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Where modern Jbrmulations of relatively theory use differenth~ble man(folds to 
space-time, Einstein simply used open sets of R 4, following the then current 
methods of differential geometry. This fact aids resolution of a number of out- 
standing puzzles concerning Einstein's use of coordinate systems and covariance 
principles, including the claimed physical significance of covariance principles, 
their connection to relativity principles, Einstein's apparent confusion of coor- 
dinate systems and frames oj' reference, and his failure to distinguish active and 
passive transformations, especially in the context of his hole and point-coincidence 
arguments 

1. INTRODUCTION 

1.1. The Problem Defined 

Modern readers, who approach Einstein's accounts of the fundamentals of 
his special and general theories of relativity, find that they often seem 
ambiguous, confused, or even incoherent. A major locus of these problems 
lies in Einstein's use of coordinate systems, coordinate transformations, and 
covariance principles. There are at least three specific problems: 

1. Covariance and relativi ty principles. Einstein presented the require- 
ment of general covariance as a fundamental physical principle which 
generalized the principle of relativity of the special theory of relativity. In 
the modern context, general covariance is taken to be a minimal require- 
ment of mathematical coherence to be satisfied by any intelligible space- 
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time theory and, therefore, essentially vacuous physically and certainly not 
a relativity principle. See Earman, (3) Friedman, (24) Chaps. II and V, and 
Torretti, (5t) Sec. 5.5, for samples of an expansive literature, which also 
extends to the two further points below. 2 The objection must also be raised 
against Einstein's preferred formulations of the special principle of relativity 
and the principle of equivalence, for both are often stated by him as 
requirements of limited covariance. The former is a requirement of Lorentz 
covariance; the latter is an extension of it which includes transformations 
to accelerated coordinate systems. 

2. Coordinate systems, frames of reference and relative spaces. When 
Einstein wrote of a four-dimensional space-time coordinate system or 
reference system--terms which he used interchangeably--it  is by no means 
clear whether he should be read as referring to what we now call a coor- 
dinate chart of the space-time manifold, a frame of reference (a congruence 
of timelike curves), or a relative space (a three-space defined by a frame of 
reference); see Norton. (4°) 

3. Passive versus active transformations. When Einstein wrote of a 
coordinate transformation, it is not always clear whether he should be read 
as referring to what we would now call a (passive) transformation between 
the coordinate charts of a differentiable manifold or an (active) diffeo- 
morphism from points of the manifold to points of the manifold. See 
Norton. (41) 

In recent historical research into Einstein's work on general relativity, 
it has proved possible to circumvent at least the second and third of these 
problems by the simple expedient of stipulating which modern term was 
"really" intended by Einstein when the above ambiguities come into play. 
Thus I reconstructed a version of Einstein's principle of equivalence, which 
talks of the presence of a gravitational field in an accelerated reference 
system, as really talking about the presence of a gravitational field in a 
relative space (Norton(4°)). The recent analyses of Einstein's so-called "hole 
argument" and "point-coincidence" argument have depended in varying 
degrees on reading Einstein's talk of coordinate transformations as really 
referring to diffeomorphisms on the manifold. See Stachel,(46'47) Torretti,(s~ 
Sec. 5.6, and Norton. (41) At times, there is good evidence that these 
readings are correct construals of Einstein's intentions. At others, the 
readings are supported by a principle of charity: they are the only readings 
that save Einstein's arguments from incoherence or triviality. In either case, 

2 This objection is the modern expression of a long tradition which holds that general 
covariance is physically vacuous and purely a challenge to the mathematical ingenuity of the 
theorist; see, for example, Kretschmann (33) and Fock, (2~1 p. 370. 
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the puzzles remain. Why should such stipulations, well justified or not, be 
needed to clarify Einstein's writing? And, in the broader context, how was 
it possible for Einstein to allow what appears to modern eyes as rampant 
ambiguity to infect, so thoroughly the foundations of his work? 

1.2. The Solution Summarized: Einstein's Manifolds 

In this paper, I shall argue that these problems derive in large part 
directly from the state of differential geometry at the turn of the century, 
which provided Einstein with simpler mathematical tools than are now 
used. We have routinely misunderstood Einstein because we have 
incorrectly translated his claims from his simpler to the modern, more 
complicated mathematical setting. 

Modern space-time theories represent physically possible space-times 
by four-dimensional differentiable manifolds. These manifolds are sets of 
points with a topology that ensures that they are locally diffeomorphic to 
R 4. Since we are interested only in the manifolds' topological properties, 
there is no need to specify any further properties of the manifolds' point 
sets and, in particular, we do not need to designate which mathematical 
entities comprise the point sets. 

The Einstein of the 1910s drew his mathematical techniques from a 
literature in which this very general concept of a differentiable manifold 
had not yet been developed. When this literature needed to represent multi- 
dimensional continua mathematically, it simply used a special case of 
n-dimensional differentiable manifolds, the number manifold R n, whose 
point set is the set of all ordered n-tuples of real numbers. 3 Einstein 
naturally followed this practice so that where we represent physically 
possible space-times by four-dimensional differentiabte manifolds, he 
simply used the number manifold R 4. This representation amounts to a 
coordination of a physically possible space-time with R 4 by a system of 
four variables x ~, x 2, X 3, X 4, SO Einstein called the representation a "coor- 
dinate system." 

Einstein's number manifolds have considerably more intrinsic struc- 
ture than the differentiable manifolds of modern formulations, and this 
extra structure has a canonical spatiotemporal interpretation in terms of 
preferred positions, natural rest frames, and relative spaces. Therefore we 
shall see that Einstein's specification of a coordinate system automatically 

3 Or more complicated reiated structures like C ". Throughout this paper t take R ~ to be the 
point set of all n-tuples of reals endowed with the "standard topology," defined for example 
in Bishop and Goldberg, (2) pp. 11-12. I stress, however, that the distinction between this R n, 
the topological space, and R", the set of quadruples of reals, was never clearly drawn in 
Einstein's work of the 1910s. 
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incorporates the specification of a frame of reference, a relative space, and 
much more. 

But this extra structure creates problems for Einstein. If one coor- 
dinates a physically possible space-time with R 4, then we assert that the 
space-time contains a natural rest frame, coordinated to the canonical rest 
frame of R 4, and even a preferred center, coordinated to the origin 
(0, 0, 0, 0)  of R 4. Einsteins's solution to this problem was to invoke the 
methods of Felix Klein's Erlangen program. He allowed that each physi- 
cally possible space-time could be coordinated in very many different ways 
to the number manifold, and he accorded physical significance only to 
those properties of the number manifold (and structures defined on it) 
which remained invariant under these changes of coordinate system. Thus 
this principle of covariance has physical significance in Einstein's hands, 
since it denied, for example, that physically possible space-times have a 
preferred center analogous to (0, 0, 0, 0 )  of R 4. Moreover, the principle 
has the character of a relativity principle, since it denies, for example, that 
physically possible space-times have natural rest frames or, perhaps, 
natural inertial frames, according to the size of the covariance group in 
question. 4 

Einstein's covariance principles can have physical content because his 
coordinate systems coordinate a physical structure with a purely mathe- 
matical structure. This coordination relation looks very much like another 
within the modern theory of differentiable manifolds. We now define a 
differentiable manifold to be a topological space of points and a set of 
smooth, invertible maps which map its open sets onto open sets of R n. 
These maps coordinate the point set with R n, so they are naturally called 
"coordinate charts." Unfortunately the modern practice has been to read 
Einstein's coordinate systems as coordinate charts. The consequences are 
disatrous for the relations described by coordinate charts obtained as 
definitions, so that covariance principles defined in terms of them will have 
the status of mathematical stipulations. This mistranslation is targely 
responsible for the modern belief that Einstein's covariance principles are 
physically vacuous. 

Finally, the greater mathematical complexity of the modern approach 
explains Einstein's apparent confusion over active and passive transforma- 
tions. The modern approach has two levels of representation: first, physi- 
cally possible space-times are represented by general differentiable 
manifolds; second, the point sets of the differentiable manifolds are coor- 
dinated to R 4 by the coordinate charts. Active transformations are defined 

4 But I shall argue in Sec. 6.3 that this result still does not allow us to characterize general 
relativity as the theory that extends the principle of relativity to accelerated motion. 
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in terms of the first level of representation and passive transformations in 
terms of the second. Since Einstein's approach does not have this dual level 
of representation--physically possible space-times are just represented by 
R4--no active passive distinction needed to be drawn. Einstein just used 
one type of transformation, the coordinate transformation, which perfor- 
med functions now distributed between the two types of transformations of 
the modern view, so that at times Einstein's coordinate transformations 
look to modern readers like active transformations and at others like 
passive transformations. This realization will greatly simply treatment of 
Einstein's so-called "hole" and "point-coincidence" arguments in Sec. 5 
below. 

The solution offered here is summarized pictorially in Figs. 1 and 2. 

1.3. Canonical Einstein Fornmlation of Space-Time Theories 

The recognition of these important mathematical differences between 
Einstein's and the modern formulation of space-time theories has been 
hindered by their differing styles. The modern approach is extensional in 

Fig. 1. The modern view of space-time theories. 
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Fig. 2. The Einstein view of space-time theories. 

spirit, seeking as much as possible to reduce its mathematical structures to 
those of intuitive set theory. Thus, broadly speaking, there are two parts in 
the modern formulation of a space-time theory. 

First, one carefully specifies the mathematical structures to be 
employed. This is usually achieved by specifying the form of the 
theories' models. General relativity, for example, will have models of 
the form (M,  gab, Tub), where M is a differentiable manifold and gab 
and Tab tensors of appropriate type. 

Second, one formulates the conditions specifying the set of models 
allowed by the theory. These conditions are roughly the "laws" of the 
theory. They contain, for example, in the case of general relativity, the 
field equation Gab = ~cTab. 

In the modern formulations, the emphasis lies squarely on the first phase; 
indeed the theory is often taken as synonymous with its set of models. 

In Einstein's formulations of the same theories, more emphasis is 
placed on the second phase, with much less concern over the specification 
of the nature of the mathematical structures to be employed. Structures, 
such as a coordinate system, are often introduced without explication of 
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their precise mathematical nature. Of course, it would be unreasonable to 
expect otherwise, for the mathematical literature to which Einstein turned 
had not yet ma~te precise such crucial distinctions as between R n, the point 
set of n-tuples of reals, and R n, the continuum or number manifold, which 
is the point set endowed with the standard topology. One important out- 
come is that Einstein predicates the laws with theoretical properties such as 
general covariance, where the modern formulation predicates the set of 
models with such properties. 

The greater complexity of the mathematical structure used in modern 
formulations explains why a certain amount of stipulation is needed in 
translating Einstein's accounts into the modern language, and it suggests 
that such direct translations will never be entirely satisfactory. But the 
above remarks point to a natural way of adding the precision of modern 
formulations of space-time theories to Einstein's. What is needed is an 
extensional style of formulating space-time theories, patterned as closely as 
possible after the modern one, but which only employs the mathematical 
structures actually used by Einstein. The canonical "Einstein" form for 
space-time theories of Sec. 4 attempts to achieve this. Notice that the 
canonical form proposed is not so much a modification of the form actually 
used by Einstein, but an expansion of it. Einstein's own accounts provide 
the laws of the theory, corresponding roughly to the second task listed 
above in the modern formulation of a space-time theory. The task of the 
canonical form corresponds to the first one listed. It is to make explicit the 
mathematical structures invoked implicitly by those laws and in a manner 
that parallels the modern formulation as closely as possible, but which is 
careful not to add any mathematical structures not actually used by 
Einstein. The result is a version of Einstein's accounts of space-time 
theories which closely parallels the modern accounts and whose claims can 
be judged with the precision now required of modern work in the 
philosophy of space and time. 

For comparison with the canonical Einstein formulation described in 
Sec. 4, Sec. 2 contains a brief account of the modern view of space-time 
theories. It has been written with special emphasis on the status of the prin- 
ciples of active general covariance and Leibniz equivalence. The presence of 
these principles is usually not stressed elsewhere, but they are crucial to the 
understanding of both the modern view and the comparison with Einstein's 
view. Section 3 examines the tradition of work in differential geometry used 
by Einstein in the 1910s in order to support my basic thesis about 
Einstein's use of the number manifold R ". Section 5 re-examines Einstein's 
accounts of the hole and point-coincidence arguments. It absolves him 
from any guilt in confusing active and passive transformations and shows 
that this pronouncements about their significance can be read both more 

825/19/10-7 
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literally and intelligibly in the context of a canonical Einstein formulation 
of relatively theory. Section 6 examines Einstein's accounts of covariance 
and relativity principles in the light of the canonical Einstein formulation 
of space-time theories. It shows how Einstein's covariance principles in 
special and general relativity can be read naturally as a sequence of 
relativity principles: the special principle of relativity, the principle of 
equivalence, and the general principle of relativity. But the equation of the 
general principle of relativity with a requirement of general covariance is 
still not vindicated. 

2. THE M O D E R N  VIEW OF SPACE-TIME THEORIES 

2.1. Canonical Form 

The general class of space-time theories to be discussed here are all 
those space-time theories that posit a differentiable manifold M with 
geometric object fields O~, 02 .... defined everywhere on them. This class 
includes space-time versions of Newtonian mechanics and electrodynamics, 
special relativity and, of course, general relativity. See Friedman (24) for 
such space-time formulations of these theories. However, to avoid unne- 
cessary generalization, I shall usually explicitly discuss only special and 
general relativity. They share the same basic space-time structure and are 
all that is needed for explication of the relevant parts of Einstein's writings. 
I shall treat these theories extensionally; that is, I shall regard each as syn- 
onymous with the set of its models. Thus special relativity is the set of all 
pairs of the form (M, gab), where M is a four-dimensional manifold and 
gab is a symmetric Lorentz signature metric field whose Riemann curvature 
tensor Rabcd is everywhere vanishing. At times, I shall also wish to consider 
the further structures of special relativistic matter theories, such as a 
Maxwell field Fab and charge flux ja, satisfying Maxwell's equations, or a 
fluid with stress energy tensor Sab satisfying the usual mechanical laws. 
Since I do not wish to address specific issues in electrodynamics or 
mechanics and in order to maintain a formal similarity to general relativity, 
I shall represent this extra structure in extended models of the form 
(M, gab, Tab), where Tab represents whatever further structure is at hand, 
such as Maxwell fields or fluids. General relativity is the set of all triples 
of the form (M, gab, Tab), where M is a four-dimensional differentiable 
manifold, gab a symmetric Lorentz signature metric field, and Tab a stress 
energy tensor, such that the metric and stress energy tensor satisfy the 
Einstein field equation G~b = ~:Tab, where Gab is the Einstein tensor and ~c 
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a constant. 5 All the space-times theories ! shall consider will be cast into 
the 

Canonical form for space-time theories." The theory has models of the 
form (M,  O 1 ..... O=), where M is a differentiable manifold, optionally 
with specified dimensionality and global topological properties, and 
O1,..., O,  are n geometric objects of specified type. The set of models 
of the theory are exactly those which satisfy a set of conditions L, 
called the laws of the theory. 

The specification of the laws of theory L can take many different forms. 
They might be relations between geometric objects, as in the above for- 
mulation of special and general relativity; or they might just be a list of the 
allowed members of the set. 

Theories of this type deal with three types of structures: 

M1. Physically possible space-times, one of which will be the physi- 
cally actual space-time of our world if the theory in question is 
true. 

M2. Geometric structures, which are mathematical objects such as 
(M,  gab) or (M,  gab, Tab). They represent the space-times of 
M1. 

M3. Coordinate representations, which are mathematical objects such 
as (A, gik) (or (A,g~k, T~k)). They are the component  
representations of the structures of M2 in some coordinate 
chart. Here A is an open set of R 4, g~k a 4 x 4 matrix of com- 
ponents, and the relevant coordinate chart is a diffeomorphism 
x i from some neighborhood of the point set of M onto A. 

The relationship between the structures of M 2  and of M3 is one of mathe- 
matical definition, since the structures of M3 are formed from those of M2 
by simple mathematical  rules. The set A is the image set of the coordinate 
chart xi; the matrix gik results from the application of gab to the matrix of 
pairs of basis vectors of x ~, @/0~, 0/c~).  If we treat the gob of M2 as an 
equivalence class of matrices, rather than algebraically as a bilinear 
operator, then the (A,  gi~) of M3 is simply a substructure of the 
(M,  gab) of M 2  which it represents. 

s I adopt the following convention with regard to indices. Indices a, b, c, d,... are to be read 
according to the abstract index notation. See Wald, (53) Sec. 2.4. Thus gab is a second-rank 
covariant tensor. Indices i, k, l, m,... and Greek indices designate the components of the 
geometric object in some coordinate chart; they take values 1, 2, 3, 4. Thus gik is the 4 x 4 
matrix of components of ga~ in some coordinate chart. 
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By contrast,  the relationship between M1 and M 2  cannot  be so 
precisely understood,  since the structures of M 1 are physically possible or  
even actual space-times. For  example, we cannot  simply point  to some 
actual or  possible object of  experience which is a structure of  M1 represen- 
ted by a gab of M2.  Rather, the essential idea is that  of a similarity of some 
properties between the space-times of M1 and the mathematical  objects of 
M2.  For  example, the time intervals read by a clock correspond to the 
length assigned to curves by the metric gab. 

2.2. Physical Principles 

One of  the major  charges against Einstein's use of  covariance prin- 
ciples is that  they are physically vacuous, at least if read literally. To enable 
analysis of this charge, ! shall assume that 

the physical principles of a theory are those whose truth depends' at least 
in part on the properties of the structures of M1. 

The mot ivat ion for this definition is the idea that  the properties of struc- 
tures in M 1 are matters of  physical contingency and independent  of  any 
particular space-time theory which we may  choose to consider. 6 This 
means that  the question of whether the structures of  M 2  and M 3  correctly 
represent those of M 1 is in turn a matter  of  physical contingency, Thus the 
principles that deal with this representation are physical. I shall call a 
principle of a space-time theory purely mathematical  just if it is not  a 
physical principle. Therefore the principles that  relate the structures in M 2  
to those in M3  are purely mathematical .  This is a natural  definition since 
the relationship between a geometric object of M 2  and its coordinate  
representations in M 3  is independent  of  the physically contingent  
properties of  M1 and, in particular, of  whether the objects in M 2  or  M 3  
represent such properties correctly. 

6 While I believe that the definition is sound, this motivation may not stand philosophicai 
scrutiny. It is natural to define the notion of physical possibility, as used in M1, by means 
of a space-time theory, so that physically possible space-times are just those allowed by some 
selected space-time theory. Then a true space-time theory would be one whose set of possible 
space-times in M1 includes the actual space-time of our world. To adopt this approach in 
the context of the above definition of physical principle leads to the problem that the proper- 
ties of structures in M1 become dependent by definition on those of M2. For the motivation 
to succeed, we must employ a notion of physical possibility that is theory independent and 
thus not so precisely defined, An instance of this notion is our belief (pace Kepler!) that it 
is physically possible for there to be one more or less planet in our solar system, or one more 
or less moon of Jupiter, independent of whether we work with a classical, special relativistic, 
general relativistic, or any other approximately adequate planetary mechanics. 
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2.3. Duality of Active and Passive Transformations 

A natura l  dual i ty obta ins  between t ransformat ions  defined in M 2  and  
in M3. If x i is a coordinate  chart  of a manifold M, which maps the 

ne ighborhood  N of M onto  an open subset A of R 4, a n d f i s  a C ° 
invertible funct ion from A onto  A, then x i and  f together define dual  
t ransformat ions  7: 

Active." the diffeomorphism h which maps  the point  p of M with 

coordinates  xi (p)  in x i to the point  hp in M with coord ina tes fx i (p )  in 

x'; so that  x i ( h p ) = f x i ( p ) .  

Passive: the t ransformat ion  from coordinate  chart x i of M to x '~ of 

M, such that a point  p of M with coordinates  x i in the original coor- 

dinate  chart  is assigned coordinates  x " = f x  i in the new coordinate  

chart. 

This dual i ty enables the identification of a series of dual  operat ions and 

principles, The first is the dual i ty of the t ransformat ion  law for the com- 
ponents  of a geometric object under  a coordinate  t ransformat ion  and the 

carry-along of the object under  the dual  diffeomorphism. If h is a diffeo 

morph ism from M to M and  f : x  i - ,  x 'i its dual  coordinate  t ransformat ion  
(with respect to x~), then the following are dual  for the case of a tensor gab: 

Active." h induces the carry-along map h* which maps geometric 
object fields on the manifold to geometric object fields on the manifold 

in accord with the s tandard  rules. 8 The carry-along of a tensor gab is 

the second-rank tensor h'gab. 

Passive: f defines a t ransformat ion  law between the components  of a 
geometric object in charts x i and x 'i in the usual  way. For  example, for 

a tensor gab, its components  gig in x i to g ' ~  in x 'm according to 

#x i ~?x k 

gmn ~X,m 0X,n gi~ (1) 

7 This duality is not exhaustive. A diffeomorphism on the manifold may have no dual coor- 
dinate transformation with respect to some coordinate chart, if the domain and range of the 
diffeomorphism are not contained within the domain of the coordinate chart. Conversely a 
coordinate transformation may have no dual diffeomorphism if the range of the new coor- 
dinate chart is not contained within the range of the original chart. 

8 Briefly, h induces a "carry-along" h*f for real-valued scalar fields f, which is defined by 
requiring for all point p of the manifold that h*f(hp)=f(p). The carry along h*V ~ of a 
vector field V a is defined by requiring for all real-valued scalar fields f that h*V~(h*f)= 
Va(f), Finally the carry-along h'gab of a second-rank tensor gab is defined by requiring for 
all vector fields V c that h*g~b(h*V~)= g~h(VC). These rules can be extended naturally to 
cover tensors of arbitrary type. See Wald, (53) Appendix C.1. By writing the above definitions 
with f as the four scalar functions of coordinate chart x ~, V ~ as its basis vectors (~/Ox~) ~ and 
so on, one recovers the compact coordinate-based definition of the carry-along given below. 
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The duality of the two transformations becomes most apparent with the 
aid of the notion of "carried-along coordinate chart." For a given coor- 
dinate chart x i, the coordinate chart carried along by a diffeomorphism h 
on the manifold is hx ~ and its defining property is 

hxi(hp) = x~(p) 

This notion enables a versatile coordinate-based definition of the carry- 
along operator for a geometric object O under diffeomorphism h: 

The components of the carried-along geometric object h*O at 
hp in the carried-along coordinate chart hx ~ equal numerically 
the components of the original geometric object O at p in the 
original coordinate chart x ~. 

Accordingly, for the case of a tensor gab, its carry-along is defined by 

(h*g)rk'(hP) = gik(P) 

where primed indices i', k' represent components in the carried-along coor- 
dinate chart and unprimed indices represent components in the original 
coordinate chart. To compare the components of h'gab and gab in the 
original coordinate chart, we now need only transform the matrix of com- 
ponents (h*g)~,k, from the carried-along coordinate chart back to the 
original chart by applying the coordinate transformation f :x i - ,  x '~. Thus it 
follows that 

The matrices of components (h*g)ik(hp) and gik(P) in the same coor- 
dinate chart are related by the coordinate transformation rule (1). 

This simple result tells us that the coordinate transformation rule (!) in 
effect covers both active and passive transformations. In the passive case it 
relates the components of a single tensor under coordinate transformation. 
In the dual active case, it relates the components of the two diffeomorphic 
tensors written in the same coordinate chart. 

2.4. Active Principles 

We can define two principles which employ active transformations and 
which may obtain in our space-time theories. Dual passive versions of them 
will be defined in the following subsection. 

General covariance of a theory (active version). If (M,  O1, 0 2 .... ) is 
any model of a space-time theory and h any diffeomorphism from M 
to a manifold M' ,  then (hM, h*01, h*02 .... ) is also a model of the 
theory. 
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Active general covariance usually arises automatically from the formulation 
of a space-time theory. Both special and general relativity, as defined at the 
beginning of this section, satisfy the requirement. Special relativity, for 
example, was defined as the theory whose models are the set of all pairs of 
the form (M,  gab), where the symmetric Lorentz signature metric field gab 
satisfies the field equation R~c~=0. If (hM, h*g,b) is any diffeomorphic 
copy of a model of special relativity, then its curvature tensor will be the 
carry-along of the curvature tensor of the original model. Thus it will 
vanish everywhere as well, since the carry-along of a zero tensor is itself a 
zero tensor. Similar remarks apply to general relativity, whose models are 
specified by the vanishing of the tensor (Gab-KTab). More generally, a 
space-time theory in canonical form will be generally covariant if its laws 
L are limited to relations between geometric objects. Earman and 
Norton (4) describe a broad subclass of this type of actively generally 
covariant space-time theories, called local space-time theories, whose laws 
L are all tensor equations. 

Active general covariance is not an essential requirement of space-time 
theories. In older texts, special relativity is taken to be the theory of a 
Minkowski space-time, so that (in canonical terms) the laws L of the 
theory list just one model (M,  ~/ab), where t/a b is a Minkowski metric and 
M is usually a n  .R 4 manifold. 

Since the relation of being diffeomorphic is an equivalence relation, the 
models of a theory can be divided into equivalence classes of diffeomorphic 
models. Active Leibniz equivalence requires that each of the members of 
one of these classes represents the same physically possible space-time. 

Leibniz Equivalence (active version)9. • If ~M, 0 I, O2, . . )  and 
(hM, h*Ot,h*02 .... ) are diffeomorphic models of a space-time 
theory, then they represent the same physically possible space-time. 

The following result is of great importance: 

Active general covariance and active Leibniz equivalence are physical 
principles that one can choose to accept or deny in formulating a space- 
time theory. 

What justifies this result is that diffeomorphic models of a theory are 
distinct mathematical structures. Thus, in the most general case in which 

9 John Earman and I introduced the term Leibniz equivalence in Earman and Norton ~4) since 
it is a modern formulation of Leibniz' thesis that the world would differ in no way if God 
had decided to place all objects in space with their positions reflected East to West. The 
requirement had already explicitly entered the newer general relativity texts, such as 
Hawking and Ellis, ~25) p. 56, and Sachs and Wu, (43~ p. 27, but its importance and physicat 
content are rarely stressed. 
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every property of a model of M2 represents a unique physical aspect of a 
physically possible space-time of M 1, each model must represent a different 
physically possible space-time. Active general covariance provides a recipe 
for taking a model from M 2  of a physically possible space-time and 
generating arbitrarily many more mathematical structures, the carry-atongs 
under arbitrary diffeomorphism of the original model. It then asserts that 
all the differing mathematical structures so produced are also models of 
physically possible space-times. Whether this assertion is true depends on 
the properties of the physically possible space-times, the structures of M1, 
so, recalling Sec. 2.2, it follows that active general covariance is a physical 
principle. Active Leibniz equivalence asserts that two diffeomorphic models 
of M 2  represent the same physically possible space-time of M1. This 
amounts to asserting that the properties on which the models differ repre- 
sent nothing in the physically possible space-times of M1. Again, whether 
this assertion is true depends on the properties of the physically possible 
space-times of M1. So active Leibniz equivalence is a physical principle. 

Active general covariance and Leibniz equivalence combined provide 
a systematic means of distinguishing those properties of the models of M2 
which are physically significant, that is, which represent properties in the 
physically possible space-times of M1. Consider a space-time theory with 
initially just one model T in M2 representing just one physically possible 
space-time in M t. Asserting active general covariance introduces infinitely 
many new members to both M1 and M2. Then asserting active Leibniz 
equivalence counteracts this inflation of M 1 and contracts the members of 
M1 back to the single original member. The important point, however, 
is that the two principles do not nullify one another's physical content. 
Applying them jointly alters the physical content of the above simple 
theory. Prior to their application, we would assume by default that each 
property of the model T represents a property of the physically possible 
space-time of M1, that is, is physically significant. After their application, 
however, we can only ascribe physical significance to the properties which 
T shares with all of its diffeomorphic copies. For, under active general 
covariance and Leibniz equivalence, T and every one of its diffeomorphic 
copies represent the same physically possible space-time of M1. So only 
those properties on which they agree can have physical significance. In 
general, the physically significant properties of a theory's models are those 
which are invariant under arbitrary diffeomorphism. 

The mathematical differences between diffeomorphic models are 
meager, but there nonetheless. Consider the manifold M of one of the 
models (M, gab) of general relativity.~°A fundamental property of a point 

lo For brevity I represent the model by its first two members, ignoring here the stress energy 
tensor Tab. 
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p of M is the property of being a member of the point set of M. If M '  is 
a different manifold, i.e., its point set is disjoint from that of M, then the 
property of set membership distinguishes the point p of M from any point 
p' of M'.  Thus it follows that even two diffeomorphic models (M,  gab) and 
(hM, h'gab) of general relativity do not share all the same mathematical 
properties, if M and hM are different manifolds. 1, 

Because these mathematical differences are so meager, there is corre- 
spondingly little physical content in the principles of active general 
covariance and Leibniz equivalence. But all I wanted to establish at this 
point is that they are physical principles. 12 Notice that the physical content 
of the principles would become very important if we constructed our 
models from manifolds, such as  R 4, which have considerably more 
structure than is now usual. Then active general covariance and Leibniz 
equivalence would provide us a precise and systematic method of denying 
physical significance, for example, to the fact that (0, 0, 0, 0 )  is distinct 
from all other elements of R 4. 

In actively generally covariant theories it is customary also to assert 
active Leibniz equivalence. But since Leibniz equivalence is a physical 
postulate, one must give physical arguments for or against its adoption. 
John Earman and I (4) offer two arguments for it, the first due essentially to 
Leibniz and Einstein and the second essentially to Einstein. Stated very 
briefly, in an actively generally covariant theory, if one denies active 
Leibniz equivalence then two undesirable consequences follow: 

1. "Point coincidence argument." One must accept that there are 
physically distinct space-times which no possible observation could dis- 
tinguish. The reason is that the observables of a theory correspond to rela- 
tions between structures defined on the manifold, not simply to the loca- 
tion of those structures on the manifold.13 In two diffeomorphic models, all 

~ The result still holds if h is an automorphism so that M and hM are the same manifold, 
unless h is the identity or a symmetry of all the fields defined on M. For the point p and 
hp will be distinct mathematical objects. If they lie in the domain of the same coordinate 
chart, they will be distinguished by the difference of their coordinate values. If they do not 
both lie in the domain of at least some coordinate chart, then this difference distinguished 
them. It now follows that the two models cannot agree on all mathematical properties. For 
example, if the set of points {p} is the image of a geodesic of gab, then the carried-along 
set {hp} will not in general be the image of a geodesic of gab, but it will be the image of 
a geodesic of h'gab. 

12 Active Leibniz equivalence does have at least one important application in the Cauchy 
problem of general relativity. See the "hole argument" below. 

13 Einstein,s,(9) pp. 117-118, classic example is that the world line of a particle by itself does 
not correspond to an observable; what does, is the intersection of two such world lines, 
which corresponds to the observable collision of two particles. 
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those relations are preserved. Thus the models represent observationally 
indistinguishable space-times. But the denial of active Leibniz equivalence 
forces the assumption that the two models, in general, represent different 
physically possible space-times. 

2. "Hole argument." One must accept that the physically significant 
properties associated with a given space-time neighborhood--no matter 
how small--remain radically underetermined by the theory, even when all 
the fields on the space-time outside that neighborhood are fully specified. 
Let T be a model of a space-time theory and H (the "hole") any 
neighborhood of its manifold M; then we can define arbitrarily many 
diffeomorphisms h from M to M which are the identity outside H but 
smoothly come to differ from it inside H. The carry-along model h* T will 
still be a model of the theory due to active general covariance and it will 
agree with T everywhere outside H; but it will differ from T within H. 
Denial of active Leibniz equivalence forces the conclusion that, in general, 
these differences are physically significant and establishes the radical 
indeterminism claimed. 

2.5. Passive Principles 

Recall that in space-time theories a coordinate chart x i is a 
diffeomorphism from the point set S of a differentiable manifold M 
to R 4. Under x i, the restriction of a space-time model (M, O1 ..... On) of 
M2 to the domain of x i is given the coordinate representation 
(A, (O1)ik ........ (O~);k...) in M3, where A =xi(S) and (01)ik~.. are the com- 
ponents of O1 in x;, etc. A coordinate transformation, a m a p f  from R 4 to 
R 4 which assigns x ~ to x'% induces a map from structures in M3 to struc- 
tures in M3 so that (A, (O1)~k ....... , (On)~.._) is mapped onto 
(fA, (O1)~ ......... (On)',,...), where the matrices (O~)~... and (O1)~, .... (etc.) 
are related by the usual transformation rules, such as (1). 

General Covariance of a theory (passive version): If (A, (O1)i~...,..., 
(On)ik...) is a coordinate representation of a space-time model 
(M, 05,..., On) of the theory and f any coordinate transformation 
with domain A, then the transform (fA, (O1)~, ..... ..., (On)~,n...) is also 
a coordinate representation of a space-time model of the theory. 

Leibniz Equivalence (passive version): These two coordinate represen- 
tations (A, (O1)~k ........ (O~)~L) and (fA, (O1)~ ..... ..., (On)~...) repre- 
sent the same model (M,  O1,..., O~>.  

Unlike their active counterparts, these principles are purely mathematical, 
not physical, principles, for their truth is independent of the structures of 
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M 1. It is a mathematical stipulation on our part that every relevant coor- 
dinate chart generate a coordinate representation of a space-time model 
and that each (obviously!) represents the same model, Usually the two 
requirements are combined and labelled "general covariance." I have 
separated them here only to display their duality with the active versions. 14 
That the two passive principles are purely mathematical, but their active 
versions are physical, is crucial to my story. For  Einstein's requirement of 
general covariance is now usually read as a passive principle, I shall argue 
that he intended something much closer to the active version. 

3. M A N I F O L D S  IN THE ABSOLUTE DIFF EREN TIA L CALCULUS 

The distinction between the two levels of mathematical structure M2 
and M3 depends upon the concept of the differentiable manifold of modern 
point set topology. (See, for example, Bishop and Goldberg/2/) For it is 
crucial to the distinction to distinguish a differentiable manifold, as a 
general type of mathematical object upon which M2 is based, from R n, a 
special case of a differentiable manifold upon which M3 is based. But the 
Einstein of 1912, standing on the threshold of his general theory of 
relativity, found no such distinction drawn clearly in the mathematical 
literature to which he then turned. 

For  the development of general relativity, Einstein turned to a branch 
of mathematics, which was that based upon Gauss' and Riemann's theory 
of surfaces. Riemann, (49) pp. 412-415, laid the concept of the "n-fold 
extended manifold" at the foundation of his classic inaugural lecture. But 
his description of it fell short of the mathematical precision soon to be 
achieved. Briefly he took an n-fold extended manifold to be a structure 
whose "modes of determination [allow] a continuous transition from one 
to another" (p. 412) in such a way that "the fixing of position in an 
n-dimensional manifold is reduced to n determinations of quantities" 
(p. 415). His examples were more physical than mathematical: "the position 
of objects of sense, and the colors" (p. 413). Felix Klein, (32~ p. 289, later 
explained what Riemann "really" meant: 

At the foundations of his researches, Riemann laid n variables 
x l ,  x2 ..... x~, each of which can take all real values. Riemann denoted 
the totality of their value systems as manifold of n dimensions; by a 
fixed value system x~, x;,..., x'n, he meant a point in this manifold. 
(Emphasis in original.) 

14 Thus in Norton (4J~ and Earman and Norton ~4~ active and passive versions of Leibniz 
equivalence are not distinguished at all. What is called active Leibniz equivalence here is 
just Leibniz equivalence there. 
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In modern language, this manifold is just R n. This understanding of 
n-dimensional manifold was the standard for a tong period. As early as 
1873, Klein had already defined an n-dimensional manifold as the totality 
of values of the variables x~, x2 ..... x~, noting that this definition was "in 
agreement with usual terminology. ''~5 This definition survived well into the 
1920s. Levi-Civita began his 1923 treatise on the absolute differential 
calculus with the observation that frequently "comlicated algebraic rela- 
tionships represent simple geometrical properties." To take advantage of 
this conceptual simplification, he urges that "it is necessary to adopt the 
fundamental convention of using the term point of an abstract 
n-dimensional manifold (n being any positive integer) to denote a set of 
n values assigned to any n variables Xl, x2 ..... xn." (Levi-Civita (34~, p. 1; 
emphasis in original.) 

The work of Levi-Civita figures prominently in the story of Einstein's 
introduction to the mathematical tools needed to construct his general 
theory of relativity. That story is now well known. (See Pais, (42~ Sec. 12b.) 
Einstein returned to Ziirich in August 1912 believing that the key to 
furthering his work on extending the principle of relativity to accelerated 
motion lay in Gauss' theory of surfaces, on which he had been lectured by 
C.F. Geiser during his student days at the ETH. He approached his 
mathematician friend Marcel Grossmann for mathematical assistance. 
Grossmann introduced Einstein to a tradition which embraced the work of 
Gauss, Riemann, Christoffel, Ricci, and Levi-Civita. Its culmination was a 
lengthy 1900 article written on the so-called "absolute differential calculus" 
by Ricci and his pupil Levi-Civita, (48) which contained the mathematical 
machinery needed for Einstein to construct his first outline of the general 
theory of relativity. That outline was completed in early 1913 and was 
published as a two-part paper by Einstein and Grossmann. (2°t The 
first part--the "'physical part"-- contained Einstein's development of the 
theory; the second part--Mthe "'mathematical part"--contained Grossmann's 
summary of the mathematical techniques drawn from the absolute differen- 
tial calculus and the proof of a number of results required for Einstein's 
physical part. The two review articles written by Einstein over the ensuing 
three years followed the pattern set in 1913. Both Einstein (6~ and Einstein (9~ 
contain a complete if compact development of the mathematical methods 
required for the theory. The motive, as Einstein (6~ noted on p. 1030, was to 
"enable a complete understanding of the theory without the need to read 
other pure mathematical treatises." 

~s Klein,~29~ p. 315. See Torretti, (5°) p, 138, for some of the intricasies of Klein's own definition 
of manifold. Also see Toretti, (5°) Sec. 2.2.6, for further discussion of Riemann's concept of 
manifold. 
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The development of the absolute differential calculus found in these 
three articles is characterized by its failure to discuss the nature of the 
mathematical manifold upon which the fields of the theory are defined. 
Rather the notion of a coordinate system is simply taken as a primitive and 
the starting point of the development is the study of coordinate transforma- 
tions and the transformation laws for contravariant and covariant vectors. 
(This, of course, became the tradition for a generation of texts on general 
relativity.) This order of development is essentially the one which 
Grossmann found in Ricci and Levi-Civita's (~8/article of t900. Discussion 
of the manifold or space in which the structures of the paper are defined 
is limited by Ricci and Levi-Civita to a few brief remarks in that paper's 
short preface (pp. 481-482), which is largely devoted to tracing the ancestry 
of the results to be displayed: 

But these same method [of the absolute differential calculus], and the 
advantages which they present, have their raison d'etre and their origin 
in the intimate connections, which bind them to the concept of 
manifold of n dimensions, which we owe to the genius of Gauss and 
Riemann.-~ 

According to this concept, a manifold V, is defined intrinsically in 
its metrical properties by n independent variables and by all of a class 
of quadratic forms of the differentials of these variables, such that any 
two of them are transformable from one to the other by a point trans- 
formation.--As a result, a V, remains invariant with respect to all 
transformations of its coordinates. 

The structure defined here is, of course, a special form of the manifolds 
described above by Klein and Levi-Civita, in his later text. There, Levi- 
Civita, (34) p. 119, calls V, a metric manifold and defines it as the aggregate 
of the values of the variables xl ,  x2 ..... x ,  (i.e., manifold = R ") in conjunc- 
tion with the specification of a differential form 

rt 

ds2 = ~ik alk dx,, dxk 
1 

The 1900 definition is actually more sophisticated for it amounts to 
defining V~ as that part of the 1923 Vn which is invariant under arbitrary 
transformations. 

Thus the Einstein of 1912 inherited the mathematical tools of a 
tradition which placed little emphasis on the question of just what were 
the mathematical objects which were being used to represent the real or 
possible real physical spaces of geometry. Insofar as it answered the ques- 
tion at all, that answer was to provide R ~, perhaps with extra structure, as 
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the manifold. This was precisely the attitude that the Einstein of 1912 
would have found in the contemporary literature which was then transfor- 
ming special relativity into a four-dimensional space-time theory. Thus 
Minkowski, (37~ pp. 56-57, introduced the requisite mathematical machinery 
in his less formal 1908 address as16: 

We will try to visualize the state of things by the graphic method. Let 
x, y, z be rectangular coordinates for space, and let t denote time... A 
point of space at a point of time, that is, a system of values x, y, z, t, 
I will call a world-point. The manifold of all thinkable x, y, z, t systems 
of values we will christen the world. 

The notion of a rectangular coordinate system is introduced here as an 
unexplicated primitive. Four-tuples of reals do not denote world-points; 
they are world-points. And Minkowski's four-dimensional world is, by his 
definition, R 4. Coordinate systems and "space-time points" are introduced 
in a similar way in the opening pages of the more technical Minkowski, (3s~ 
but no mention is made of "the world" or of the nature of the four-dimen- 
sional manifold upon which the entire work is based. This lack of concern 
for the nature of coordinates and the manifold is exmplified by 
Sommerfeld's (44) resource articles which gives an exposition of the "four- 
dimensional vector algebra" needed to work with Minkowski's four-dimen- 
sional formulation of special relativity. The definition of coordinates, 
manifolds, and the like is skipped entirely; the first definitions given are for 
four- and six-vectors. 

I can offer two reasons for this lack of emphasis. 
First, the methods of the absolute differential calculus, especially, as its 

name betrayed, were developed in the context of real analysis, which was 
concerned primarily with the properties of real-valued functions on n-tuples 
of reals. There was a similar connection with real and complex analysis for 
geometry in the tradition of Klein's Erlangen program. It was often 
remarked how geometric ideas could elucidate nongeometric problems 
in analysis and vice-versa. (For example, see Levi-Civita, (34~ p. 1, and 
F. Klein, (311 p. 1.) Presumably it was felt that this commerce between 
geometry and analysis could be encouraged if the geometric notions did 
not stray too far from those of real and complex analysis, which in turn 
encouraged the identification of the manifold of geometry with such 
structures as R n. 

~6 The standard translation in Minkowski, (39~ p. 76, translates Minkowski's Mannigfaltigkeit 
in this passage as "multiplicity" where I, as elsewhere in this paper, translate it as 
"manifold." 
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Second, Felix Klein's Erlangen program directed geometricians to look 
to the invariants of groups as the true intrinsic geometric structures. The 
structures on which the groups themselves act - -be  it R" or something more 
abstract--were of tess interest. Klein, (3°~, p. 539, provided and stressed the 
following compact summary of his viewpoint towards special relativity~7: 

What the modern physicists calls relativity theory, is the theory of 
invariants of a four-dimensional space-time region, x, y, z, t (the 
Minkowski "world") with respect to a particular group of coltinea- 
tions, namely the "Lorentz group";--or ,  more generally, and turned 
round the other way: 

If one wants to make a point of it, it would be alright to replace 
the phrase "theory of invariants relative to a group of transforma- 
tions" with the words "relativity theory with respect to a group. ''18 

(Notice that Klein, like Minkowski, takes his four-dimensional space-time 
to be a "region" of R4.) Of course Einstein's work on general relativity 
played a large part in the demise of the Ertangen program, for that theory 
directed, to the forefront of mathematical attention, semi-Riemannian 
spaces whose symmetry groups contained in the general case just the iden- 
tity map. Thus they could not be used nontrivially to define intrinsic 
geometric structure. Other methods were needed to plumb the arcane 
depths of these geometries. These methods were found in point set 
topology, which was in its infancy in 1910s. That  decade saw the 
emergence of the modern notion of a topological space in the work of such 
mathematicians as Weyl and especially Hausdorff, with his 1914 Grundziige 
der Mengenlehre. 19 

4. EINSTEIN'S  VIEW OF  SPACE-TIME THEORIES 

4.1. Canonical Form 

In modern philosophy of physics, the standard practice has been to 
read Einstein's "coordinate systems" as coordinate charts relating the 
mathematical structures in M2 to those in M3 of the modern formulation 
of space-time theories; to read his matrices g;k as component representa- 

a7 Einstein also came to feel that the name "Invariantentheorie" was a more accurate title for 
relativity theory. See Holton, ~28) p. xv. 

18 Man k6nnte, wenn man Wert darauf [egen will, den Namen "Invariantentheorie relativ zu 
einer Gruppe yon Transformationen" sehr wohl durch das Wort "Relativitiitstheorie 
bez~iglich einer Gruppe ersetzen, 

19 1 rely here on the account given in Manheim] TM Chap. VL 
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tions in M3 of geometric objects gab in M2; and to assume that the 
structures of M2 are present by tacit implicatin, even though they find no 
symbolic expression in Einstein's treatises. My basic thesis in this paper is 
that this reading of Einstein's work is mistaken and is responsible for a 
sustained and systemic misunderstanding of his account of the foundations 
of relativity theory. 

Differential geometry of the 1910s, in the tradition of Klein, 
Minkowski, Levi-Civita and Einstein, provided a much simpler class of 
mathematical structures to represent physically actual or possible space- 
times than the M 2 and M3 of the modern view. In the modern view, the 
properties of a physically actual or possible space-time of M I  are specified 
by requiring that it be representable by a differentiable manifold of point 
set topology of M2; then, as a part of the definition of a differentiable 
manifold, the topology of its point set is specified (partially) by requiring 
that its open sets be isomorphic to open sets of R 4 in M3. Summarizing the 
results of the last section, the older tradition eliminates the mediating struc- 
tures of M2  in the sequence of representations of physically possible space- 
times (M1) point sets of general differentiable manifolds (M2), and .R 4 

(M3). The properties of actual or possible spaces or space-times are 
specified by requiring that their parts be representable by open sets of R 4 

or R n. This representation or coordination is effected by maps from actual 
or possible space or space-time points to n-tuples of reals, which maps are 
the systems of variables xl ,  x2 ..... xn of Klein and Levi-Civita and x, y, z, t 
of Minkowski and are called coordinate systems for short; their range, an 
open set of R ~, is the manifold. This was also Einsteiffs practice so that: 

Where the modern approach represents a space-time by a differentiable 
manifold with a point set of  unspecified elements. Einstein used open sets 
of  R4and called the representation a "coordinate system. ''~° 

Thus an extensional formulation of space-time theories, which reflects this 
simpler approach, constructs its models from mathematical structures used 
only in M3. This formulation, which I urge should be used when reading 
Einstein's accounts, is: 

Canonical form for space-time theories (Einstein)." The theory has 
models of the form (A, (O1)ik...,..., (On)iL),  where the manifold/ 
coordinate system A is an open set of R 4, and (01)ik ........ (O~)ik... are n 
matrices with transformation laws of specified type. The set of models 

2o Throughout the paper I have adopted the convention of using the term "coordinate chart" 
in its modern sense only, whereas "coordinate system" refers to what are now revealed as 
the number manifolds of Einstein's models of special and general relativity, coordinated to 
the space-times of El. 
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of the theory are exactly those which satisfy a set of conditions L, 
called the laws of the theory. 

Where the modern view deals with three types of structures MI, M2, and 
M3, the canonical Einstein formulation deals with only two21: 

El. Physically possible space-times, one of which will be the physi- 
cally actual space-time of our world if the theory in question is 
true. 

E2. Coordinate representations, which are mathematical objects such 
as (A, gik) (or (A, gik, Tik)), which represent the space-times 
of El. 

The sets E1 and M1 for a given theory are the same. The set E2 contains 
all the mathematical structures of the theory and therefore is analogous to 
M2 and M3 combined. When it comes to reading Einstein's work, the 
immediate virtue of this "Einstein" canonical formulation over the modern 
view is that it employs only mathematical structures which appear 
explicitly in symbolic form in his accounts of space-time theories. To use 
the modern view, one must in effect assume the presence by tacit implica- 
tion of the entire class structures of M2. 

Einstein's formulation of space-time theories can be cast into Einstein 
canonical form with the minimum of modification, as the examples of 
special and general relativity show. His space-time formulation of special 
relativity, as for example in Einstein (13) and later writings, defines the 
properties of a Minkowski space-time by specifying that it has the line 
element 

ds 2 = -dx~  - dx~ - dx~ + dx~ (2) 

with then coordinate system xs an unexplicated primitive notion or 
specified as given by natural measuring operations. Notice that the line 
element is always given in the simple diagonal form. In canonical form, this 
amounts to specifying that special relativity has a single model ( R  4, the), 
where r/~k is the 4 x 4  matrix d i a g ( - 1 , - 1 , - 1 ,  + 1). (Multiple models 
would arise if we consider special relativistic matter theories. Using the 
same convention as in Sec. 2, we end up with a theory in canonical 
formulation whose models have the form (R 4, ~/~k, Tik). Each special 
relativistic matter theory contains all models of the appropriate form, 
which are related by transformations from the extended Lorentz group. 
Note that in all models, ~/~k always has the diagonal form indicated.) 

zl t presume that the distinction between E t  and E2 is essentially the one Torretti, (51) 
pp. 302-303, note 10, introduces to negotiate an ambiguity in Minkowski 's  discussion of his 
"world." 

825/19/10-8 
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Einstein defines the properties of the space-times of general relativity 
by specifying that they have a line element 

ds 2 = gik dxi dxk 

whose coefficients gik satisfy the field equation Gik = ~cTik. (Summation over 
repeated indices is implied.) So canonically, the theory has models of the 
form (A, gi~, Tik) or just (A, gik), where g~ and Tik are 4 x 4  matrices of 
reals such that both are symmetric and g~k has Lorents signature. All such 
structures satisfying the following field equation: G~k = ~cT~k are models of 
the theory. 22 

Modern readers will probably suffer a powerful urge to try to inter- 
pose a class of structures between E1 and E 2 - - s a y  "Et/2"--whose role 
would be to mediate the relationship between E1 and E2 much as M 2  
mediates between M1 and M3. Such readers will think of the matrices t/,. k 
or gik as two of many possible coordinate representations of some other 
abstract mathematical objects t/H~ or gob, and the coordinates xi as one of 
many coordinate charts of another abstract differentiable manifold M. I 
urge against this interposition for three reasons. 

First, the interpositon is unnecessary for the mathematical coherence 
of the formulation of the theory. 23 For  a given theory, the structures of E2 
of the Einstein formulation are formally identical to those of M3 of the 
modern formulation. But ' these  latter structures encode all the formal 
properties of the structures of M2 so that all the results of the theory can 
be recovered from them. 

Second, there is no clear evidence that Einstein intended such an 
interposition. What  we do have is ambiguous evidence. For example, in 
the expositions of the absolute differential calculus of Einstein and 
Grossmann, (2°~ Einstein, ~6~ and Einstein, °) the terms "vector" and "tensor" 
are reserved for equivalence classes of 4-tuples or matrices defined by the 
appropriate tensor transformation law. (Therefore I try to refrain from 
using the terms "vector" and "tensor" for the 4-tuples V i and the matrices 
gik of the Einstein canonical formulation.) There is the strong suggestion 
that these classes in turn represent coordinate-free structures, and Einstein 
insists to Besso in a letter of October 3t, t9t6,  that this is the case. (See 

22 A basic inadequacy of this formulation of special and especially general relativity is that it 
makes manifold topologies other than R 4 difficult to work with. Thus an Einstein universe 
can only be represented by more than one model which are appropriately connected to one 
another. Since this point is largely irrelevant to my concerns here, I shall not pursue the 
problem. 

23 Notice that the need for a "'patchwise" treatment of space-times which are not globally R 4 
is awkward, but not incoherent. 
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Toretti (51) p. 316n, Note 1.) But I see no way to inflate such remarks about 
vectors and tensors into the intermediate level of structures "Ell/2." Such 
a level would have to have similar mathematical richness to E2 and con- 
siderably more structures than just vectors and tensors. For  example, it 
would need differentiable manifolds distinct from R 4. But Einstein gives no 
systematic discussion of such a level and, for that matter, does not even 
reserve separate symbols for his tensors to distinguish them from their 
component matrices. I surmise that Einstein's terms "vector" and "tensor" 
either name thephysicat structures o f  E1 represented by tensorial matrices 
in E2 or name abstractions constructed from these matrices of E2. Such 
abstractions could have been used to begin construction of a new level of 
structures, but, in the event, were not so used by Einstein. 

Third, if we insist that Einstein really did intend the interposition of 
this extra class of mathematical structures, then we will have to forgo many 
of the results of the remainder of the paper and concede to Einstein's 
critics, for example, that his treatment of the requirement of general 
covariance did involve a quite simple confusion of a mathematical and a 
physical principle. 

4.2. Coordinate Transformations 

The canonical Einstein formulation of a theory provides for just one 
type of transformation between the models of E2, the coordinate transfor- 
mation. A coordinate transformation is defined by a map f : x i ~ x  'i from 
R 4 to R 4 which relates a model (A, (O1);k ....... , (On)ik...) of E2 to another 
model (A, (O'1) ...... ..., (O'n) ..... ). The relationship between each matrix 
(O,)ik... and (O;) ..... will depend on the transformation law specified for the 
matrices in the canonical description of the theory's models and will follow 
the rules of standard developments of tensor analysis such as Einstein's 
own Einstein, (9) Part B. For  example, the coordinate transformation 

f : x i ~ x  'i transforms the model (A, g~k) of E2 into (A',  g~n), if the 
matrices gik and g~n transform as covariant tensors, when f maps A onto 
A' and gik and g~n stand in relation (1). 

The modern formulation of space-time theories provides a richer set of 
mathematical structures than the Einstein formulation, for it provides two 
distinct mathematical levels M2 and M3, where the Einstein formulation 
provides just E2. The two levels M2 and M3 enable defining the dual 
active and passive transformations of Sec. 2. No such duality is available in 
the Einstein formulation. One just has transformations between the models 
of E2. 24 The existence of dual levels of transformations in the modern for- 

24 Notice that another duality of tranformation does remain. The transformation f : x i ~ x  '~ 
can be read as a simple coordinate transformation or as mapping the point with coor- 
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mulation means that one must proceed with extreme caution in translating 
results invoking a coordinate transformation in an Einstein formulation of 
a theory to corresponding results in the modern formulation of the theory. 
Take the above example o f f : x  i--, x 'i transforming the model (A, gi~) of 
E2. Assuming that A covers the entire space-time modelled, the Einstein 
model (A, gik) will correspond to some model (M,  gab) in M2 of the 
modern formulation, which, in some coordinate chart, will be represented 
by the structure (A, gzk) in M3. The map f induces two transformations 
in the modern formulation: 

- - the  passive transformation in M3 that relates the two component 
representations (A, gik) and (A',  g ' n )  in M3 of the model (M,  gab) in 
M2. 

- - the  active transformation h, which maps the model (M,  gab) of M2 
onto (hM, h'gab). 

The standard practice has been to read Einstein's transformations as 
equivalent to the passive transformation. This reading is certainly the 
natural one, since the mathematical matrix expressions involved in both 
are exactly the same. But this reading fails in at least one significant aspect. 
The structures (A, gik) and (A' ,  g~,~n) within M3 represent the same 
model (M,  g,b) by definition. But, as I shall urge below, whether the two 
structures (A, gik) and (A' ,  g~n) of E2 represent the same physically 
possible space-time of E1 is a matter of physical contingency. In this regard, 
the Einstein transformations are just like the active transformations of the 
modern formulation, for whether the models (M,  gab) and (hM, h'gab) 
represent the same physically possible space-time depends on the physically 
contingent hypothesis of Leibniz equivalence. Note finally that there is a 
certain formal naturalness in relating Einstein transformations to the 
modern active transformations. It follows from the concluding result of 
Sec. 2.3 tat, if we represent the two models (M,  g~b) and @M, h'gab) in 
the same coordinate system, then we simply recover exactly the mathemati- 
cal structures of the Einstein transformation, the structures (A, g~k) and 
(A',  g ~ , )  related by (1). 

This behavior resolves the third problem of the introduction: that 
Einstein appears to confuse active and passive transformations. The 
Einstein formulation provides just one type of transformation, the coor- 

dinates x i to the point with coordinates x "i in the same coordinate system. I take this to be 
the traditional polnt/coordinate transformation duality described, for example, in Klein, (31) 
pp. 136-137. The point transformation is not defined on mathematical structures but on the 
very vaguely defined structures of El, physically possible space-times, so its status is not 
entirely clear to me. (I am grateful to Don Howard for this reference to Klein's work.) 
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dinate transformation. But some of its properties are like the active trans- 
formations of M2 and others like the passive transformations of M3. A 
problem really only arises when modern readers try to restate Einstein's 
claims in the modern formulation of space-time theories. For then they 
must decide whether to translate a particular coordinate transformation in 
one of Einstein's works into an active or a passive transformation, when 
neither alone is appropriate. No such problem arises, of course, if one reads 
Einstein in terms of the canonical Einstein formulation offered here. This 
point will be illustrated in some detail in Sec. 5 with Einstein's discussion 
of the hole and point-coincidence arguments. 

4.3. Covariance Principles 

In the Einsteins formulation, we can also define covariance principles 
and Leibniz equivalence principles, but without dual active and passive 
versions. In formulating these principles, it will be convenient to allow the 
groups of transformations involved to vary in size. 

Covariance of a theory under a group G of transformations: If 
(A, (01)/k ....... , (On)ik...) is a model of a space-time theory, then every 
other tuple (A, (O'~) ......... , (O'n) ..... ) related to it by a member of G is 
also a model of the theory. 

Thus Einstein's formulation of special relativity is covariant just under the 
Lorentz group of transformations, for its Einstein formulation requires 
that the matrix r//k of every (R4, tl/k, Tik) have the diagonal form 
d i a g ( - 1 , - t , -  1, 1). General relativity is covariant under the general 
group, however, since every triple (A, g/k, T~k) which satisfies the 
generally covariant field equation G~k = ~cT/k is a model of the theory. 

As in the case of the modern view, I shall treat separately the natural 
postulate that two models, related by a member of the theory's covariance 
group, represent the same space-time in El .  

Leibniz equivalence: If two models (A,(Ot)~k ....... ,(On)ik...) and 
(A, (O]) ...... ..., (O'n) ...... ) are related by a member of the covariance 
group G of the theory, then they represent the same physically possible 
space-time. 

Under the assumption of Leibniz equivalence, the physical space-times of 
E1 are represented by equivalence classes of intertransformable models of 
E2. The status of an Einstein covariance principle and of Leibniz equiva- 
lence is almost exactly the same as that of active general covariance and 
Leibniz equivalence in the modern view. In both cases, their truth depends 
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upon the properties of E1 = M1, so that following precisely the argument 
for the modern case 

a covariance principle and Leibniz equivalence in the Einstein formula- 
tion of  space-time theories are physical principles that one can choose to 
accept or deny. 

For, as before, a covariance principle asserts that a new mathematical 
structure, generated by an allowed transformation from one of the theory's 
models, will itself represent a physically possible space-time of E t. Leibniz 
equivalence amounts to assuming that the mathematical differences 
between two intertransformable models have no physical counterpart in the 
space-times of E1 that they represent. But the truth of these assumptions 
depends on the physically contingent properties of the space-times of E l .  

4.4. Coordinate Systems, Frames of Reference, and Relative Spaces 

The second problem of the introduction was Einstein's failure, to 
modern eyes, to distinguish clearly between what we would now call a 
coordinate chart, a frame of reference, and a relative space. ! have 
described elsewhere in Norton (4°~ how Einstein's term "coordinate system" 
can be read, in the modern context, as referring to any of the three. The 
fact that Einstein used R 4 or its open sets where the modern view uses an 
abstract differentiable manifold provides a solution to this problem. 

The differentiable manifolds used to represent space-times in the 
modern view are relatively impoverished as far as intrinsic structures are 
concerned. If we wish to represent frames of reference and the like on them, 
the manifolds' intrinsic structure is not sufficient; we must add further 
structure. Thus a frame of reference is introduced in standard practice as a 
congruence of timelike curves defined on the manifold (with metric). The 
frame, if smooth, assigns a velocity, its tangent vector, to every event in the 
manifold. Associated with any frame is a three-dimensional manifold, the 
relative space, which is just the manifold whose point set is the set of curves 
of the frame. Once frames and relative spaces are defined, we can introduce 
more structure. We might seek to foliate the manifold into hypersurfaces 
intersecting the frame, which we can think of as instantaneous "snapshots" 
of the relative space. We might seek a real-valued parametrization of these 
hypersurfaces which could play the role of a frame time. In each case, we 
find ourselves adding further structure to the largely featureless back- 
ground canvas of the manifold. Finally, we generally expect some natural 
adaptation of frames, relative spaces, and the like to the geometric struc- 
ture posited by the theory. Thus an inertial frame in special relativity is a 
congruance f parallel timelike geodesis and is therefore adapted to the 
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Minkowski metric. A foliation of a Minkowski space-time is usually 
defined as orthogonal to an inertial frame, where orthogonality is defined 
by the Minkowski metric. The frame time usually coincides withthe metri- 
cally defined proper time along some timelike curve; and so on. 

In the Einstein formulation, however, this problem looks very 
different. Einstein's manifolds are open sets of R 4. Thus they have 
considerably more structure than the manifolds of the modern view, and 
the Einstein formulation provides a canonical physical interpretation for 
this extra structure. I list some of this structure and its interpretation: 

(a) Inhomogeneity (individuation of points): each point of R 4 is 
distinct, so every space-time event is intrinsically different from 
every other. 

(b) Anisotropy: each direction in R 4 is distinct, so every direction in 
space-time is intrinsically different from every other. 

(c) Absolute simultaneity: the x4 coordinate is a time coordinate, so 
the hypersurfaces of constant x4 represent instantaneous 
snapshots of a three-dimensional space, corresponding to a 
relative space of the modern view. 

(d) Absolute rest: the natural rest frame of the space-time is 
represented by the congruence of x4 curves. 

(e) Set of inertial frames: each parallel congruence of straights with 
constant velocity dr/dx4, where r 2 = x 2 4- x~ + x~, represents a 
frame of reference of uniform velocity. 

(f) Coordinate lengths and times: the xI,  x2, and x3 coordinates 
provide measures of length; the x4 coordinate, a measure of time. 

Moreover, one does not adapt these structures to the further geometric 
structure posited by the theory, as is the case in the modern approach. One 
works the other way around in the Einstein approach. The geometric struc- 
tures are adapted to the manifold's structure whereever possible. Thus the 
line element of special relativity is always adapted to the coordinate system 
(manifold) insofar as it can be written as (2), which ensures that the 
natural frame of the manifold is inertial and that the coordinate differences 
correspond to times and distances measured directly on idealized rods and 
clocks. 

Thus, in the Einstein formulation, the specification of a coordinate 
system is very different from the specification of a coordinate chart of the 
modern view. It requires the coordination of an open set of R 4 with a 
physically possible space-time, combined with the automatic interpretation 
of the intrinsic structure of the open set according to (a)-(f) above. Thus 
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confusion only arises when the modern reader asks whether one of 
Einstein's coordinate systems should be read as a coordinate chart o r  a 

frame of reference o r  a relative space, for they ought to read as all of them 
at once, and more. 

5. EINSTEIN'S H O L E  AND POINT COINCIDENCE ARGUMENTS 

In this section, I offer the example of these two arguments, which were 
central to Einstein's understanding of general covariance, as an illustration 
of the advantages of reading Einstein's work in terms of canonical Einstein 
formulations. A major difficulty in recent treatments of these arguments has 
been the establishment of whether Einstein intended his coordinate trans- 
formations to be read as active or passive transformations. If they are read 
in terms of the Einstein canonical formulation, the problem disappears 
entirely and much of what he says can be read literally. A detailed account 
of these arguments, including Einstein's statements of them, is in 
Norton. (41) So I shall review the arguments here with the briefest of 
sketches. 

5.1. The Hole Argument 

By mid 1913, Einstein, with the mathematical assistance of his friend 
Marcel Grossmann, has discovered all the major components of the 
general theory of relativity, with one major exception. They had chosen 
gravitational field equations which were not generally covariant. By the 
end of 1913, Einstein has developed the "hole" argument to justify this 
choice. It purported to show that generally covariant field equations would 
be physically uninteresting since they would lead to a serious violation of 
determinism. There were four version of the argument. In order of dates 
of publication, they were: Einstein and Grossmann, (2°) pp. 26(~261, 2~ 
Einstein, (8l p. 178, Einstein and Grossmann, (21) pp. 217-218, and 
Einstein, (6) pp. 1066-1067. The first three versions were essentially the same 
and were presented as follows. 

We consider a solution gik in some coordinate system x i of any 
generally covariant gravitational field equations for a space-time which 
contains a matter-free region, the "hole," in which Tik = 0. We transform to 
a new coordinate system x 'i which agrees with the original outside the hole 

25 The argument appeared in the addendum to the journal printing of the article but not in 
the original separatum. 
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but smoothly comes to differ from it within the hole. The transformed glk 
differs from the original gik within the hole, so that we have 

gik ¢ gi~ (3) 

A footnote to the second version made the, at first glance, curious stipula- 
tion that the inequality (3) be read so that the variables x i and x 'i have the 
same values. Since a tensor whose components are all zero remains so 
under all transformations, we have for the entire space-time 

It followed, Einstein concluded, that the single matter distribution of 
T~k = T~k is compatible with two different gravitational fields within the 
hole, gik and g~.~.. This result would constitute a serious failure of deter- 
minism for, according to it, even the most complete specification of the 
matter distribution and the gravitational field outside the hole could not 
determine the field within it. (To see how very serious is the form of 
indeterminism considered, notice that the hole is a neighborhood of space- 
time and can be arbitrarily small. It could, for example, be less than a 
millimeter in spatial size and less that a microsecond in temporal duration.) 

The fourth version of the argument is more complex. The matrix of 
functions of the coordinates representing gik in x ~ is written compactly but 
nonstandardly as "G(x)," and those representing g;~ in x" as "G'(x')." I 
surmise that the purpose of tis new notation is to make sure the reader 
understands the stipulation on how the inequality of (3) is to be read. 
"G'(x') and G(x) describe the same gravitational field," he notes. But he 
proceeds to construct G'(x) which must describe a different field since it 
assigns different matrices of components in the same coordinate system 
to the same sets of values of S. The inequality of G(x) and G'(x) is 
formally identical to the inequality (3), provided the latter inequality is 
read according to the stipulation in Einstein's footnote. 

The standard account--the °'passive account"--of Einstein's argument 
has been that he committed a beginner's blunder in differential geometry. 26 
In that account,the transformation between g~k and g~k was read as a 
passive transformation of the modern view, so that the differing forms of 
the matrices g~k and g~k did not entail that they represented physically 
different fields. They were just different coordinate representations of the 
same mathematical object gab which, in turn, represents just one physically 
possible field. 

Agreeing with a perceptive analysis by John Stachel of the fourth version 
of the hole argument, with Stachel I (41) urged an "active account" in 

26 For example, Pals, (42~ pp. 221-222. 
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which the transformation of the argument must be read actively. For only 
that reading could explain the curious stipulation on how the inequality (3) 
was to be read. Under it the two matrices g~k and gl-k of the inequality (3) 
are coordinate representations of the fields gab and h*g,b, where h is the 
diffeomorphism dual to the coordinate transformation from x i to x 'i. Then 
the point of Einstein's arguments becomes clear. He is considering theories 
that satisfy active general covariance but not active Leibniz equivalence. 
Thus he correctly concludes that, in such theories, if the field g~b is allowed, 
then so will h*g~b, but without Leibniz equivalence--whose possibility 
does not seem to arise in Einstein's statements of the hole argument--one 
generates the extremely undesirable form of indeterminism claimed. 

The virtue of the passive account is that it enables an essentially literal 
use of Einstein's wording in the first three version of the argument. Its vices 
are that it cannot make sense of the fourth version or of the footnote to the 
second version and that it portrays the Einstein of 1913-1915 as confused 
by a beginner's mistake on an issue that attracted his exhaustive attention 
for several years. The virtues of the active account are that it is compatible 
with all four versions of the argument and that it portrays Einstein's argu- 
ment as exploiting a property of actively generally covariant theories of 
such importance that it warrants inclusion in even the brief gloss of the 
modern view of space-time theories of Sec. 2 above. The great vice of the 
active account, one that it shares to a lesser extent with the passive 
account, is that it supposes wore levels of mathematical structure than are 
explicitly invoked in any of Einstein's four accounts of the hole argument 
or in his later accounts of its resolution. For it requires us to assume that 
Einstein had a reasonably clear picture of the three levels M1, M2, and 
M3 of the modern view and that his argument really manipulated structure 
in M2, even though his explicit formulas only contain structures that 
belong in M3. 

If, however, we read Einstein's presentations of the hole argument in 
terms of canonical Einstein formulations, then we can retain all of the 
above virtues and dispense with all of the above vices. The resulting 
reading of the argument agrees with the general picture of the active 
account. The argument demonstrates that a generally covariant gravitation 
theory of the type envisaged by Einstein in 1913 and 19t4 suffers from the 
very undesirable form of indeterminism if one fails to require Leibniz 
equivalence as well. The reading is 'compatible with all four versions of the 
argument. It requires only one level of mathematical structure, the level E2 
of the canonical Einstein formulation, and therefore does not need to read 
Einstein's matrices gik as representing another suppressed level of mathe- 
matical structure mediating between it and physically possible space-times. 
The argument now becomes: 
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Hole Argument (Canonical Einstein Form) 
Thesis: In a generally covariant gravitation theory with models 
(A, gik, Tik), without Leibniz equivalence, a radical indeterminism 
arises, for if "the hole" L is a matter-free neighborhood of a physically 
possible space-time, then a complete specification of the field and 
source mass distribution outside L will not determine the field within 
L.  27 

Proof 

1. Let T = (A, gi,, T~k) be a model of the theory in which Ti~ = 0 for 
the neighborhood L of A. Let f be a map from A to A which is the 
identity for points outside L and smoothly comes to differ from it 
within L. Then, from general covariance, the transform of T under 
f,, T ' =  (A, g~k, T~) ,  is also a model of the theory. 

2. The two models T and T' establish the indeterminism claimed, for 
they both represent the same source mass distribution and gravita- 
tional field outside L, but different gravitational fields within L. To 
see this, note that we have 

T~k = T~k 

everywhere and g~k--g~x outside L; but inside L 

gik # g'ik (3) 

3. The differing functional forms of g~k and g'ik in L do not automati- 
cally entail that they represent different physically possible gravita- 
tional fields. Whether they do depends on how the models T and 
T' of E2 are taken to be related to physically possible space-times 
in El .  Consider two ways in which we can relate the models Tand  
T' to physically possible space-times in El :  

(a) Each 4-tuple x i of T and each 4- tuplefxi= x '~ of T' represent 
the same space-time point in El .  Then g~ and g~k do repre- 
sent the same field. 2s 

27 Notice that I state the less general form of the argument as given by Einstein. It deals with 
the determination of the gravitational field by source mass distributions and boundary con- 
ditions in a gravitation theory of the type of general relativity. The more general form, 
sketched in Sec. 2, applies to generally covariant theories of any type. Note also that the 
modern version argues for Leibniz equivalence in a generally covariant theory, where 
Einstein's version argues for the unacceptability of general covariance without considering 
the possibility of Leibniz equivalence as an escape. 

28 Why Einstein readily accepted this is not entirely clear to me. Certainly in this case both 
models will attribute identical observables to the same space-time points of El. Perhaps, 
this fact, with a dash of verificationism, is sufficient for the claim. 
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(b) Each 4-tuple x t of T and each 4-tuple x ~ of T' (both having 
the same numerical values) represent the same space-time 
point. Then gi~ and g'~ represent different physically possible 
gravitational fields. For under this specification both models 
T and T' assign the same 4-tuples of reals to the same points 
of the physically possible space-time of El ;  that is, they 
employ the same coordinate system. But now, in this same 
coordinate system, T and T' assign different matrices of 
values gik and g'~k to each point of the physically possible 
space-time. 

Part 3 of the proof contains the most subtle part of the argument. Part 3b 
explains why Einstein required the curious reading of the inequality (3) in 
the footnote to the second version. Part 3a corresponds to the claim of the 
fourth version that G(x) and G'(x') describe the same gravitational field. 
Part 3b corresponds to his claim that G(x) and G'(x') are different gravita- 
tional fields represented in the same coordinate system. 

5.2. The Point-Coincidence Argument 

The natural escape from the hole argument is Leibniz equivalence. It 
requires that the two matrices gi~ and g~k represent the same field and 
defeats the indeterminism. It forces the models T and T' above to be coor- 
dinated to the space-times of E1 by 3a and not 3b or any other coordina- 
tion scheme. Loosely speaking, Leibniz equivalence asserts that those 
properties of points of the number manifolds relevant to this coordination 
are only those inherited directly from the metric and other fields defined on 
the number manifolds. Thus when we change those fields by a transforma- 
tion, the coordination scheme must be altered to compensate exactly in 
accord with 3a. Perhaps a result like this is what Stachel, ~47) Sec. 4, has in 
mind when he notes that Einstein's "main difficulty here was to see that the 
points of the space-time manifold (the 'events' in the physical interpreta- 
tion) are not individuated a priori but inherit their individuafion, so to 
speak, from the metric field." 

The availability and need for this escape from the hole argument's 
indeterminism may not have dawned on Einstein until as late as Novem- 
ber 1915, when he was deeply embroted in a renewed search for generally 
covariant gravitational field equations for general relativity. By the end of 
the month, he had punished the generally covariant field equations of the 
modern theory and this escape had been described in his correspondence 
the following month. The escape came in the form of the "point- 
coincidence" argument, whose classic statement is given in Einstein, (9) 
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pp. 117-118. There, no explicit connection is made to the hole argument. 
But Einstein's discussion of the point-coincidence argument in his contem- 
porary correspofidence makes very clear that this escape was its purpose. 
See Einstein to P. Ehrenfest, 26 Dec. 1915 and 5 Jan. 1916, as quoted in 
Norton, (41~ and Einstein to M. Besso, 3Jan. 1916 and Speziali, (45) 
pp. 63-64. 

The starting point of the argument, as stated in the letter to Besso, 
was the assumption: "Reality is nothing but the totality of space-time point 
coincidences"; or, more cautiously, in the published 1916 version: "All our 
space-time verifications invariably amount to a determination of space-time 
coincidences." His example included the coincidence of moving material 
points for a universe in which everything could be built from the motion 
of such points and also measuring operations. These coincidences are 
preserved under arbitrary coordinate transformation, so that the physical 
referent of any structure like the gik of the hole argument must be the same 
as that of the transformed gi~. In the words of Einstein's December letter 
to Ehrenfest: 

If two systems of g,~ (or ~more] gen.[erally], variables 
used for describing the world) are so constituted that one can 
obtain the second from the first merely through a space-time 
transformation, then they refer to exactly the same thing [v611ig 
gleichbedeutend ]." 

The argument has been read passively, corresponding to the passive 
account of the hole argument, and actively, corresponding to the active 
account of the hole argument. The passive account takes the thesis to be 
that the matrices gi~ and g~k of M3 both represent the same coordinate-free 
geometric object gab in M2. As before, its virtue is that it stays fairly close 
to a literal reading of Einstein's words. Its vice is that it makes very little 
sense. Why does Einstein need to introduce controversial assertions about 
reality consisting of space-time coincidences to argue for a thesis that states 
a mathematical definition? The active account takes the thesis of the point- 
coincidence argument to be that both g~b and h*g,b of M2 represent the 
same field in M1. That is, its thesis is just active Leibniz equivalence. Its 
virtue is that it makes the thesis of the point-coincidence argument an 
insightful response to the hole argument and one which requires justifica- 
tion which might well run along the lines Einstein offers. Its vice, one that 
it again shares with the passive reading to a lesser degree, is that it requires 
us to assume that Einstein was indirectly manipulating the structures gab 
and h*g~b of a suppressed mathematical level M2 by manipulating the only 
mathematical structures explicitly present, those of M3. 

Once again, reading the point coincidence argument in terms of 
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canonical Einstein formulations allows us to retain all the above virtues 
and dispense with all the vices. The argument is simply for Leibniz 
equivalence and is: 

Point-Coincidence argument (Canonical Einstein form) 

Thesis: Leibniz equivalence, which asserts, in the case of general 
relativity: if T=  (A, g~, T~k) and T ' =  (A, g'~k, T'i~) are models in E2 
of general relativity related by some coordinate transformation, then 
they both represent the same space-time in El.  

Justification. Our ontology should be limited to observables. The 
observables are just space-time coincidence which are preserved under 
coordinate transformation between T and T'. Therefore T and T' 
represent the same observables and thus the same space-time. 29 

Reading Einstein's accounts of these two arguments in terms of 
canonical Einstein formulations provides some relief from another puzzle of 
this episode. John Earman and I ~4) have urged that one conclusion to be 
drawn from the two arguments concerns traditional questions in 
philosophy of space and time. They can be construed as strong arguments 
against that version of space-time substantivalism which urges the inde- 
pendent existence of the physical structure represented by each of the 
manifolds of M2. In his correspondence, Einstein urged that the resolution 
of the hole argument depended in part on the insight that "the reference 
system signifies nothing real" (to Ehrenfest, 26 Dec. 1915) and "the [coor- 
dinate] system K has no physical reality" (to Besso, 3 Jan. 1916). Read 
canonically, this assertion now is much closer to the denial of space-time 
substantivalism, for it really amounts to the denial of physical significance 
to a coordination of any individual number manifold of E2 to the struc- 
tures of E 1 where the number manifolds of E2 play an analogous role to 
the manifolds of M2. 3° 

Finally, I recall that the distinction between a covariance principle and 
Leibniz equivalence as maintained throughout this paper is not one that 
Einstein himself used, even though it was the crucial issue for his hole and 

29 1 have pointed out with John Earman (4) that the extreme verificationism of this argument  
might have found favor in 1915 and 1916. But  modern readers wilt surely find that the hole 
argument, with its threat of radical local indeterminism, carries more weight, and thus it is 
now unfortunate that the hole argument  was not even mentioned in the much read 
Einstein. (9t 

30 The other point stressed by Einstein in this context is: "There is no physical content in two 
different solutions G(x) and G'(x) existing with respect to the same coordinate system." (to 
Besso, 3 Jan, 1916). I take this as a reminder that Leibniz equivalence forbids coordinate 
scheme 3b in the hole argument.  
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point-coincidence arguments. Rather, Einstein's requirement of general 
covariance after 915 is the same as the conjunction of my versions of the 
requirements of general covariance and Leibniz equivalence. Thus 
throughout the episode, Einstein takes the issue to be the acceptability of 
general covariance. The point-coincidence argument is never presented as 
an argument for Leibniz equivalence but as showing that "this requirement 
of general covariance, which takes away from space and time the last 
remnant of physical objectivity, is a natural one" (Einstein, (9) p. 117). 

6. COVARIANCE PRINCIPLES AND RELATIVITY PRINCIPLES 

6.1. The Modern View 

Einstein's standard accounts of special and general relativity theory 
stress the fundamental importance of relativity principles, which are statad 
as covariance principles. But, as I pointed out in the introduction, the 
modern view of these two theories finds it difficult to see any physical 
content in covariance principles, let alone characterize them as relativity 
principles or, for that matter, even to find a sense in which general 
relativity as a theory generalizes the principle of relativity of inertial motion 
of the special theory. 

Passive general covariance is the case usually discussed, such as in the 
references cited in Sec. 1. It is a purely mathematical property whose 
satisfaction arises automatically from the use of the modern formulation. 
As I mentioned in Sec. 2.4, active general covariance and active Leibniz 
equivalence have only recently become a standard feature of newer treat- 
ments of general relativity, although their importance and significance are 
rarely stressed. Often they are ignored. Neither active nor passive principles 
seem to have much to do with relativity principles, for they can be proper- 
ties of any space-time theory, formulated in the modern way, including 
those with absolute states of rest, in clear violation of even the relativity of 
inertial motion. 

The principle of relativity of inertial motion in special relativity is the 
only unproblematic relativity principle of modern formulations of relativity 
theory. It does not arise as a fundamental postulate of special relativity, but 
as an important theorem dependent on the symmetries of the Minkowski 
metric. To state the principle, we recall that an inertial frame of reference 
in special relativity is a congruence of parallel timelike geodesis of the 
Minkowski metric. Then: 

Principle of Relativity (Special Relativity): If (M, g~b, Tab) is a 
model of a special relativistic theory and F and F '  are any two inertial 
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frames, then the theory satisfies the principle of relativity only if there 
exists a member L of the symmetry group of the Minkowski metric gab 
such that 

(a) L maps F o n t o  F' and 

(b) ( M ,  g~b, L*T~b) is also a model of special relativity. 

The symmetry group of a Minkowski metric g,b is the group of all 
automorphisms which preserve gab under the carry-along; that is, each 
member L satisfies L'gab = gab. This group, of course, is just the extended 
Lorentz group if M is topologically R 4. Note that condition (a) is satisfied 
automatically due to the properties of the Minkowski metric. Whether 
condition (b) is satisfied depends on the laws of the special relativistic 
theory in question. 

What motivates the identification of the above principle as a princip e 
of relativity is the picture of a Minkowski space-time (M, gab) prividng a 
passive background space-time against which physical processes unfold. 
Condition (a) reminds us that the Minkowski space-time itself designates 
no inertial frame as preferred. For any property endowed upon an inertial 
frame F by the Minkowski metric must also be endowed by the metric on 
any other inertial frame F', since F and F '  are related by a symmetry of the 
metric. Condition (b) stipulates that the additional structures defined on 
the space-time, such as Maxwell fields or mechanical fluids, likewise do not 
distinguish any inertial frame as preferred. For if an allowed structure Tab 
distinguishes the frame F as preferred, then for any other inertial frame F',  
there exists a corresponding allowed structure L*7~b which distinguishes F' 
as preferred, (To illustrate, if Tab represents a homogeneous dust cloud 
whose particles are moving inertially, then the preferred frame is just the 
cloud's rest frame.) 

The currently most popular vehicle for extending the definition of 
relativity principles to other theories, in particular general relativity, is the 
notion of absolute object, best known through the work of Anderson. (1) 
This notion is the best candidate for providing precise expression for 
Einstein's (13) own claim (p. 54) that the crucial aspect of the transition to 
general relativity is the elimination of any property of space-time absolute 
in the sense that it is "independent in its physical properties, having a 
physical effect, but not itself influenced by physical conditions. ''31 One 
divides the geometric objects of a space-time theory into the absolute 
objects A I , A 2  .... and the dynamic objects D~,D2,.., One pictures the 

3~ See also, Einstein, 11~1 Chap. XXI; Einstein, 1~5) p. 260. 
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absolute objects in conjunction with the space-time manifold as providing 
the background space-time canvas (M, A,, A2 .... ) against which dynami- 
cal processes unfold, the latter represented by the dynamic objects. In 
special relativity, the Minkowski metric is an absolute object and such 
structures as the Maxwell field are dynamic objects. Intuitively speaking, 
the defining property of absolute objects is that they remain unaffected by 
the dynamical processes of the theory. This is usually now rendered by the 
requirement that they be the same (i.e., diffeomorphic) in all models of the 
theory, and much of the recent work on absolute objects focuses on 
explication of this notion. See, for example, Friedman, (24) Chap. 2, and 
HiskesJ 271 But whether this work has succeeded in giving precise expres- 
sion to the notion of absolute object remains undecided. See, for example, 
Friedman, ~24) p. 58, footnote 9, and Toretti. (52) In any case, with absolute 
and dynamic structure identified, one then defines a relativity principle 
analogous to the one defined above, but using the symmetry group of the 
background space-time (M, A s, A2 .... ). The case of general relativity is 
degenerate, since it has no absolute objects, so that the background space- 
time is just the manifold M. The symmetry group of M is the group of all 
automorphisms, which is far larger than the Lorentz group of special 
relativity. In this sence it is claimed that general relativity realizes an 
extension of the principle of relativity. 

6.2. The Einstein View 

The situation looks very different if we approach special and general 
relativity through canonical Einstein formulations. They provide a precise 
sense in which Einstein's covariance principles have physical content and a 
means of connecting them with relativity principles. But, as I shall note in 
Sec. 6.3, I do not think that they provide a complete vindication of 
Einstein's claims. 

We saw in Sec. 4.4 that the number manifolds of the Einstein formula- 
tion--open sets of R4~contain significantly more structure than the 
manifolds of the modern view. That additional structure, under its canoni- 
cal physical interpretation, provides for preferred states of motion and the 
like, whose reality we seek to deny in relativity principles. The natural 
mechanism for denying physical significance to this structure is a combina- 
tion of covariance principles and Leibniz equivalence principles. Under 
these principles, the models of a space-time theory are divided into 
equivalence classes each of which represents the same physically possible 
space-time. It then follows that the physically significant properties of a 
model and, in particular, its number manifold must be those that are 

825/I9/'10-9 
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common to every member of the equivalence class to which it belongs. 
That is: 

The physically significant properties of a model's number manifold are 
exactly those which are invariant under the theory's covariance group. 

Figuratively speaking, a theory's covariance and Leibniz equivalence prin- 
ciples "wash out" from its model those properties with no physical 
significance. The strategie is precisely the one employed in Sec. 2.4 where it 
was noted that the combination of active general covariance and active 
Leibniz equivalence provides a precise and systematic method of dis- 
tinguishing the physically significant properties of a space-time theory's 
models. Here, however, the "washing out" is applied to structures of poten- 
tially greater physical interest, which include preferred frames of reference. 
Notice that the strategy is by no means new. It is the essential idea of 
F. Ktein's Erlangen program in which geometric structures are charac- 
terized as the invariants of groups. 

We shall now see that the application of this mechanism generates a 
sequence of covariance principles~-the special principle of relativity, the 
principle of equivalence, and the general principle of relativity--which are 
also relativity principles and which take us belong Einstein's own pathway 
from special to general relativity. The sequence begins with special 
relativity. 

Special Relativity 

Under the canonical physical interpretation, the number manifold R 4 

of a typical model ( R  4, tlik, Tik ) of special relativity automatically asserts 
the existence of many undesirable physical properties in the space-time it 
represents. The space-time is homogeneous; each of its points are intrinsi- 
cally different, since, for example, (0, 0, 0, 0 )  is intrinsically different from 
(15, 0, 27, 1 ). The space-time is spatially anisotropic; each spatial direc- 
tion in the space-time is intrinsically different, since, for example, the 
direction of increasing xl in R e is intrinsically different from that of 
increasing x2. Finally, the space-time has a preferred rest frame, 
represented by the congruence of x4 curves in R 4, in direct violation of the 
principle of relativity. 

The Lorentz covariance of the theory, with Leibniz equivalence, 
"washes out" the physical significance of all this unwanted structure. Since 
the extended Lorents group contains translations and rotations, the 
inhomogeneity and spatial anisotropy of each model is denied physical 
significance. Correspondingly the rest frame of each model is not a Lorentz 
invariant and thus is not physically significant. But the set of inertial frames 
of reference of each model (i.e., the set of congruences of parallel timelike 
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geodesics) is preserved under Lorentz transformation and thus has physical 
significance. In this way the requirement of Lorentz covariance in conjunc- 
tion with Leibniz equivalence becomes a physical principle which embodies 
the principle of relativity of special relativity. Einstein, of course, commonly 
states this relativity principle as a requirement of Lorentz covariance. 32 

General Relativity 

Throughout  the corpus of his writings on relativity theory, Einstein 
portrays the great advance in the transition from special to general 
relativity as the elimination of the "inertial system," an advance that was 
achieved by general covariance. 33 Recalling the interpretation of coordinate 
system in Einstein's sense, this claim has a natural reading within the 
canonical formulation of relativity theory. Lorentz covariance has washed 
out the physical significance of much of the intrinsic structure of the 
number manifolds of special relativity. But the Lorentz-invariant set of 
inertial frames of each number manifold retain physical significance. The 
covariance group of general relativity, in the canonical Einstein formula- 
tion, is the general group of smooth transformations. Under this group the 
number manifolds of the theory's models have essentially no invariants 
beyond their topological properties. Thus the theory's general covariance, 
in conjunction with Leibniz equivalence, deprives essentially all the intrin- 
sic structures of the theory's number manifolds of physical significance; 
most notably this includes its inertial structure. I take this result to be the 
one Einstein had in mind in his well-known representation of the 
generalized principle of relativity as the principle of general covariance, 34 
which implicitly must contain Leibniz equivalence as well. 

Principle of Equivalence 

In Einstein's standard developments, he halts at an intermediate in the 
transition to general covariance and general relativity, the principle of 
equivalence. The version of the principle which is relevant here is the one 
which represents it as an extension of the covariance group of special 
relativity from the Lorentz group to one that includes uniform proper 
acceleration. 35 This extension can be defined more precisely in the follow- 

32 More precisely, he states it as the requirement of Lorentz covariance for the laws of the 
theory, which entails Lorentz covariance, as defined in Sec. 4.3, when embedded in the 
canonical Einstein formulation of special relativity. Leibniz equivalence is also obviously 
intended. See, for example, Einsteim 16) p. 340, Einstein, c~1) Chap. XIV, and Einstein, (16~ 
p. 283. 

33 One of the earliest is Einstein, (51 p. 1260 (footnote) and one of the latest Einstein, ~s) p. xv. 
34 For example, in Einstein ~9) and Einstein, ~m Chap, 23. 
35 He writes in Einstein, (1°~ p. 641, "The requirement of general covariance of equations 

embraces the principle of equivalence as a quite special case." 
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ing way. One can represent Lorentz transformations as boosts to uniform 
motion since, under a Lorentz transformation, the natural rest frame of a 
number manifold, its congruence of x 4 curves, is mapped onto a con- 
gruence of curves in the new model which always represents an inertial 
frame, but not necessarily the new model's rest frame. Under transforma- 
tions introduced in the extension, the natural rest frame of a model T is 
mapped onto a frame in the new model T' that has at most uniform proper 
acceleration. 

The heuristic value to Einstein of the principle was the following. If the 
rest frame of the original model T was inertial, then the rest frame of the 
transformed model T' would not be. Thus free bodies would fall with 
uniform acceleration with respect to the natural rest frame, just as though 
they were under the influence of a homogeneous gravitational field. This 
showed Einstein that gravitation was already intimately connected with the 
space-time structure of special relativity and that the further generalization 
of the principle of relativity would automatically involve a theory of 
gravitation. See Norton ~4°~ for further discussion. 

The term "equivalence" of the principle of equivalence is used in 
precisely the sense of Leibniz equivalence. For it tells us that the models T 
and T' above both represent the same physical space-time, even though 
one appears to contain a homogeneous gravitational field. In Einstein's (13) 
words (p. 56), speaking of an inertial coordinate system K and uniformly 
accelerated coordinate system K': "The assumption of the complete 
physical equivalence of the systems of coordinates, K and K', we call the 
'principle of equivalence'...." 

The major elements discussed above of the transition from Lorentz to 
general covariance are summarized by Einstein (17) in his Autobiographical 
Notes, pp. 71-73, where he conjectures on the prospects of attempts to 
discover satisfactory gravitation theories within special relativity and, in 
particular, the hopelessness of arriving at a theory equivalent to general 
relativity: 

If one had stopped with the special theory of relativity, i.e., with the 
invariance under the Lorentz group, then the field law R~k = 0 [vanish- 
ing of the Ricci tensor] would remain invariant also within the frame 
of this narrower group. But, from the point of view of the narrower 
group, there would be no offhand grounds for representing gravitation 
by a structure as involved as the symmetric tensor g~k. If, nonetheless, 
one would find sulfcient reasons for it, there would then arise an 
immense number of field laws out of quantities g~k, all of which are 
covariant under Lorentz transformations (not, however, under the 
general group). Even if, however, of all the conceivable Lorentz- 
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invariant laws, one had accidentally guessed precisely the law belong- 
ing to the wider group, one would still not have achieved the level of 
understanding co/~responding to the general principle of relativity. For, 
from the standpoint of the Lorentz group, two solutions would 
incorrectly have to be viewed as physically different if they can be trans- 
.formed into each other by a nonlinear transformation of coordinates, i.e., 
if from the point of  view of  the wider group they are merely different 
representations of the sam- field. (My emphasis.) 

What is particularly striking about this passage is that it shows clearly that 
Einstein's covariance principles automatically assume Leibniz equivalence. 
He allows that in a Lorentz-covariant gravitation theory, two models 
("solutions") represent the same physical field only if they can be Lorentz- 
transformed into one another. In a generally covariant theory, the same 
holds of models which can be transformed into one another by arbitrary 
coordinate transformations. 

6.3. Problems 

Use of the canonical Einstein formulation shows us that Einstein's 
covariance principles are physical principles akin to the active principles of 
te modern view, even though formally they look like the physically vacuous 
passive principles. Moreover, they have the character of relativity prin- 
ciples, for they deny physical significance to intrinsic manifold structure 
taken canonically to represent preferred states of motion. But there are two 
serious problems for the account offered. 

First, the accound does not establish a sufficiently strong connection 
between the covariance and relativity principles for us to be able to charac- 
terize general relativity as the theory that extends the principle of relativity 
to accelerated motion. Both Newtonian space-time theory and special 
relativity admit generally covariant Einstein formulations. So, if general 
covariance is all there is to the generalized principle of relativity, then both 
these space-time theories satisfy it. It would seem that if the various space- 
time theories are to have their own characterize relativity principles, they 
must be defined in terms of the properies of the structures defined on the 
manifold in each theory, much as the modern view introduced the principle 
of relativity to special relativity by means of the symmetries of the 
Minkowski metric. The best attempt at defining a relativity principle 
characteristic of general relativity uses the notion of absolute object, but 
resorting to Einstein canonical formulations does contribute some elucida- 
tion to the situation described in Sec. 6.1. 

Another way to see the difficulty is to note that the relativity principles 
of the Einstein formulations are not robust under reformulation to the 
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modern view, where active covariance principles no longer have the charac- 
ter of relativity principles. This stands in contrast to such results as energy 
conservation and the various field equations which have essentially the 
same meaning and importance in both Einstein and modem formulations. 
It suggests that the connection between covariance and relativity principles 
of the Einstein formulation is an idiosyncrasy of that formulation. To 
modern eyes, the problem lies in the use of number manifolds rather than 
general differentiable manifolds in the Einstein formulation's models. This 
unfortunate choice, pressed on Einstein by historical circumstances, forced 
him to grapple with a problem we no longer need address. His manifolds 
contained much intrinsic structure of no physical significance and the 
coherence of the theory demanded a systematic denial of physical 
significance to that structure. Einstein completely solved that problem with 
general covariance, but it is not a problem we even need now address, since 
the modern approach is to use differentiable manifolds without such super- 
fluous intrinsic structure. 

The second problem concerns the claim that Einstein's covariance 
principles are physical principles. On weveral occasions, under pressure 
from critics, Einstein did guardedly allow the physical vacuity of general 
covariance. Einstein, (~2) p. 242, for example, concedes the point to 
Kretschmann (33) but insists nonetheless on the heuristic value of general 
covariance by claiming ~ that the complexity of a generally covariant 
formulation of Newtonian gravitation theory would render it unworkable 
practically. (The point was unfortunate in the light of Cartan's later 
relatively simple generally covariant formulation of Newtonian gravitation 
theory.) Einstein, (14) pp. 90-91, also declared: "That there is, in general 
relativity, no preferred space-time coordinate system uniquely bound to the 
metric, is more a characteristic of the mathematical form of this theory 
than its physical content." Such remarks contradict the overwhelming 
importance Einstein attributed to general covariance elsewhere. But if they 
represent his true beliefs, then the account I offer here of the physical 
significance of his covariance principles cannot accord with his own 
account. For further discussion of Kretschmann's objection and Einstein's 
response, see Norton. (54) 

7. EINSTEIN THE NON-MATHEMATICIAN? 

I have portrayed Einstein's treatment of general relativity as employ- 
ing a much simpler set of mathematical tools than is presently used. But 
now recall that Einstein's deprecation of his own mathematical abilities is 
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legend. 36 Is it possible that his use of simpler mathematical tools is a 
symptom of his supposed lack of facility with mathematics? Would not 
another physicist with a modicum of mathematical ability, in all likelihood 
have treated the theory much more as we do today, interposing explicitly 
a second mathematical level between E l  and E2, and thereby shrugging off 
the hole argument as a trivial confusion? I answer emphatically, no. On the 
contrary I maintain that the devices attributed here to Einstein represented 
the "state of the art" application of differential geometry to physical 
problems in the 1910s. 

A claim about  what constitutes "state of the art" in the 1910s is 
difficult to substantiate. What we would hope to find is a treatment of 
identical material written in the 19t0s by a mathematician who is at least 
competent, but ideally eminent. And that is precisely what we have! David 
Hilbert, the mathematician who proclaimed that physics is too difficult to 
be left to physicists, 37 at the height of his powers in G6ttingen, then the 
center of the mathematical universe, presented a two-part communication 
to the G6ttingen Academy of Science in 1915 and 1916 on the foundation 
of general relativity (Hilber(26~). Of course, Hilbert's work outshines 
Einstein's in its mathematical brilliance. Hilbert amost effortlessly allows an 
action principle to generate the same gravitational field equations that cost 
Einstein three years of agonizing labor. 

But Hilbert's and Einstein's work do not differ in basic mathematical 
machinery, and his paper can be read as dealing with structures in E 1 and 
E2 alone. Like Einstein, Hilbert (p. 395) introduces four space-time coor- 
dinates as primitives, with no mention of a manifold akin to those of M2. 
He introduces the ten "gravitational potentials" g~v, which are not said to 
represent another level of mathematical structure; rather they have "sym- 
metric tensor character with respect to an arbitrary transformation of the 
world-parameters [coordinates] w,." Hilbert assigns a canonical physical 
interpretation to his coordinate systems, just as Einstein did. For example, 
his x4 coordinate is a time coordinate, so hat he urges on p. 57 that the set 
of coordinate transformations be restricted to those that maintain the tem- 
poral order induced by the x4 coordinate. This would ensure that "two 
world-points, lying on the same time-line, can stand in the relation of cause 
and effect to one another, and that it should then not be possible to trans- 
form such world-points so that they are simultaneous." 

Finally, on pp. 58-63, Hilbert sets up and resolves his own version of 
the hole argument, using only mathematical structures of E2. He considers 
the four electrodynamic and then gravitational field potentials qs and g~,, 

~6 See, for example, McCormmach.  ~3~ 
3v According, for example, to Freudenthal.  123) 
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generated by a lone electron at rest, under a coordinate transformation 
that is the identity for x 4 less than or equal to zero, but smoothly differs 
from it otherwise. The field quantities g~  and qs agree with the transformed 
quantities g'~ and q; in the past of the hypersurface x4 = 0, but disagree in 
the future. This does not represent a violation of the "causality principle" 
under which the past would not determine the future, for he makes a 
stipulation equivalent to Leibniz equivalence: "in physics we must 
designate as physically meaningless an assertion which does not remain 
invariant under each arbitrary transtbrmation of the coordinate system" 
(p. 61). His paradigm example of an invariant assertion is one made with 
respect to a Gaussian coordinate system, which is specially adapted to the 
fields present, as opposed to assertions relating to arbitrary coordinate 
systems. What he does not do is shrug off the threatened indeterminism of 
the hole argument by saying that the pairs of field quantities g~  and g~v 
represent by definition a coordinate-free geometric object of another level 
of mathematical structure. 

8. CONCLUSION 

The realization that Einstein used open sets of R 4 where we now use 
abstract differentiable manifolds in the formulation of space-time theories 
solves a number of outstanding puzzles surrounding his use of coordinate 
systems and covariance principles. He accorded the extra structure of his 
number manifolds a canonical physical interpretation which included 
frames of reference and relative spaces. So we need no longer try to decide 
whether Einstein intended the term coordinate system, in a particular con- 
text, to refer to what we now call a coordinate chart, frame of reference, or 
relative space. He intended them all at once. We also need no longer worry 
whether the transformations he invoked should be read passively or 
actively in the sense of Sec. 2. In the simpler mathematical structure of his 
space-time theories no such distinction could be made or was needed. We 
saw that this greatly simplifies analysis of his hole and point-coincidence 
arguments. 

Finally we saw that covariance/Leibniz equivalence principles display 
a remarkable tenacity in claiming physical content. I showed how 
Einstein's original covariance principles were physical principles, for they 
made, for example, the contingent assertion that there is no physical coun- 
terpart to the mathematical differences between such structures as the 
matrix of values g~k and its transform g'tk in general relativity. Later work 
reconstrued such assertions as mathematical definitions by interposing a 
new level of mathematical objects between the matrices gi~ and glk and 
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physically possible space-times and then requiring that the two matrices by 
definition be just different representations of the same mathematical  object 
gab in the new level. While this maneuver  deprived covariance/Leibniz 
equivalence principles at one level of physical significance, what  was over- 
looked until quite recently was that  the maneuver  generated the need for 
a physically significant covariance/Leibniz equivalence principle to apply to 
the structures of the new mathematical  level. And the very same considera- 
tions, the hole an point-coincidence arguments,  which guided Einstein in 
his original analysis of  these principles now guide us again at the new level. 
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