in a state T i is performed. Then I~ (~ )T i  is 
the state of 5 p after the E-measurement but before reading the actual result. 
If the actual result is the set X~ ~' ,  then Tf=  tr(T~E(X)) -11~(X)T~ is the 
postmeasurement state of 5 P. If 

Tf = T i (46) 

then the measurement does not change the state of the system, its history 
is optimally preserved. As well known, this can be achieved by an ideal 
measurement of a sharp discrete quantity E =  E A if the system initially is 
in an eigenstate of A. Usually Tf ~ T~, i.e. the state of 5 ~ is changed under 
the measurement and, at least a part of the history is thereby destroyed. 
For a given quantity E one may then attempt to characterize those 
E-measurements which minimize the destruction of the history. Typically, 
the ideality of a measurement is a property which refers to a minimal state 
change under the measurement. (Here we do not attempt a systematic 
analysis of an optimal preservation of the history of the system, but we 
only remark on that in the connection with the determination of the past 
and of the future of the system.) 

Let A be a discrete sharp quantity: An ideal measurement of A is then 
(essentially) its yon Neumann-Lfiders measurement (Beltrametti et al.(l~). 
It leads to a minimal destruction of the history of the system in the sense 
that any quantity which was objective in the premeasurement state of the 
system remains objective also in the postmeasurement state provided that 
this quantity is compatible (i.e. commutes) with the measured quantity A. 
If A is not Boolean complete we may refine it essentially with refining the 
value space of A (cf. Sec. 4.1). This then leads to an improvement in deter- 
mining the future values of A. But as demonstrated in Sec. 4.1, this implies 
an increase in the destruction of the history of the system. 

These ideas may be extended to discrete unsharp quantities E which 
admit almost ideal measurements. Let (2 = {(D1,  0)  2 .... }, E k = E({0)k}  ). The 

r~l/2 Tpl/2 state transformations T~--~ Ck T := "-'k ~ ~k are almost ideal in the follow- 
ing sense. If tr(TE~)>/1 - ~  for a small positive number e (which in general 
cannot be zero), then the postmeasurement state Tk:=t r (¢kT)  ~bkT is 
close to the premeasurement state T in the sense that l iT-Tk[] l  is of the 
order of x//-e (cf. Busch(3°)). This shows that if a value 0)k is approximately 
objective in the state T in the previous (e) sense, then it can be measured 
with maintaining a good preservation of the history of the system. The 
amount of unsharpness required for a good preservation of history can be 
illustrated in the case of a phase space observable. Let {Z~[ k ~ N } c ~ (~2)  
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be a partitioning of the phase space R 2, Ek=E(Zk). The condition 
tr(TEk) > / 1 -  e of approximate objectivity requires that p(Zk)> i. Thus, 
again, an improvement in determining the future values of E, i.e., a refine- 
ment of the value sets Zk, leads to an increasing destruction of the history 
of 5 ~. Finally, we remark that in the connection of the so-called Zeno 
paradox it has been shown that there are unsharp measurements which 
allow one to monitor the "trajectory" (continuous history) of the system 
without too much destructive influence (for that see Barchielli, Lanz, and 
Prosperi~53)). 

These considerations illustrate that though an improvement in deter- 
mining the future values of a physical quantity goes along with an increas- 
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Fig. 1. The class of physical quantities splits up into five subclasses accord- 
ing to the associated measurement theoretical possibilities of determining the 
past state (DPS), future values (DFV), or of preserving the history (PH) of 
the system. Boolean complete quantities are a distinguished class of sharp 
quantities. Sharp quantities do not exhaust the class of commutative quan- 
tities as there are also unsharp commutative quantities. Among the class of 
noncommutative quantities there are the informationally complete quan- 
tities. The arrow shows the direction where the claimed property holds true. 
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OBSERVATION 

Informational completeness: 

Optimal DPS 

Maximal unsharp DFV 

© Boolean completeness: 

Optimal DFV, DFS 

+ 
Preservation of history 

(almost) ideal measure- 

ments 

DEFINITION 

Fig. 2. The determination of the past and the future are complementary (C) aims of 
measurements. Observation and definition show up another mode of complementarily. 

ing destruction of the history of the system, these two aspects, DFV and 
PH, may be reconciled, at least to some extent, by the unsharp 
measurements. Such measurements allow also some inference of the past 
state of the system (DPS). Thus "definition" and "observation," though 
mutually exclusive, can be reconciled in an (essentially) unsharp way. They 
both are needed as necessary conditions for the constitution of a physical 
system. "Observation" and "definition" form thus a complementary pair of 
concepts. Further, as a measurement usually leads to a destruction of the 
history of the system, one has to choose whether one wants to learn about 
the past (DP) or about the future (DF) of the system. These aims cannot 
be optimized simultaneously. But, again, they can be reconciled unsharply. 
Also, they both are needed to identify the physical system. In this sense the 
determination of the past and the determination of the future are com- 
plementary aims of measurements. 

The results of this section are schematically summarized in Figs. 1 
and 2. 
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