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Quantum Measurements, Sequential and Latent

Robert H. Dicke!
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The results of a hypothetical experiment requiring a sequence of quantum
measurements are obtained retrospectively, after the experiment has been com-
pleted, from a single reading of an “apparatus register.” The experiment is carried
out reversibly and Schrédinger’s equation is satisfied until the terminal reading of
the register. The technique is idlustrated using a feasible method of measuring
photon spin as the quantum “object” observable and using the photon energy as the
“apparatus register.” The technique is used to discuss the “watchdog” effect, the
effect of repeated measurements inhibiting quantum jumps.

1. INTRODUCTION

Following von Neumann’s quantum measurement procedure,>* a
sequence of quantum measurements of an object’s observable results in a
sequence of “reductions of the wave function” of the object. Each
measurement is interpreted prospectively and the “reduction” is a sudden
change of the wave function to the eigenfunction determined by the
measurement. The reduction is represented by a projection operator acting
on the wave function. It is irreversible and is incompatible with the
Schrodinger equation. It halts the unitary (Hamiltonian) development of
the wave function which is then immediately restarted with the new
“reduced” wave function.

An alternative “latent measurement procedure” for making a sequence
of measurements is examined here, and photon polarization measurements
are used to provide a concrete and doable illustration of the technique.
Instead of a sequence of completed measurements, the results of a sequence
of incomplete or latent measurements are stored as a single sum in an
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“apparatus” register. The measurements are completed and their results are
obtained retrospectively at the end of the sequence from a single reading of
the contents of this register. This terminal reading results in a single
concluding reduction of the wave function.

As discussed later, the latent measurements are represented by unitary
operators acting on the wave function of a quantum system composed of
the “object” and the “apparatus”. Until this terminal reading of the
apparatus register, the whole sequence of latent measurements is reversible.
To simplify the discussion it is assumed that the eigenvalues of the “object”
and “apparatus” are discrete and nondegenerate.

Von Neumann’s procedure for making a single measurement consists
of two parts. First, the latent measurement is made. The quantum system is
enlarged to contain both the “object” and the measuring “apparatus.” The
wave function of this enlarged quantum system is initially ¥, = v, where
the wave function of the “object”, Y = Xc,u,, is expanded in eigenfunctions
of the observable of interest, and the wave function of the “apparatus” in
its “null” state is v,. A short, intense interaction between the object and the
apparatus induces a unitary transformation, U, of the combined wave
function and generates a one-to-one correlation of the eigenstates u, with
v, the “pointer” eigenstates of the apparatus.

y/:' UY’O:UZC;{M;CU():ZC;CU;CU;C (1)

This completes the 1st part of the procedure, the latent measurement.

The second part of von Neumann’s procedure is to read the “pointer”
eigenvalue p,. This determines the eigenstates v, and u, and the “object”
eigenvalue. The measurement is now completed, i.e. “developed,” and there
is the reduction of the wave function to the projected function

P ¥ =couv,; (2)

where P, is the projection operator for the u, state and |c,|? is the
probability of obtaining the kth result. After the completion of the
measurement by reading the “pointer” the “apparatus” is useless and is
eliminated from the quantum system. Until the “pointer” is read the latent
measurement is reversible, at least in principle. It is assumed that the
“pointer” can be read macroscopically.

2. SEQUENTIAL MEASUREMENTS, TWO METHODS

To simplify the discussion, consider a 2-level quantum object with the
observable S and the eigenvalues S, = +1, — 1. The eigenstates are |1, 2)
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and the eigenvalue equation is S |k > =S, |k ). Assume an “apparatus” with
the state function v(g) and the null state v, = constant. The initial state of
the combined quantum system is

Vo= 2cpvg k) (3)

The first and second terms of the Hamiltonian H= H,+ H,+ H,,, act on
the object and apparatus variables and the last term,

Hy = —CSq/o1, (4)

is an interaction which is switched on for a short time Jz. The coupling C is
great enough so that H,, is the dominant term in H when the interaction is
turned on. The unitary operator

U=exp[ —iH,, ot/h] =expliCSq/t] {5)
transforms ¥, into

WZ Ut[jo: UZC’kvo |k> :ECkvk [k>
where
Vi =100 expliCS,q/f] (6)

The “momentum” conjugate to the variable g, p = (#/i) /dq, serves as
the “pointer” or “register.” Its eigenvalues are

Pe=CS; (N

At this point a difference between the two measurement techniques
begins to develop. We first consider von Neumann’s procedure. The pointer
Pi is observed and a reduction of the state function to the projected
function

P ¥ =cpop [k — k) (8)

takes place, where P, = |k > (k] is the projection operator for k). After the
measurement the obsolete apparatus is rejected and the v, is eliminated
from Eq. (8). Also ¢, is eliminated to renormalize the reduced state vector.
The probability of obtaining the eigenvalue S, is ¢, |2

The next step in von Neumann’s technique is to use the Schrédinger
equation to evolve |k> over a time interval, A¢, into

Yy=TIk>=2dy;|j> )
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where
T=expl—iH, A4t/#] (10)

is unitary and d, is the matrix element {j| T |k). Equation (9) has the
same form as ¢, before the first measurement. The next measurement
requires the introduction of a new “apparatus” in its null state and gives
the result S; with the probability |d,,|* if the result of the first measurement
was S;. Thus the joint probability for obtaining the sequence §,,S; is
lcxl” |dyy|®. After another iteration, the probability of obtaining the
sequence of results S, S;, S; is

prob = |c;|* |dgl? le;l? (11)

The “latent measurement technique” requires the following procedural
changes: (1) Except for the last measurement in the sequence the projection
operation is omitted, (2} the “apparatus” is not rejected after the first
measurement but is used for the whole sequence, (3) the constant C in (4)
is replaced by (2" for the nth measurement and (4) H, is a function of p
only.

The change (3) encodes the whole sequence of results S;, S}, S;... as a
sum in the “apparatus register.” The requirement (4) makes the “momen-
tum” p a constant of the motion in the intervals between measurements
and preserves the memory of the previous measurements.

Under the “latent measurement method” the combined object-
apparatus system is evolved under a series of unitary transformation as
follows

Y= U, T'U,TU, ¥, {12}
where

U, =exp[i2"CSq/h] (13)

induces the latent measurement transformation and the Hamiltonian time
displacement transformations {7, 7”,...) have the form

T=exp[ —i{Hy+ H,) At/#] (14)
The apparatus Hamiltonian H, and the “register” observable p are
constants of the motion between the measurements. As discussed later, the
resuiting accumulated phase shift after the sequence of latent measurements

does not affect the probabilities and the term H, can be dropped from
Eq. (14).
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If the results from a sequence of observations were S, §;, S,,.., then
the terminal value of p,;, would be

Puji. = C(2S, +48,+ 85+ ---) (15)

and vice versa. Thus the numerical content of the register determines the
sequence of the eigenvalues of S. For » measurements there are 2" possible
histories joining ¥, and ¥ but p; determines a unique history and there
are no interference effects between histories if p,; is read from the register.
Owing to the uniqueness of the history, the term H, in Eq. (14) is dropped
for, as noted earlier, it only generates a phase shift.

Prior to reading the apparatus register, the state vector in Eq. (12) can
be written

?I:...U:-’ T’UzTU] ¥/0
:chzdkaeji...vkﬁ(q) > (16)

where

Vi (q) = vo explipy;: q/h] (17)

and p, ;, is given by Eq. (15).

¥ in Eq. (16), is a superposition, a sum over histories, each of which
represents a possible sequence of eigenvalues Sy, S;, S; = After reading the
register and obtaining the eigenvalue p, ;, , there is a reduction of the
apparatus function to the single term v,(¢) induced by a projection
operator P, ,; acting on v. The projection operator inserts zeros in all the
histories but one and the reduced function becomes

Pk,j,i... leckdkjejzi.. vkji.(q) 1 (18)

The result of interest is the probability of obtaining the reading Puji.» 1.€. the
sequence of eigenvalues S,, S;, S; . This is

Prob = fckdkjeji...|2 (19)

in agreement with Eq. (11).

One important difference between the two procedures concerns rever-
sibility. With the “latent measurement technique” the measurements are
reversible until the terminal reading of the register. ¥ can be converted into
¥, by operating on Eq. (12) with the Hermitian adjoint of the series of
unitary operators in Eq. (12).

A second important difference concerns interpretation. With the latent
measurement technique the results of an experiment, consisting of a
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sequence of measurements, are obtained retrospectively after the
experiment is completed. With the von Neumann technique the
measurements are interpreted prospectively, measurement by measurement.

3. PHOTON POLARIZATION MEASUREMENTS

As an example of sequential measurements of an observable of a two-
level “object” we shall consider the spin of a photon. The direction of
propagation of the photon (z) is chosen as the reference direction for
measuring the photon spin angular momentum. The states of angular
momentum +# are designated |+ > and |— ). They are also called +
circular polarization states.

We shall let the photon energy play the role of the “apparatus
register.” The photon is generated by a laser in a well defined energy state,
E,, the “apparatus null state.”

Disks cut from an anisotropic medium along an optic axis and orien-
ted normal to the z direction are used to transform the polarization of a
photon passing through the disks. A half-wave plate is such a disk which
retards the phase of a correctly oriented plane polarized wave by = radians
relative to the phase of the orthogonally polarized wave.

If a circular polarized photon passes through a half-wave plate, the
sign of the polarization is reversed. The change in the photon’s angular
momentum is transferred from the half-wave plate. If the disk is rotating
about the z axis with an angular velocity —ow, the energy =+ 2#w is trans-
ferred along with the angular momentum +# from the disk to the photon.
The use of a rotating half-wave plate to generate a frequency shift may
have been first discussed as a microwave technique.®

A combination of two half-wave plates, one rotating and one fixed,
Fig. 1, plays the role of the photon spin/energy correlater, This is represen-
ted by a unitary operator similar to U in equation (1). A spin eigenstate of
the photon is left unchanged by the correlater but the photon energy is
shifted by + 2w depending upon the spin state. The rotating disk in Fig. 1
need not be physically rotating. Electro-optical methods can be used to
generate equivalent or higher frequency rotations of an anisotropic optic
axis.

4. PHOTON POLARIZATION MEASUREMENT THEORY

It is convenient to use Pauli spin matrices in constructing a quantum
measurement theory for photon polarization. The technique is essentially
that of Poincare and predates quantum mechanics.
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PHOTON SPIN/ENERGY
CORRELATER

X
ROTATING DISK

HALF-WAVE PLATES

z

Fig. 1. Mechanism for producing a latent spin measurement of a photon. The transparent
disks are cut from an anisotropic material and have their thicknesses adjusted to make them
half-wave plates. One is rotating with an angular velocity —w and the other is stationary.
This mechanism couples the photon spin with a change in the photon’s energy.

The x, y, z coordinate axes are sometimes designated 1,2, 3 and the
corresponding Pauli matrices are ¢, 6, and 5. The 2 spin states |+ > are
eigenstates of g3, and o3|+ > = + |+ > The 2 plane polarized states |a)
and |b)> are defined to have their electric vectors along the x and y axes
respectively, and phases are so chosen that

l+>={lay+ilb)>}/2 (20)

The plane polarization states [a> and |b) are eigenvectors of o,.
The unitary operator

D(5,0)=cos 6 +ic,sind 21

characterizes an anisotropic disk oriented with its retardation axis in the x
direction. It operates on the state vector to represent the change in
polarization induced by the disk. The thickness of the disk is proportional
to ¢ and ¢ =n/2 for a half-wave plate. For a quarter-wave plate, 6 = n/4.
The state function of a circularly polarized photon is transformed into a
plane polarized state by D(rn/4, 0).

If the disk is rotated about the z axis by the angle o the operator
D(3, 0) becomes transformed into

D3, o) = R(x) D{6, 0) R{o)*

=¢0s & + 7 sin [ cos 20 — io4 sin 2a] g, (22)

where R(x)=exp[ —ixo;] is the rotation operator and R(x)* is the
Hermitian adjoint of R{«).
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For a half-wave plate rotating with an angular velocity —w
D(n/2, —wt)=ifexp(Ziotos)] o, (23)

This operator correlates the photon spin with the energy shift, but it also
flips the photon spin. To avoid the spin flip induced by ¢, the fixed half-
wave plate characterized by D(n/2,0)=1io, is added to the rotating disk
and the correlating operator (5) representing the latent spin measurement
takes the form

U=D(n/2,0) D(n/2, —wt)= —exp(—2iwtos)
= —[P_ exp{2icwt) + P exp(—2iwt)] (24)

where P, =|+ >{ +| are projection operators for the two-spin states. Note
that

Uv |+ > = —vexp(—2iwt) |+ > (25)

The photon energy is increased (decreased) by 2fiw for the spin
states + (— ).

Unitary transformations of U can be used to transform it into
operators representing latent polarization measurements of plane polarized
photons, or measurements of general elliptical polarization.

Following Eq. (13} we define

U,= —exp(—2"iwto;) (26)

and encode the results of a sequence of measurements in the photon energy
shift

AE=E—Ey=fo[(£), 2+ (+),4+(+);8+..] (27)

where (4 ), (£)3, (+}3,.. are the results of the sequence of spin
measurements.

A photospectrometer employing photon counters can be used to
measure the photon energy. This represents the reading of the “apparatus
register.” The photon is destroyed in the process but the experiment has
already been completed and the results are retrospectively available.

One important requirement is the consistency of repeated
measurements. Note that U, U, =exp(—6iwto,) and AE= +6#Aw which
implies that (+ ), = (£ ), and the two-spin measurements are in agreement.
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5. THE WATCHDOG EFFECT, AN EXAMPLE

The watchdog effect™® is the inhibiting effect of repeated observations
in suppressing quantum transitions. The transition to be examined is the
photon spin flip induced by a half-wave plate see Eq. (21).

We assume that the half-wave plate is composed of a stack of # thin
wafers. The unitary transition operator for each wafer is

D= D(n/2n, 0)=cos(n/2n) + ig sin{n/2n) (28)

If the incident photon spin state is |+ ) the spin state after passing through
m walfers is

Y =D(n/2n, 0)" |+
=cos(am/2n) |+ > + i sin(mm/2n) | — > (29)
The probability that the spin has not been changed is
prob = |cos(nm/2n)|? (30}

This expectation can be tested using this technique by inserting a latent
measurement, and the operator U in Eq. {24), after the mth wafer. The
photon energy is read after all » wafers have been passed and the wave
function is

W=D mUD™py |+ > (31)

If the energy measurement implies that the spin is (+ ), the term in Eq. (24)
with P_ does not contribute to ¥ and is dropped from U. Using the
relation P o, =0, P_,

Pioi|4+7=0 (32)

and only the cosine term in D™ {see Egs. (31) and (29)] contributes to
|+ > in ¥. The probability in Eq. (30) is confirmed. The situation is quite
different when a sequence of spin measurements is made. ‘

Motivated by the desire to observe the spin flip which must occur
when a photon transits a half-wave plate, a latent spin measurement is
made after passing each of the n wafers, a total of n measurements. The
combined effect of the wafers and measurements on the wave function is
given by

¥Y=U,D _U,DU Doy {+ > (33)

We first calculate the probability that (+ ) spin is obtained for each of
the n measurements. For this result to hold the term with the projection
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operator P_ can be dropped from each U, [see Eq. (24).] None of them
can contribute to the probability amplitude of the proper photon energy.
From Eq. (32) only the cosine term in each of the D’s contributes. The
probability is

prob = (cos(n/2n))*" (34)

Instead of our naive expectation that one and only one spin flip should
occur, the probability for no flip with n=10 is prob=0.781.

In similar fashion the probability that a single spin flip occurs after m
wafers is

prob = (cos(n/2n))*" ) (sin(n/2n))* (35)

For n=10, prob =0.196. Note that this result is independent of m.

The watchdog effect is primarily due to the sequence of latent
measurements. The completion of the measurements is not essential. To
show this we compute the probability of obtaining (+ ) spin after the nth
wafer while ignoring all the intermediate results. To do this we omit the
photon energy measurement and compute the expectation value of P,
using the wave function in Eq. (33). For n =10 this gives prob = 0.803, only
slightly greater than the result, 0.781, obtained when ail 10 (+) spins are
observed.

The reason for the watchdog effect is the disturbance of the phase
relation between the (+) and (—) parts of a superposition. The spin
measurement leaves the spin state undisturbed, but only if the photon is in
a spin eigenstate.

6. SUMMARY

Using the latent measurement technique, a quantum experiment con-
taining a sequence of quantum measurements is carried out reversibly,
Schrédinger’s equation being satisfied. After the experiment is finished it is
terminated irreversibly and the results of the measurements are obtained
and reported retrospectively from a single reading of an “apparatus
register.” This “reading” and the subsequent “reduction of the wave
function” is irreversible and violates Schrodinger’s equation. This is
unsatisfactory but less so than the multiple violations which occur with the
standard von Neumann procedure for which each measurement is irrever-
sible.

There is a further possible difficulty with the standard von Neumann
procedure. It has been suggested that it may not be possible to devise an
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“apparatus” for which a pointer reading can be made without disturbing
the “object™.!” This is not an issue with the latent measurement technique
for the experiment is finished before the “register” is read. The experimental
results are retrospectively available and the “object” is no longer needed.

The simplifying assumption that there are only two-object states can
be eliminated and this formalism can be generalized to any finite number of
discrete objects states.
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