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The results of a hypothetical experiment requiring a sequence of quantum 
measurements are obtained retrospectively,, after the experiment has been com- 
pleted, from a single reading of an "apparatus register." The experiment is carried 
out reversibly and Schrbdinger's equation is satisfied until the terminal reading of 
the register. The technique is illustrated using a feasible method of measuring 
photon spin as the quantum "object" observable and using the photon energy as the 
"apparatus register." The technique is used to discuss the "watchdog" effect, the 
effect of repeated measurements inhibiting quantum jumps. 

1. I N T R O D U C T I O N  

Following von Neumann's quantum measurement procedure,(1'2'3) a 
sequence of quantum measurements of an object's observable results in a 
sequence of "reductions of the wave function" of the object. Each 
measurement is interpreted prospectively and the "reduction" is a sudden 
change of the wave function to the eigenfunction determined by the 
measurement. The reduction is represented by a projection operator acting 
on the wave function. It is irreversible and is incompatible with the 
Schr6dinger equation. It halts the unitary (Hamiltonian) development of 
the wave function which is then immediately restarted with the new 
"reduced" wave function. 

An alternative "latent measurement procedure" for making a sequence 
of measurements is examined here, and photon polarization measurements 
are used to provide a concrete and doable illustration of the technique. 
Instead of a sequence of completed measurements, the results of a sequence 
of incomplete or latent measurements are stored as a single sum in an 
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"apparatus" register. The measurements are completed and their results are 
obtained retrospectively at the end of the sequence from a single reading of 
the contents of this register. This terminal reading results in a single 
concluding reduction of the wave function. 

As discussed later, the latent measurements are represented by unitary 
operators acting on the wave function of a quantum system composed of 
the "object" and the "apparatus". Until this terminal reading of the 
apparatus register, the whole sequence of latent measurements is reversible. 
To simplify the discussion it is assumed that the eigenvalues of the "object" 
and "apparatus" are discrete and nondegenerate. 

Von Neumann's procedure for making a single measurement consists 
of two parts. First, the latent measurement is made. The quantum system is 
enlarged to contain both the "object" and the measuring "apparatus." The 
wave function of this enlarged quantum system is initially ~0 = Or0 where 
the wave function of the "object", ~ = Zc~ uk, is expanded in eigenfunctions 
of the observable of interest, and the wave function of the "apparatus" in 
its "null" state is v0. A short, intense interaction between the object and the 
apparatus induces a unitary transformation, U, of the combined wave 
function and generates a one-to-one correlation of the eigenstates uk with 
vk, the "pointer" eigenstates of the apparatus. 

~ =  U~o = U~rckUkVo = ZCkUkVk (1) 

This completes the 1 st part of the procedure, the latent measurement. 
The second part of yon Neumann's procedure is to read the "pointer" 

eigenvalue Pk- This determines the eigenstates vk and uk and the "object" 
eigenvalue. The measurement is now completed, i.e. "developed," and there 
is the reduction of the wave function to the projected function 

P k ~P= CkUkVk (2) 

where Pk is the projection operator for the Uk state and [c~l 2 is the 
probability of obtaining the kth result. After the completion of the 
measurement by reading the "pointer" the "apparatus" is useless and is 
eliminated from the quantum system. Until the "pointer" is read the latent 
measurement is reversible, at least in principle. It is assumed that the 
"pointer" can be read macroscopically. 

2. SEQUENTIAL MEASUREMENTS, TWO METHODS 

To simplify the discussion, consider a 2-level quantum object with the 
observable S and the eigenvalues $1,2 = +1, - 1. The eigenstates are t l, 2)  
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and the eigenvalue equation is S lk)  = Sk [k). Assume an "apparatus" with 
the state function v(q) and the null state v0 = constant. The initial state of 
the combined quantum system is 

g*o = XCkVo [k ) (3) 

The first and second terms of the Hamiltonian H = Ho + / 4 ,  + H~n t act on 
the object and apparatus variables and the last term, 

Him = --CSq/rSt, (4) 

is an interaction which is switched on for a short time 6t. The coupling C is 
great enough so that Hin t is the dominant term in H when the interaction is 
turned on. The unitary operator 

U = exp [ - iHim (~ t/h ] = exp [iCSq/h ] (5) 

transforms g*o into 

~*= Ug*o = USCkVo Ik ) = SCKVk [k) 

where 

vk = Vo exp[iCSkq/h ] (6) 

The "momentum" conjugate to the variable q, p = (h/i) O/Sq, serves as 
the "pointer" or "register." Its eigenvalues are 

Pk = CSk (7) 

At this point a difference between the two measurement techniques 
begins to develop. We first consider von Neumann's procedure. The pointer 
Pk is observed and a reduction of the state function to the projected 
function 

Pk g*= CkVk [k ) ~ [k ) (8) 

takes place, where Pk = Ik) (k]  is the projection operator for Ik). After the 
measurement the obsolete apparatus is rejected and the v k is eliminated 
from Eq. (8). Also ck is eliminated to renormalize the reduced state vector. 
The probability of obtaining the eigenvalue Sk is I c ,  l 2. 

The next step in yon Neumann's technique is to use the Schr6dinger 
equation to evolve [k) over a time interval, At, into 

~9 = T [ k ) =  Xdk: [ j )  (9) 
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where 

T =  e x p [ - i H  o At~hi (10) 

is unitary and dkj is the matrix element (Jl T Ik). Equation (9) has the 
same form as ~'o before the first measurement. The next measurement 
requires the introduction of a new "apparatus" in its null state and gives 
the result Sj with the probability Jdk:j 2 if the result of the first measurement 
was Sk. Thus the joint probability for obtaining the sequence Sk, Sj is 
ickl 2 Idkjl z. After another iteration, the probability of obtaining the 
sequence of results Sk, S:, S~ is 

prob = Ickl = tdk:t 2 jei, l 2 (11) 

The "latent measurement technique" requires the following procedural 
changes: (1) Except for the last measurement in the sequence the projection 
operation is omitted, (2) the "apparatus" is not reiected after the first 
measurement but is used for the whole sequence, (3) the constant C in (4) 
is replaced by C2 n for the nth measurement and (4) H a is a function of p 
only. 

The change (3) encodes the whole sequence of results Sk, Sj, Si... as a 
sum in the "apparatus register." The requirement (4) makes the "momen- 
tum" p a constant of the motion in the intervals between measurements 
and preserves the memory of the previous measurements. 

Under the "latent measurement method" the combined object- 
apparatus system is evolved under a series of unitary transformation as 
follows 

where 

. . . .  U3T'U2TUt ~o (12)  

U,~ = exp[ i2"CSq/h ] (13) 

induces the latent measurement transformation and the Hamiltonian time 
displacement transformations (T, T',...) have the form 

T =  exp[ - i (Ho  + Ha) At~hi (14) 

The apparatus Hamiltonian Ha and the "register" observable p are 
constants of the motion between the measurements. As discussed later, the 
resulting accumulated phase shift after the sequence of latent measurements 
does not affect the probabilities and the term H a can be dropped from 
Eq. (14). 
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If the results from a sequence of observations were Sk, S/, sg,..., then 
the terminal value of Pkj~... would be 

Pkj,... = C(2Sk + 4Sj + 8S~ + . . . )  (15) 

and vice versa. Thus the numerical content of the register determines the 
sequence of the eigenvalues of S. For n measurements there are 2 n possible 
histories joining 5u0 and g~ but Pkj~... determines a unique history and there 
are no interference effects between histories ifpkji.., is read from the register. 
Owing to the uniqueness of the history, the term H~ in Eq. (14) is dropped 
for, as noted earlier, it only generates a phase shift. 

Prior to reading the apparatus register, the state vector in Eq. (12) can 
be written 

~J . . . .  U 3 T '  U 2 T U  1 gzo 

= ZckSd~jSeji . ,vkji .(q) li, } (16) 

where 

v gji. ( q ) = Vo exp [ ip ~ji.. q/h] (17) 

and Pkj.i... is given by Eq. (15). 
in Eq. (16), is a superposition, a sum over histories, each of which 

represents a possible sequence of eigenvalues Sk,  Sj, S~,... After reading the 
register and obtaining the eigenvalue Pk.ZL., there is a reduction of the 
apparatus function to the single term vkji.(q) induced by a projection 
operator Pkj.i.. acting on v. The projection operator inserts zeros in all the 
histories but one and the reduced function becomes 

Pkd, i... 7 t=  c~dkjeji...Vkji.( q) li. } (18) 

The result of interest is the probability of obtaining the reading Pkji.., i.e. the 
sequence of eigenvalues Sk, Sj, Si,... This is 

Prob = Ickdkjeji...I 2 (19) 

in agreement with Eq. (11). 
One important difference between the two procedures concerns rever- 

sibility. With the "latent measurement technique" the measurements are 
reversible until the terminal reading of the register. ~ can be converted into 
~U o by operating on Eq. (12) with the Hermitian adjoint of the series of 
unitary operators in Eq. (12). 

A second important difference concerns interpretation. With the latent 
measurement technique the results of an experiment, consisting of a 
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sequence of measurements, are obtained retrospectively after the 
experiment is completed. With the yon Neumann technique the 
measurements are interpreted prospectively, measurement by measurement. 

3. PHOTON POLARIZATION MEASUREMENTS 

As an example of sequential measurements of an observable of a two- 
level "object" we shall consider the spin of a photon. The direction of 
propagation of the photon (z) is chosen as the reference direction for 
measuring the photon spin angular momentum. The states of angular 
momentum +h are designated I+ ) and I - ) -  They are also called _+ 
circular polarization states. 

We shall let the photon energy play the role of the "apparatus 
register." The photon is generated by a laser in a well defined energy state, 
Eo, the "apparatus null state." 

Disks cut from an anisotropic medium along an optic axis and orien- 
ted normal to the z direction are used to transform the polarization of a 
photon passing through the disks. A half-wave plate is such a disk which 
retards the phase of a correctly oriented plane polarized wave by 7r radians 
relative to the phase of the orthogonally polarized wave. 

If a circular polarized photon passes through a half-wave plate, the 
sign of the polarization is reversed. The change in the photon's angular 
momentum is transferred from the half-wave plate. If the disk is rotating 
about the z axis with an angular velocity -e) ,  the energy +2he0 is trans- 
ferred along with the angular momentum _ h from the disk to the photon. 
The use of a rotating half-wave plate to generate a frequency shift may 
have been first discussed as a microwave technique. (4~ 

A combination of two half-wave plates, one rotating and one fixed, 
Fig. 1, plays the role of the photon spin/energy correlater. This is represen- 
ted by a unitary operator similar to U in equation (1). A spin eigenstate of 
the photon is left unchanged by the correlater but the photon energy is 
shifted by _+ 2h~o depending upon the spin state. The rotating disk in Fig. 1 
need not be physically rotating. Electro-optical methods can be used to 
generate equivalent or higher frequency rotations of an anisotropic optic 
axis. 

4. PHOTON POLARIZATION MEASUREMENT THEORY 

It is convenient to use Pauli spin matrices in constructing a quantum 
measurement theory for photon polarization. The technique is essentially 
that of Poincare and predates quantum mechanics. 
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Z 
Fig. 1. Mechanism for producing a latent spin measurement of a photon. The transparent 
disks are cut from an anisotropic material and have their thicknesses adjusted to make them 
half-wave plates. One is rotating with an angular velocity -co and the other is stationary. 
This mechanism couples the photon spin with a change in the photon's energy. 

The x, y, z coordinate axes are sometimes designated 1, 2, 3 and the 
corresponding Pauli matrices are a~, a2 and ~3. The 2 spin states [_+ ) are 
eigenstates of a3, and a3 l±  ) = + 1± ). The 2 plane polarized states ]a> 
and ]b) are defined to have their electric vectors along the x and y axes 
respectively, and phases are so chosen that 

l±  ) = { ia )  + i]b)}/x/2 (20) 

The plane polarization states la )  and [b) are eigenvectors of a~. 
The unitary operator  

D(5, 0) = cos 6 + ial sin 6 (21) 

characterizes an anisotropic disk oriented with its retardation axis in the x 
direction. It operates on the state vector to represent the change in 
polarization induced by the disk. The thickness of the disk is proport ional  
to 5 and 6 = re/2 for a half-wave plate. For  a quarter-wave plate, 6 = r~/4. 
The state function of a circularly polarized photon is transformed into a 
plane polarized state by D(rc/4, 0). 

If the disk is rotated about  the z axis by the angle e the operator 
D(6, 0) becomes transformed into 

D(5, o~) = R(~) D(b, O) R(oO* 

= cos 5 + i sin 6[cos 2~ - ia 3 sin 2a] a I (22) 

where R(cQ=exp[ - i0~a3]  is the rotat ion operator  and R(c0* is the 
Hermitian adjoint of R(e). 
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For a half-wave plate rotating with an angular velocity -co 

DOz/2, - cot) = iE exp( 2icota 3 ) ] a l (23) 

This operator correlates the photon spin with the energy shift, but it also 
flips the photon spin. To avoid the spin flip induced by a~ the fixed half- 
wave plate characterized by D(z/2,  O)= ia~ is added to the rotating disk 
and the correlating operator (5) representing the latent spin measurement 
takes the form 

U= DOr/2, O) D( Tz/2, - e)t) = -exp(  - 2icota j 

= - [ P _  exp(2i~ot) + P+ exp( -2icot)] (24) 

where P+_ = [ ± > < ± f are projection operators for the two-spin states. Note 
that 

Uv + > = - v  exp(-2icot) t + > (25) 

The photon energy is increased (decreased) by 2hco for the spin 
states + ( - ) .  

Unitary transformations of U can be used to transform it into 
operators representing latent polarization measurements of plane polarized 
photons, or measurements of general elliptical polarization. 

Following Eq. (13) we define 

U,~ = -exp(  - 2"icota3) (26) 

and encode the results of a sequence of measurements in the photon energy 
shift 

A E = E - E o = h c o [ ( ± ) i 2 + ( ± ) 2 4 + ( ± ) 3 8 + . . . ]  (27) 

where (-~)1,(i-)2,(±)3,--" are the results of the sequence of spin 
measurements. 

A photospectrometer employing photon counters can be used to 
measure the photon energy. This represents the reading of the "apparatus 
register." The photon is destroyed in the process but the experiment has 
already been completed and the results are retrospectively available. 

One important requirement is the consistency of repeated 
measurements. Note that Ua U1 = exp(-6if.ot~r3) and A E =  +_6hco which 
implies that ( _+ )1 = ( ± )2 and the two-spin measurements are in agreement. 
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5. THE WATCHDOG EFFECT, AN EXAMPLE 

The watchdog effect (5"6) is the inhibiting effect of repeated observations 
in suppressing quantum transitions. The transition to be examined is the 
photon spin flip induced by a half-wave plate see Eq. (21). 

We assume that the half-wave plate is composed of a stack of n thin 
wafers. The unitary transition operator for each wafer is 

O = O(rc/2n, 0) = cos(rc/2n) + icr I sin(rc/2n) (28) 

If the incident photon spin state is i + ) the spin state after passing through 
m wafers is 

tp = D(rc/2n, 0 ) "  ] + 5 

= cos(rcm/2n) j + ) + i s in(rcm/2n) 1 - } (29) 

The probability that the spin has not been changed is 

prob = [cos(Trm/2n)[ 2 (30) 

This expectation can be tested using this technique by inserting a latent 
measurement, and the operator U in Eq. (24), after the mth wafer. The 
photon energy is read after all n wafers have been passed and the wave 
function is 

T = D  n - m U D ' v o  I+ } (31) 

If the energy measurement implies that the spin is ( + ), the term in Eq. (24) 
with P_ does not contribute to ~g and is dropped from U. Using the 
relation P +al --- a l P _ ,  

P+al  1+ ) = 0  (32) 

and only the cosine term in D m [see Eqs. (3t) and (29)] contributes to 
I+ } in gZ The probability in Eq. (30) is confirmed. The situation is quite 
different when a sequence of spin measurements is made. 

Motivated by the desire to observe the spin flip which must occur 
when a photon transits a half-wave plate, a latent spin measurement is 
made after passing each of the n wafers, a total of n measurements. The 
combined effect of the wafers and measurements on the wave function is 
given by 

F ¢= U~D... U 2 D U 1 D v o [ +  } (33) 

We first calculate the probability that (+ )  spin is obtained for each of 
the n measurements. For this result to hold the term with the projection 
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operator P can be dropped from each Uk [see Eq. (24). l None of them 
can contribute to the probability amplitude of the proper photon energy. 
From Eq. (32) only the cosine term in each of the D's contributes. The 
probability is 

prob = (cos(rc/2n)) 2n (34) 

Instead of our naive expectation that one and only one spin flip should 
occur, the probability for no flip with n = 10 is prob = 0.781. 

In similar fashion the probability that a single spin flip occurs after rn 
wafers is 

prob = (cos(rc/2n)) 2(n- 1) (sin(rc/2n))Z (35) 

For n = 10, prob = 0.196. Note that this result is independent of m. 
The watchdog effect is primarily due to the sequence of latent 

measurements. The completion of the measurements is not essential. To 
show this we compute the probability of obtaining ( + )  spin after the nth 
wafer while ignoring all the intermediate results. To do this we omit the 
photon energy measurement and compute the expectation value of P+ 
using the wave function in Eq. (33). For n = 10 this gives prob =0.803, only 
slightly greater than the result, 0.781, obtained when all 10 ( + )  spins are 
observed. 

The reason for the watchdog effect is the disturbance of the phase 
relation between the ( + )  and ( - )  parts of a superposition. The spin 
measurement leaves the spin state undisturbed, but only if the photon is in 
a spin eigenstate. 

6. SUMMARY 

Using the latent measurement technique, a quantum experiment con- 
taining a sequence of quantum measurements is carried out reversibly, 
Schr6dinger's equation being satisfied. After the experiment is finished it is 
terminated irreversibly and the results of the measurements are obtained 
and reported retrospectively from a single reading of an "apparatus 
register." This "reading" and the subsequent "reduction of the wave 
function" is irreversible and violates Schr6dinger's equation. This is 
unsatisfactory but less so than the multiple violations which occur with the 
standard yon Neumann procedure for which each measurement is irrever- 
sible. 

There is a further possible difficulty with the standard yon Neumann 
procedure. It has been suggested that it may not be possible to devise an 
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"appa ra tus"  for which a pointer  reading can be made  without  dis turbing 
the "object".  (7) This  is not  an issue with the latent  measu remen t  technique 
for the exper iment  is finished before the "register" is read. The  exper imenta l  
results are retrospectively avai lable and the "object"  is no longer needed. 

The  simplifying assumpt ion  that  there are only two-object  states can 
be el iminated and this formal ism can be generalized to any finite number  of 
discrete objects states. 
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