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We investigate and develop further two models, the GR W model and the K 
model, in which the SchrOdinger evolution of  the wave function is spontaneously 
and repeatedly interrupted by random, approximate localizations, also called 
"'self-reductions" below. In these models the center of  mass of  a macroscopic solid 
body is well localized even i f  one disregards the interactions with the environment. 
The motion of  the body shows a small departure from the classical motion. We 
discuss the prospects and the diJ]qculties of observing this anomaly. As far as the 
influence of  the surroundings on submacroseopic objects (like dust particles) is 
concerned, we show that the estimates obtained recently in the theory of 
continuous measurements and in the K model are compatible. Also, we elaborate 
upon the relationship between the models. Firstly, borrowing a line of  thought from 
the K model, we f ind the transition region between macroscopic and microscopic 
behaviors in the GR W model Secondly, we refine the propagation rule of  the wave 
function in the K model with the help of  the time-evolution equation proposed in 
the GRW model 

1. INTRODUCTION 

The Schr6dinger equation leads to the unlimited coherent expansion of the 
center-of-mass wave function of any isolated system. However, the 
experimental evidence supports the existence of states with far-away 
coherent components only in the case of microobjects. This motivates the 
search for a general law of propagation of the wave function which would 
prevent the development of far-away superpositions in the case of macro- 
systems. Under such a law the freely propagating wave function should 
undergo self-reductions which destroy the excessive coherence created by 
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the Schr6dinger evolution. For more or less simple systems the interplay 
between the deterministic (Hamiltonian) Schr6dinger evolution and the 
stochastic (non-Hamiltonian) self-reductions can be quantitatively studied. 
In particular, the behavior of the center-of-mass wave function of an 
isolated solid body can be described. 

At this point it should be noted that according to a widespread view 
the investigation of the wave functions of isolated macroscopic bodies is 
futile, because macroobjects cannot be isolated from their surroundings. Of 
course, in classical physics the influence of the environment on macro- 
objects can often be neglected, but there are well-known reasons to believe 
that in quantum physics the situation is different. This view is strengthened 
by recent results in the theory of continuous measurements. Indeed, it has 
been shown there that the coherence of the density matrix of a "local 
system" substantially decreases due to the usual Hamiltonian interactions 
with the environment (air, sunlight, etc.). The loss of coherence is practi- 
cally irreversible, because the correlations with the surroundings are 
spreading farther and farther away from the local system, to more and 
more microscopic degrees of freedom. On this basis it has been 
proposed (3'4) to consider the environment as the source of macroscopic 
behavior. This standpoint can certainly be upheld if one accepts that 
"classical properties are caused by the influence of a specific environment, 
and contrary to usual thought are not intrinsic to macroscopic bodies. ''(3) 

The opposite conclusion is reached in the models under consideration: 
Macroscopic bodies would possess (very nearly) classical properties even 
if they were perfectly isolated. These properties are therefore intrinsic to 
the bodies. For example, in the case of a solid body of 1 g, frequent 
self-reductions prevent the center-of-mass wave function from expanding 
coherently over distances larger than 10-11 cm in the GRW model, (~) and 
10-16cm in the K model. (2) So, the center of mass is always welt 
localized--a genuine classical property. The environment influences the 
behavior of the body, but it is not the principal source of this property. 

As one goes toward smaller masses, the self-reductions become less 
frequent and the center-of-mass wave function can expand to larger domains. 
When the mass values of the microworld (not too large molecules, atoms, 
elementary particles) are reached, there are practically no more self- 
reductions. The center-of-mass wave functions of isolated microsystems can 
expand then over enormous domains where the Schr6dinger equation and 
the superposition principle reign unrestricted. The predominantly classical 
behavior goes over into predominantly quantum behavior in the region of 
10-12-10-15 g. 

It should be emphasized that in both models the general law of 
propagation formulated above is supposed to apply to measuring 
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apparatuses and observers, too. Therefore, not only the emergence of the 
classical behavior of macroscopic systems but also the measurement 
process should be described and interpreted on the basis of this general 
law. We shall indicate the salient points which show that this requirement 
is met, but no detailed discussion of this important issue will be given in 
this paper. 

Although not the source of classical properties, the environment does 
play an important role in models with self-reductions, too. Its mode of 
action is even extended. Indeed, the environment may influence now the 
behavior of a local system not only through the usual Hamiltonian interac- 
tions, but also through its own ability to undergo self-reductions. As shown 
in Ref. 2, the latter effect leads to the "submacroscopic" decay of super- 
positions in the process of drop formation in a cloud chamber (see 
Section 7 below). The discussion of problems involving the environment 
will be limited to the K model, because to the author's knowledge the 
GRW model has not been applied yet to nonsolid systems. 

The Hamiltonian influence of specific surroundings on dust particles 
has been estimated in Ref. 3. We show in Section 8 that these estimates are 
compatible with those obtained in the K model, and we comment on the 
relation between the theory of continuous measurements and models with 
self-reduction. 

In Sections 2 and 3 the GRW model and the K model are discussed 
to the extent needed for the purposes of the present paper. In Section 4 the 
transition between macroscopic and microscopic behaviors is described in 
the framework of each model. In Section 5 it is shown that with the help 
of the time evolution equation proposed in the GRW model one can also 
describe the nonselective time evolution of the wave function in the 
K model, and one can even refine the propagation rule given in Ref. 2. 

The repeated spontaneous localizations of the center of mass of a solid 
body lead to a small deviation in the propagation of the body from the 
purely Hamiltonian motion. The problems of the observation of the predic- 
ted anomaly are discussed in Section 6. The subject of Sections 7 and 8 has 
just been indicated. Section 9 contains some concluding remarks. 

2. THE M O D E L  OF GHIRARDI ,  RIMINI ,  A N D  WEBER 

The basic assumption underlying the GRW model is that the wave 
function of any isolated system spontaneously undergoes random, 
approximate localizations (self-reductions) which act against the expansion 
of the wave function due to the SchrSdinger evolution. If after each 
self-reduction the actual result is selected, one of the possible histories of 
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the wave function obtains. If no selection is made, the state of the system 
will obviously be described by a mixture even if the initial state was a pure 
state. As shown in Ref. 1, the time evolution equation of the density 
operator ~, describing the nonselective evolution of the wave function of an 
isolated system, can be written in the form 2 

i 
~( t )  = -~ [/~, ~ ( t ) ]  - , ~ ( ~ ( t ) -  r E p ( t ) ] )  (1)  

In the case of a system with one spatial degree of freedom the T operation 

T[~]  = . dx e (~/2)(o-x):/} e-(~/z)(q-x)2 (2) 
oo 

in the non-Hamiltonian 2-term maps ~ into the new density operator 
Tiff] ,  resulting from approximate localizations carried out with suitable 
probability at any point in space. The average precision of each localiza- 
tion is 1/(/-£, while the average frequency of a localization is 2. 

The self-reductions are viewed as a new basic element in the propaga- 
tion law of isolated systems, the origin of which is not discussed in 
Ref. 1. They should account for the emergence of the classical behavior of 
macroscopic systems, without upsetting the validity of the superposition 
principle--more specifically, of the Schr6dinger equat ion--for  microscopic 
systems. Accordingly, models with self-reductions must allow the develop- 
ment of superpositions with far-away components in the case of 
microscopic systems, but not for macroscopic ones. 

These desiderata are fulfilled in Ref. 1 for microsystems and for macro- 
scopic solid bodies. First, it is noted that due to the 2-term Eq. (1) trans- 
forms pure states into mixtures, and that for a given system far-away com- 
ponents in a superposition lose their coherence faster than close ones. Next, 
it is proven that if Eq. (1) holds for individual microsystems with 

1 
~ 10-5 cm, ~ = Zmicro ~ 1 0 - 1 6 / s e e  (3) 

then the density operator of the center of mass of a solid body also satisfies 
this equation with the same value of ~ and with 3 

2 = ~ / ' ) 'mic ro  ( 4 )  

2 If not stated otherwise, we follow the notations of Ref. 1 when discussing the G R W  model. 
We denote the density operator by ~ in order to distinguish it from the density p of a body. 

3 In Ref. 1 the center-of-mass coordinate is denoted by Q and an index Q is attached to 
quantities referring to it. Also, 2 is called 2 . . . . .  when ,/~,~, 10 23. We shall not introduce 
these distinctive notations. In our paper, as in Ref. 1, the model is restricted to one spatial 
dimension, but  it is not difficult to verify that it works in three dimensions, too. 
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~4/" being the number of the microscopic constituents (atoms or molecules) 
of the body. For a mass of 1 g at normal density p ~ 1 g/cm 3, that is, for 
,/t/" ~ 1023, one finds 

)~ ~ 107/sec (5) 

So, the wave function of an isolated microscopic system would 
collapse only once in 10 a years, whereas the center-of-mass wave function 
of an isolated macroscopic solid body would undergo typically 107 reduc- 
tions per second. This is a considerable difference in the frequency of the 
self-reductions. On the other hand, since the value of c~ does not vary, 
one might think that both for microsystems and macrosystems the 
self-reductions occur when the components in a superposition are getting 
farther than 10 -5 cm from each other. However, this is not so. As shown 
in Ref. 1, an initial Gaussian pure state is transformed by Eq. (1) into a 
mixture which at any given moment consists of Gaussian wave packets 
having different mean positions q and different mean momenta p, but, in 
good approximation, the same coherent position spread (in other words 
the same width) , ~ ,  and the same coherent momentum spread xfP. These 
spreads are calculable functions of time, and the time evolution of Q, P has 
a stable fixed point Qo, Po, where 

Q o = ~  ~ l + ~ + o ( e  :) (6a) 

P o = ~  - -  [1 + O(e2)] (6b) 

The dimensionless parameter 

\2m/ (7) 

appearing in (6) is very small for macroscopic bodies. For example, for 
m ~ 1 g, one finds e ~ 10-12. 

Once the system gets to the fixed point--and Ghirardi, Rimini, and 
Weber claim that the domain of attraction is large--the time evolution 
consists in the repetition of reduction-expansion cycles. The cycles are first 
described in the approximation when the T operation acts at equally 
spaced moments with frequency 2. In this case, during each cycle, Q drops 
from a maximal value to a minimal one due to a self-reduction, and then 
goes back to the maximal value due to the Schr6dinger evolution. The 
maximal value turns out to be Qo, while in the case of macroscopic solid 
bodies the minimal value Qoo equals Q0(1-x /2  e). Because of the small- 
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hess of 8 this "breathing" of the wave function is negligible. Then it has 
been shown that for ~ 1 the cyclic behavior is stable also if the 
self-reductions occur randomly with average frequency L 

From (6) one finds for m ~ 1 g 

~ o ~ t 0  11cm, x ~ o  ~ 10-16 g cm/sec (s) 

We see that the density operator of the center of mass of an isolated solid 
body of 1 g is a mixture composed of wave packets of 10 -11 cm. In other 
words, the frequent self-reductions prevent the center-of-mass wave func- 
tion from developing superpositions with components farther away than 
10 -H cm, rather than 10 -5 cm. On the other hand, since the atoms (or 
molecules) in a solid body are well localized with respect to the center of 
mass, there are practically no self-reductions related to the degrees of 
freedom describing the relative motion of the microscopic constituents 
of the body. 

The nonselective evolution described above represents the multitude of 
the possible histories of the initial wave function. Of course, only one of 
these histories comes into being as the center-of-mass wave function 
accomplishes its reduction-expansion cycles. So, the center-of-mass wave 
function of an isolated macroscopic solid body has a small standard size 
x ~ 0  (we neglect the breathing). It cannot expand coherently to larger size 
because of the self-reductions. On the other hand, due to these same 
self-reductions there will be a non-Hamiltonian contribution to the spread 
of the mean values q, p of the position and momentum of the center of 
mass. Summing up, the center-of-mass wave function is a tiny wave packet- 
soliton wavering around the Hamiltonian trajectory. In principle this 
"anomalous Brownian motion ''(2) could lead to observable effects. 
However, with the chosen values of c~ and of 2~ioro the non-Hamiltonian 
spreads are increasing too slowly. The position spread is only 10-s cm after 
a year [see Eq. (53) below]. Therefore, there is no way to observe this 
prediction of the GRW model. 

As shown in Ref. 1, the departure from the Hamittonian behavior can 
be conveniently described in terms of the diffusion of q and p. Indeed, due 
to the smallness of Q0 and P0 on the macroscopic scale, one can introduce 
a phase-space density a(q, p, t) which satisfies a Fokker-Planck equation 

8 )~I 02 82 021 0 P ~q C~ + a 2 ~ + 2ab b 2 
cqt o -  m 4 ~ +  ~ a (9) 

with 

(2h~ 1/2 [-1 + O(a)], b= ~,~ hE1 + O(8)] (10) 
a = \~mm/ 
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The diffusion coefficients for q and p read 

)~a 2 h 
dq = T = m , ~  10 -27 cm2/sec ( l l a )  

)~b 2 h 2 
= - -  ~2 ~ 10-37 g2 cm2/sec 3 (1 lb) 

dp:2 2 

The numerical values in (11) refer to a body of 1 g. The extreme smallness 
of dp accounts for the very slow increase of the non-Hamiltonian spreads. 

We see that the self-reductions described by the non-Hamiltonian term 
in the time evolution equation leads to the desired breakdown of the super- 
position principle in the case of macroscopic solid bodies and to the 
emergence of a trajectory practically indistinguishable from the classical 
one. It should be emphasized that the model gives a quantitative answer to 
the question what "far-away" (or "macroscopically distinct") means: Posi- 
tions of a solid body of 1 g with its center of mass separated by a distance 
larger than 10 -1~ cm are macroscopically distinct. 

Let us point out that not only the position but also the velocity of the 
center of mass is sufficiently well determined, so that both of them behave 
very nearly classically. Indeed, the coherent velocity spread 3v~ 
h/m ~ 0 ~  10 16 cm/sec. So, neither the position nor the velocity have 
perfectly sharp values; on the other hand, neither of them can acquire a 
large coherent spread. These features are due to the judicious choice of the 
two new constants of nature of the model, e and 2mioro- 

Finally, let us remark that the existence of the stable, nonzero width 
x ~ o  of the wave function in the selective evolution is not in contradiction 
with the well-known fact (3) that the density matrix p(x, x', t) becomes 
diagonal for t--* oe. It can be shown that this property of fi is due to the 
fact that the incoherent momentum spread tends to infinity for t--* oe. 

3. THE M O D E L  OF KAROLYHAZY 

In the K model a definite hypothesis has been made concerning the 
physical origin of the breakdown of the superposition principle. Due to this 
hypothesis, recalled below, the linear size ac of the spatial domain- -of  the 
"coherence cell"--inside which the superposition principle still holds for the 
center-of-mass wave function of an isolated solid body can be evaluated 
without the introduction of free parameters. Namely, the "coherence 
length" ac turns out to be the following function of the mass (more 
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conveniently, of the Compton  wavelength L = h/mc) and of the linear size 4 
R of the body(~'5/: 

a c ~ )  L if R>ac (12) 

a c ~  L if R<a~. (13) 

In the expressions 

{ah) ,j2 
Ap = \ c3 j ~ 10 33 cm (14) 

is the Planck length. The appearance of the gravitational constant G is a 
reminder of the key role played by the theory of general relativity in the 
model. The line of thought starts with the remark that the sharply deter- 
mined structure of space-time is incompatible with two generally accepted 
assertions, one formulated in quantum mechanics, the other in general 
relativity. The first states that the position and the velocity of an object 
cannot have sharp values simultaneously, and the second stipulates that 
the structure of space-time is determined by the positions and the velocities 
of the masses. It follows that quantum mechanics and general relativity, 
taken together, limit the possibility of implementing the Minkowskian 
structure of empty space-time. In particular, if one tries to delineate a time 
interval with the help of physical objects, there will be a quantum mechani- 
cal uncertainty (AT)o - in the length of the interval due to the Heisenberg 
uncertainty relation, and there will also be a gravitational deviation (AT)a 
from the value in flat space. The quantity (AT)Q is decreasing with the 
mass, while (AT)c~ is increasing with it. There exists therefore a minimal, 
tiny but unavoidable departure A T in the delineated value of any 5 time 
interval from the value T in flat space, determined by the condition A T =  
(AT) e = (AT) c. The quantity AT turns out to be independent of the mass 
of the test bodies, and it is related to T only through constants of nature: 

(~r)3~ r (15) 

4 Since we are dealing here with order-of-magnitude estimates, it is immaterial whether R 
stands, for example, for the height h or for the radius r of a cylinder, as long as h and r are 
of the same order of magnitude. For simplicity, one might think of a spherical body with 
radius R. 

5 Between reasonable limits; also, the motion of macroscopic bodies is restricted to non- 
relativistic velocities. (2,51 
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This relation indicates the extent one should loosen the Minkowskian 
structure of the empty space-time in order to remove the incompatibility 
mentioned above. At the same time, an opportunity arises here of intro- 
ducing into the structure of empty space-time a stochastic element which 
may lead to the reduction of the wave function. In Ref. 2 (and also Ref. 5) 
this is achieved by replacing the Minkowskian metric tensor of empty 
space-time by a random set of metric tensors such that Eq. (15) holds in 
the sense of averages. Each member of the set is a gravitational plane wave 
with suitably chosen amplitude. The spread of the metric tensors around 
the Minkowskian value go0 = - g ; i =  1 is of the order of 10 -13 This tiny 
randomness has to be a "genuine" one, i.e., it should not be the manifesta- 
tion of any causal process acting behind the scene. Indeed, only a genuine 
randomness can induce genuinely stochastic reductions leading to a limita- 
tion of the validity of the superposition principle. Just as in Eq. (1) the 
introduction of the non-Hamiltonian term amounts to a basic modification 
of the dynamical law, the randomness associated with the metric in Ref. 2 
amqounts to a small but basic modification of the structure of empty 
space-time. 

The next step in the model building is the evaluation of the influence 
of the uncertain structure of the geometry on the propagation law of 
various systems. In order to carry out such an evaluation, the state of any 
isolated system propagating on the new, empty but hazy space-time is 
described now by a randomized wave function in configuration space. 
Namely, to each member of the random set of nearly Minkowskian metric 
tensors there corresponds a Schr6dinger wave function propagating on that 
metric, and the physical state of the system is represented by the whole set 
of these Schr6dinger wave functions. In particular, as we shall see 
presently, the degree of coherence of the state is coded in the randomized 
wave function. A single member of the set does not contain this informa- 
tion and cannot be interpreted individually. Also, no particular physical 
meaning should be forced upon the individual members of the classical (i.e., 
nonquantized) random set of metric tensors. Their role is to provide us 
with a model of a single but hazy empty space-time where the limitation 
(15) holds. In a future, deeper theory of quantum mechanics and general 
relativity the idea concerning the genuinely uncertain structure of 
space-time may well receive a different form. 

The introduction of the classical random set of g~'s describing the 
macroscopic empty space-time by no means contradicts the possible 
existence of quantum gravity. The quantized ~v's are of course subject 
to the superposition principle and should not be confused with those 
proposed by Kfirolyhfizy. 

As shown in Ref, 2, the uncertain structure of the geometry affects 
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primarily the phases in the randomized wave function. Its impact on 
the absolute values is negligible. 6 Since the metric couples to the mass, the 
more massive a system is, the stronger the phases are influenced. In the 
case of an isolated solid body the randomized wave function of the center 
of mass develops, over the members of the random set, a spread in the 
relative phase between any two points in space. For  two points at a 
distance a from each other, this spread reaches a stationary value A(a) 
in a time needed for the metrical disturbance representing the uncertain 
structure of the geometry to traverse the body in question. For a body of 
size R ~  1 cm this time is therefore R/c~ 10 - u  sec. 

The quantity A increases with the separation a and reaches the value 
rc when a = a~. As a matter of fact, Eqs. (12) and (13) were derived from 
the condition A(ac)~m For  pairs of points belonging to the same 
coherence cell, A ~ re, except when the separation is close to a c. 

Consider now the randomized wave function {0~}, with /~=0, 1 .... 
labelling the individual wave functions propagating on the individual mem- 
bers (guv)~ of the random metric. Take all the 0¢'s equal to each other at 
some "initial" time. As indicated by the behavior of A(a) described above, 
the O~'s correspond to a single ray in Hilbert space (A ~ re) as long as they 
are well inside a coherence cell. On the other hand, if the O~'s occupy 
several coherence cells (remember that their absolute values are the same), 
then very quickly---in 10 ~1 sec in our e x a m p l e - t h e  spread A in the 
relative phases becomes of the order of z~ between points belonging to 
different coherence cells. Then the randomized wave function cannot be 
associated any more with a single ray. In this sense its coherence is lost. 

K/ t ro lyh~y  has assumed that when such a situation develops, the 
coherence is re-established by a spontaneous, instantaneous, random 
localization of the randomized wave function to a single cell. More 
precisely, K/trolyhfizy has proposed the following, somewhat bumpy but 
simple cyclic rule of propagation for the randomized center-of-mass wave 
function of an isolated solid body, in case the wave function tends to out- 
grow its coherence cell. The quantity {~k~} obeys the Schr6dinger equation 
while it expands from a single cell to a volume of linear size 2ac. The time 
needed for this expansion is 

ma~ (16) ~'c'~ 

Then a spontaneous, stochastic reduction to a single cell takes place with 
probability proportional to the weight of the wave function in that cell just 
before the reduction. (The sharp edge of the wave function made by the 

6 AS required, ~6~ the weak equivalence principle holds in the quasiclassical limit. 
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projection is smoothened by a Gaussian of width ac. This procedure can be 
viewed as a prediscovered approximation to the selective T-operation of 
the GRW model. It is described in detail and its mathematical consistency 
is shown in Ref. 2.) 

Since immediately after the reduction the wave function is again 
occupying a single cell, the stage is set for the next expansion-reduction 
cycle. The reductions are instanteneous, stochastic jumps of the wave func- 
tion, and the mathematical description of the process of the reduction itself 
is lacking, just as in the orthodox measurement theory and in the GRW 
model. However, as explained above, these stochastic reductions are 
triggered and conditioned now by the uncertainty of the structure of the 
empty space-time. They occur at predictable time intervals ~c onto domains 
of calculable size a~.. They are perceived as part of the general law of 
propagation of the wave functions of isolated systems. Since no external 
agent (except for the uncertainty of the structure of empty space-time) is 
required to trigger them, we shall call them self-reductions, similarly to the 
spontaneous localizations in the GRW model. 

As stressed in the conclusion, there are reasons to believe that the 
stochastic aspect of the propagation of the wave function will remain with 
us. Accordingly, we think that even if a mathematical description of the 
reduction process is worked out in a future theory, it will not replace the 
reduction by a purely causal process. 

Let us now look at numerical values of ac and re. For a solid body of 
linear size R ~ 1 cm at normal density, from (12) and (16) one finds 

ac~  10-~6 cm, ~c ~ 10-4 sec (17) 

So, in the K model the localization of the center of mass is much 
tighter than in the GRW model. Since the center-of-mass wave functions 
undergoing the cyclic behavior are nearly minimal wave packets in both 
models, this means also that the coherent momentum spread is much larger 
in the K model than in the GRW model [by a factor 105 for a body of 1 g, 
as can be seen from the comparison of the value of at--pedantically of 
2ac--in (17) with the value of ~/-Q~Qo in (8)]. If follows that the departure in 
the motion of the center of mass from the classical trajectory is also 
appreciably larger in the K model. In Refs. 2 and 5 this departure has been 
expressed in terms of an "anomalous Brownian motion" of the center of 
mass. Like in the GRW model, this motion is due to a small, stochastic 
velocity jump of the mean velocity of the center-of-mass wave function at 
each self-reduction. For a body of 1 g, the value of a jump is of the order 
of ac/~,~ 10 -12 cm/sec [see Eq. (22) below]. The prospects of the verifica- 
tion of the existence of the anomaly will be discussed in Section 6, where 
an estimate of the energy produced by the self-reductions is also given. 
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For our mass of lg ,  R>>a~. Let us take now a solid grain with 
R ~ 1 0 - 6 c m ,  p ~ l g / c m  3. Then r n ~ 1 0  18g, and Eqs.(13), (16) give 
a c ~  1 km, zc~  10 21 sec. We see that the grain belongs to the domain 
R ~ ac. If such a grain could be isolated, its center-of-mass wave function 
would reach coherently the size of 1 km and would undergo one self- 
reduction per 1013 years. 

For  an elementary particle, Kfirolyhfizy finds 

ac~  L (18) 

This is the same formula as that in (13). The condition R ~ a c  is now 
trivially satisfied, since elementary particles are pointlike in quantum 
mechanics. Instead o the center of mass coordinate we have now simply the 
position coordinate of the particle, and ac is the coherence length of the 
wave function of the particle. 

From (18) and (16) one finds for an electron 

a c ~  1035 cm, zc~  107° sec (19) 

These values exceed astronomical scales. Huge values are obtained also for 
other elementary particles, as well as for the wave functions of composite 
microsystems like atoms and not too large molecules. So, these wave func- 
tions in reality occupy only a tiny part of their coherence ceils. Conse- 
quently, the superposition principle holds for them practically unrestricted. 
The reason is that the mass of a microobject is so small that its wave func- 
tion hardly feels the tiny uncertainty of the space-time structure. However, 
the interaction of a microparticle with a macroscopic system often results 
in a superposition in which wave functions of the particle are entangled 
with those of the macrosystem. The relative phase of the randomized wave 
function of the composite system may then developed spreads of the order 
of ~ leading to self-reductions of the total wave function. Thereby the wave 
function of the microparticle is also reduced, independently of the presence 
or the absence of an observer. ~2'5) 

4. THE T R A N S I T I O N  B E T W E E N  M A C R O B E H A V I O R  A N D  
M I C R O B E H A V I O R  

4.1. The Transition Region in the K Model 

We have been in the preceding section that in the region where R >> a c 

the center of mass of an isolated solid body is well localized and its 
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propagation differs from the classical one only by a small anomaly. On the 
other hand, when R < a ,  the center-of-mass wave function, obeying the 
Schr6dinger equation, can expand over large spatial domains, and its 
expansion is only very rarely interrupted by self-reductions. Consequently, 
the region R>>ac. (R<ac) has been identified in Ref. 2 with the region 
where classical (quantum mechanical) behavior dominates. In the gradual 
transition between the two behaviors the mass region where R ~ ac plays a 
prominent role. Indeed, from Eqs. (12), (13), and (16) one sees that this is 
the region where, at constant density, the dependence of ac (and of%) on 
the mass changes from a slow increase to a fast one with decreasing mass. 
This is exhibited in Figs. 1 and 2 and in Table I. We shall call the values 
of the various parameters in the region R ~ac. "transition values." For 
p ~ 1 g/cm 3 one finds 

Rtr t,- ..., mr,, ~ 14 (20) ,~a~ ~ lO-Scm, 10-  g 

rtr ~ 104 sec (21) 

So, for m>mt~,,~ 10-14g the center of mass is localized within 
10 s cm, whereas already for m < lO-a6 g the center-of-mass wave funtion 
can expand coherently over obviously macroscopic distances a C > 10 cm. 
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Colloidal grains and dust particles fall into the transition region. 
Therefore we shall call them submacroscopic, rather than macroscopic. 
Notice that while the Planck length enters the equations determining the 
transition mass, this mass is much smaller than the Planck mass m e =  
h/cA e "~ 10- 5 g. 

The transition region can be characterized also by the mass 
dependence of the uncertainty in the velocity of the center of mass between 
two successive self-reductions. This uncertainty obviously is Av ~ a J % ,  and 
from Eqs. (12), (13), and (16) it is easy to see that as a function of the mass 
Av has its maximum (10 9cm/sec) at the transition mass. As stated 
already, ac/% gives at the same time the order of magnitude of the 
stochastic velocity jumps Av' at each reduction. Indeed, for minimal wave 
packets 

h h h lac 
Av'  ,.~ - -  ~ - - -  (22) 

2acm 4 a j n  4a~m 4 zc 

4.2. The Transition Region in the GRW Model 

In order to find the transition r e i n  in the GRW model, we first 
express the position spreads ~ o ,  .v/Qoo through ~ and e. For macro- 

objects (e < 1) we find 
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~o~ ~ 10 -11 c m  ( 2 3 )  

8 
x~oo,-~ ~ o o  (1 - ~ )  (24) 

while for microobjects (e ~ 1) 

~ o ~ &  e2~ 10'9 cm (25) 

! (26) 

The numerical values in (23) and (25) refer to a solid of 1 g and to an atom 
(or molecule) with m ~ 10 -23  g respectively. 

Table I. 
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The Mass Dependence of the Cycle Parameters in CGS Units 
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To arrive at (23) and (25) it is convenient to solve Eq. (8.17) in Ref. 1 
for/32~ 

e2=2X~(I+x0)  - 1 ( 1 + 2 x 0 )  1/2 (27) 

Here x0 is the fixed-point value of the first of the two dimensionless 
coordinates x, y introduced in (8.13) of Ref. 1: 

x = o~Q, y = -£U-~m2 P (28) 

(Let us remark that in (8.17) of Ref. 1, x stands in fact for x 0, because 
(8.17) is valid only if x' = x = Xo and y' = y = Yo.) Taking into account that 
e and x o are positive by definition, (27) gives 

e = x / 2 x  o, if e ,~ l  (29) 

e = ( 2 X 0 )  1/4, if e > l  (30) 

With Xo = c~Qo one arrives at (23) and (25) after the omission of unimpor- 
tant numerical factors of the order of 1. 

Equations (24) and (26) are easily obtained with the help of (8.9a) of 
Ref. 1: 

Qo0 = Q0( 1 + 2c~Qo) -~ (31) 

Here we substituted Q0 for Qi and Q0o for Qf as required "under the regime 
condition," that is, at the fixed point. 

In Ref. 1 the cycles were investigated only for e < 1. The general case 
has been considered in Ref. 7. In particular, the stability of the cycles under 
small perturbations has been proven there 7 for any positive value of e, 

We shall need presently the mass dependence of 2 and of e. With 
JV'=m/rnmi . . . .  Eqs. (3), (4), and (7) give 

2 = •micro m ~ l0 T m (32) 
mmicro 

10 -12 
e ~  (33) 

m 

where 1/~, should be expressed in seconds and m in grams. For  the sake of 
definiteness the numerical factors in (32) and (33) are given for ice 
(mr, icro~ 10 -23 g, the mass of a water molecule), but (32) and (33) are 
valid also for other solid bodies of normal density within a factor of 10. 

7 I regret that I became acquainted with this important work only after the distribution of the 
preprint of a previo,,~ version 1~51 of the present paper. 
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From (33) one sees that obviously macroscopic (microscopic) objects 
indeed fall into the region e ~ 1 (e >> 1 ). 

Equations (23), (25), and (33) show that the mass dependence of the 

largest allowed expansion ~ o  of the center-of-mass wave function has a 
similar trend as that of ac in the K model. This can also be seen in Figs. 1 
and 2 and in Table I, where the mass dependence of the cycle parameters 
of the models are presented. The same reasoning as in the K model shows 
that the transition region in the GRW model is determined by the condi- 
tion e ~ 1. So, from (27) and (28) one gets 

x/~o~ ~ --1-1U1F ~ 10 - 5 cm (34) 

and from (33) and (32) one finds (for p ~ 1 g/cm 3) 

mtr ~ 10-12 g, Rtr ~ 10-4 cm (35) 

2 tr ~ 10-S/sec (36) 

Comparison of Eqs. (34) and (35) with (20) and of Eq. (36) with (21) 
shows that the transition regions of the models lie close to each other. Also, 
it is easy to see that the uncertainty in the velocity of the center of mass 
during a cycle 

(AV)GRW = ~ 0  2 (37) 

is again maximal (10 - l°  cm/sec) in the transition region. Notice also that 
in the GRW model the relative breathing 

B_  oo- (3s) 
,/ oo 

is much larger (smaller) than 1 in the microscopic (macroscopic) region 
and is of the order of 1 in the transition region, whereas in the K model 
the relative breathing is always equal to 1. 

5. THE ADAPTATION OF EQ. (1) TO THE K MODEL 

In the K model the effect of the self-reductions on the propagation of 
the wave function has been evaluated in terms of the elongation of the 
anomalous Brownian motion [see Eq. (50) below], but no time evolution 
equation for ~ has been given. In this section we show how Eq. (1) can be 
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used to describe the nonselective evolution of the wave function in the K 
model. The mass dependence of c~, 2, and of some other parameters will 
now be dictated by the K model. This will be indicated by a tilde over 
those quantities. 

As mentioned previously, in Ref. 1 the cycles were constructed in the 
approximation in which the successive self-reductions are equally spaced in 
time, just as in the K model. Calculating therefore the value of ac for a 
given solid body of mass m from Eqs. (12) or (13) and taking Qoo=a 2, 
Qo = 4a~, we easily obtain the values of ~ and of ~. 

However, one can achieve more than that. With the help of the for- 
malism used in Ref. 1 one can also refine the somewhat bumpy character 
of the propagation of the wave function in the K model. Such a refinement 
is desirable because, as noticed in Section 3, the randomized wave function 
may develop incoherent parts in 10 -11 sec, that is, long before it reaches 
the linear size 2ac. So, self-reductions could occur at time intervals substan- 
tially shorter than the cycle period % given in (16). Then the self-reduction 
should go to one of the largely overlapping cells in the domain occupied 
by the wave function, this domain being only a little larger than a single 
cell. A method of construction of the density operator arising after reduc- 
tion to a non-orthogonal overcomplete set of states has been given in the 
measurement theory based on "effects" and "operations. ''(s) A typical 
example of an operation is the T operation used in Eq. (1). 

In order to express the parameters ~ and ~ belonging to the original 
and to the refined K cycles through ac and re, one should obviously 
require 

00o = a~, Qo -- (/¢ac) 2 (39) 

where the refinement parameter K satisfies 

l~<K~<2 (40) 

Equations (31) and (39) immediately give 

1 x/2K 
-- ~ ac ~ ~//~2--1 

while for ~ one obtains from (7) 

(41) 

1 g2m 
~h (42) 
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Inserting (27) into (42) with 20= ~Q0=g(xa,)  2, and excluding ~ and a~ 
with the help of (41) and (16), one arrives at 

1 ~c 2 -  1 
= 2K ~ % (43) 

The original K cycles are generated if a: = 2. Then 

x/~ = a~ ~ a~. (44) 

1 12 
~ -  5 r "~zc  (45) 

The refined cycles correspond to values of K < 2. Let us show that the 
refinement does not alter sensibly the diffusion of the mean values q, p of 
the position and of the momentum of the center of mass. Since the diffusion 
of q and the elongation of the anomalous Brownian motion are closely 
related, the refinement leaves practically unchanged the elongation of the 
anomalous Brownian motion, too. 

From (11) we see that the diffusion coefficient d e is proportional to ~ ,  
while dq is independent of ~ and of ~. The third, q p mixing coefficient 

dm=~gt~ is proportional to x / ~ .  Now, from (41) and (43) one obtains 

f 5  1 - ~c2+1 1 32a~% if x = 2  

~2 = ~ a~r~ = t12a,2.~c1 if ~c=l (46) 

While the relative breathing of the wave function decreases from unity 
(K = 2) to zero (~ = 1), dq remains unchanged and d,, (dp) increases only by 

a factor of about ~ (3). 
So, Eq. (1) describes, with c~, 2 replaced by 5, ~, the original (~c=2) 

and the refined (re < 2) nonselective evolution of the wave function of the 
K model. As far as the selective time evolution is concerned, any of 
the histories of the center-of-mass wave function can be obtained following 
the procedure outlined in Section III of Ref. 7. The connection between the 
notation in Ref. 7 and in the present paper is: a =  1/c~ z =  1/~[, A = 2a~, 
C ~ / £ 2  

The no-breathing limit (to = 1) is of special interest. In this limit 
tends to zero and ~ tends to infinity, while from (46) 

lira ~ = t 1 ~ 1  ~ ~27-2-_ ---- ? (47) 
ac~c 
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Also, from (7) one obtains 

l i m g = 0  (48) 

As noted in Ref. 1, in the no-breathing limit Eq. (1) degenerates into 
the simpler equation 

i '7 
= [/?, P? [0, [4, P]2 (49) 

This equation has been extensively investigated in the last decade from 
various point of views. (3'7'9-1t) According to Eqs. (47), (16), (18), (13), and 
(12), in the K model 7̀ depends, apart from the constants of nature h, c, 
and Ap, only on the mass in the case of microparticles and of solid grains 
with mass below the transition region, and also on the geometrical size in 
the case of solid bodies with mass above the transition regio.n. For 
microparticles ~7 is so small (for an electron ~7~ 10 14°/cm2 sec) that for 
them the non-Hamiltonian term in (49) can be safely ignored. We 
recovered the result that microparticles obey the Schr6dinger equation. On 
the other hand, for a solid body with m ~ 1 g, R ,,~ 1 cm, one finds `7~ 
1037/cm 2 sec. The presence of the non-Hamiltonian term in Eq. (49) leads 
then to the emergence of the very nearly classical behavior of the body. 

From (16) and (47) one sees that a~. and rc are the characteristic 
length and time associated with 7̀ and rn. In the case of solid bodies ac gives 
the width of the Gaussian center-of-mass wave function, the nonselective 
propagation of which is described by Eq. (49) in the no-breathing limit. 
The quantity rc determines the time at which the diffusion of the mean 
momentum reaches the value h / a  c of the coherent momentum spread of the 
wave function. (7) Of course, at the same time ac and rc are the coherence 
length and the nonrefined cycle period of the K model. 

We close this section with a remark concerning the well-known mathe- 
matical ambiguity of the decomposition of /~ into projection operators 
projecting on an overcomplete system of states. The "additional principle 
which goes beyond the density matrix formalism" when choosing one or 
the other decomposition, required in Ref. 12, is the assumption, common to 
both models, that the self-reductions are the only instances of the reduc- 
tions of the wave functions. This means that the center of mass of an 
isolated solid body is always in a pure state corresponding to a (breathing) 
wave packet of width ac (x~o) .  It follows that the physically relevant 
decomposition of /~ is the decomposition into projectors on these pure 
states. 
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6. PROSPECTS AND DIFFICULTIES OF FALSIFYING 
T H E  MODELS 

Both models bar all hopes of observing the breakdown of the super- 
position principle by letting the wave function of an isolated elementary 
particle (or of a system composed of a few particles) expand over macro- 
scopic spatial domains, because according to both models the distant com- 
ponents of the wave function remain coherent for practically arbitrarily 
large separations. However, at least in principle, a new possibility emerges. 
Namely, one may try to observe the anomaly in the motion of the center 
of mass of solid bodies, caused by the frequent self-reductions interrupting 
the Schr6dinger evolution. 

Let us consider first the unrealistic case of an ideally isolated solid 
body of 1 g. As we know already, its center-of-mass wave function is a tiny 
wave packet-soliton: although it is breathing while it propagates (except in 
the no-breathing limit), it does not expand without limits like a free 
Schr6dinger wave packet does. Instead, it is its "trajectory" which "spreads 
out." More precisely, the trajectory-- a tube of thickness x/~0o to , ~ o  
10 -11 cm in the GRW model (of thickness a, to 2ac~ 10- 16cm in the K 
model)--is zigzagging with increasing latitude around the Hamiltonian 
trajectory, due to the tiny stochastic kicks received by the center of mass 
at each self-reduction. 

The propagation of the center-of-mass wave function of an isolated 
solid grain in the transition region can be pictured in a similar manner, the 
thickness of the trajectory being then of the order of 10 -5 cm and the 
successive self-reductions less frequent. 

As mentioned already, in the K model the deviation from the 
Hamiltonian evolution has been expressed in terms of the elongation eK of 
the anomalous Brownian motion of the center of mass with respect to the 
trajectory which would be followed by the mean value of the center-of-mass 
coordinate under pure Schr6dinger evolution. By Ehrenfest's theorem, this 
would be the classical trajectory. 

After n ~> 1 self-reductions, for an isolated solid body eK is given, in 
leading order, by the n 3 term of Eq. (4.3.t5a) in Ref. 2. In our notations it 
reads 

t ( t ~ 3/2 
e~: ~ 1--0 ac -- (50) 

Vr~I 

(The empty space-time of K/trolyh/tzy can be viewed as a "medium" of zero 
viscosity in which a stochastic force acts. In this case the elongation of 
the Brownian motion is proportional to t 3/2, instead of the usual t t/2 
dependence. ) 
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The anomalous Brownian motion is fuelled by small portions 
m(Av')2/2  of kinetic energy received by the center of mass at each 
self-reduction. In the K model this energy production amounts to 
10-13 erg/year for a mass of 1 g, while in the GRW model it is still much 
smaller, 10-3°erg/year (see Eq. (7.2) in Ref. 1). Actually this tiny gain in 
energy by macroscopic bodies is converted into heat and unfortunately 
remains undetectable even in the K model, except perhaps in refined 
experiments designed to observe the anomalous Brownian motion. As far 
as micropartMes are concerned, we repeat that practically they do not 
undergo self-reductions, so that for them and for the interactions between 
them all the usual laws hold, energy conservation included. 

From Eq. (50), one finds for masses m > m tr (in CGS units) 

eK ~ lO-11ml/18t 3/2 ~ 10-~1t3/2 (51) 

Here we took into account that ml/~8= O(1) in the mass interval where 
(51) is relevant. This interval goes from the transition mass 10 14 up t o  

10 6 g. The upper limit is imposed because for higher values the center of 
mass of the body gradually loses its leading role in determining the condi- 
tions of the self-reductions. This is due to the fact that at normal density 
too large bodies are not rigid enough/2t 

According to Eq. (51) the elongation of the center of mass of a per- 
fectly isolated solid body would reach the respectable value of 10 -5 cm 
w i t h i n  104 sec. Notice that, under pure Schr6dinger evolution, during this 
time the width of a Gaussian wave packet would increase from the initial 
value ac ~ 10 -16 cm to only 10 -7 cm. So, the prediction of the model differs 
not only from the classical, but also from the orthodox quantum mechani- 
cal prediction. 

How will the above picture change in realistic situations when the 
isolation is not perfect? It turns out (z) that in the case of fritionless suspen- 
sion, the anomalous elongation of a ball of radius R > 1 cm suspended in 
a gas would supersede the elongation of the normal Brownian motion due 
to the gas molecules by a few orders of magnitude. (Of course, the elonga- 
tions refer now to the equilibrium position of the suspended ball.) 
However, under realistic conditions the "microfrictions" in the suspension 
would probably absorb too much of the energy, so that no effect will be 
seen. To eliminate the suspension, it has been proposed (5) to put the gas 
container with the ball--more exactly, with a "dumbbell"--on a spacecraft. 
The angular anomalous elongation of the axis of the dumbbell is larger 
than the elongation of the normal Brownian motion, and per se is large 
enough to be observed. However, only a careful study of the noises arising 
in space laboratories could show whether the experiment is feasible or not. 

We know of two cases in which the anomalous Brownian motion of 
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macroscopic bodies can perhaps be observed as an anomaly in the 
functioning of planned or existing devices. One is the gravitational 
gyroscope experiment with cylindrical gyroscopes. (13) (For spherical ones 
the K model predicts no anomaly, because the rotation of a homogeneous 
sphere does not lead to macroscopically distinct mass distributions.) The 
other is to be able to observe the anomalous Brownian motion as a tiny 
stochastic disturbance while monitoring the proof mass of a drag-free 
satellite. (14~ 

In the GRW model the non-Hamiltonian contribution to the elonga- 
tion of the center-of-mass coordinate of an isolated solid body is given by 
the second term on the right-hand side of Eq. (3.16a) in Ref. l 

=(    J2 t3J2 (521 eGw~ \ 6 ] m 

With (3) and (32) we find, in cgs units, 

eGRW ~ 10 -18 t3/2 (53) 

Comparison of (53) with (51) confirms that in the region of macro- 
scopic masses eGRw'~ eK, SO that according to the GRW model the depar- 
ture from Hamiltonian behavior escapes detection in this domain. Let us 
point out that eGR w cannot be made equal to eK by a new choice of the 
parameters c~ and 2mioro. AS an example, consider the case of a solid body 
of 1 g. In order to reach the value of e K, one should then require c~2 = 

= 10 37, instead of the actual value c¢2 = (X~/'2micro ,~ 10 17. NOW, ~ can be 
increased at most by a few orders of magnitude, because one should keep 
1/xf~>> 10 -8 cm. Indeed, this is the condition which guarantees that the 
relative coordinates of the constituents of the body practically do not 
undergo self-reductions. (1) So, it is 2mi,o which should be increased by 
almost 20 orders of magnitude. This would lead to the obviously unaccep- 
table result that the free wave function of an atom (or of a molecule) 
udergoes about 100 self-reductions per second. 

On the other hand, in the transition region e~Rw ,~ eK. This had to be 
expected, since the cycle parameters of the two models are so close to each 
other in this region. The observation of the anomalous Brownian motion 
in the transition region may turn out to be still more difficult than in the 
macroscopic region, because for a colloidal grain in a gas the normal 
Brownian motion is considerably larger than the anomalous one(2). 8 In 

8 To make this statement plausible, note that according to the textbook formula for the 
elongation e of the normal Brownian motion of a solid grain of 10 -14 g one finds e 2 ~ 10-6/ 
in a gas (with viscosity 10 4) and e2~ 10-st  in a liquid (with viscosity 10 2). Comparison 
with the anomalous elongation e ~  10-22t 3 given in (51) shows that e K,~e during 
reasonable times of observation. 
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order to carry out an experiment, either a high degree of isolation of the 
grain must be achieved, or one should be able to evaluate theoretically the 
influence of the surroundings with high precision. 

Since the anomaly appears as a small stochastic force, it would seem 
advantageous to look for its effect in systems with (dynamical) instabilities. 
Indeed, such systems are very sensitive to fluctuations when they are close 
to the point of instability. However, the estimates carried out by 
K/~rolyh~zy for a few realistic cases show that the location of the unstable 
point (with the anomaly disregarded) cannot be theoretically determined 
with a precision Sufficient to separate the tiny effect of the hypothetical 
anomaly. Of course, this discouraging result does not mean that work on 
this line should be given up; suitable systems may well exist. 

The above discussion shows that verification of the existence of 
the anomalous Brownian motion is not easy. At present, observation of the 
anomaly predicted by the K model for macroscopic solid bodies seems the 
most promising. With the advance of technology, both models may become 
falsifiable in the transition region also. 

7. THE SUBMACROSCOPIC BREAKDOWN OF THE 
S U P E R P O S I T I O N  PRINCIPLE IN A CLOUD CHAMBER 

As we have seen in Sections 2 and 3, in the case of solid bodies the 
breakdown of the superposition principle is due to the self-reductions of a 
single degree of freedom--the center-of-mass coordinate of the body. The 
situation is more complicated in the case of measuring devices, where 
amplification of microscopic signals takes place. As a typical example, the 
decay of superpositions during the process of drop formation in a could 
chamber has been described in detail in the thesis of K/trolyh/tzy. ~2) Here 
we shall merely recall the line of thought and the main result. 

Consider N - Z ~ 1 0 2 3  vapor molecules and a droplet of Z ~ 1 0  6 

molecules in a Wilson chamber. (The walls of the chamber are taken into 
account as boundary conditions.) We shall be interested in the fate of a 
superposition of two states of the vapor + droplet system, differing in the 
positions of the droplet. For  concreteness, let the distance between the 
positions of the droplet in the two branches be d ~  1 cm. The uncertainty 
in the position of the droplet within a single branch is irrelevant, as far as 
it is much smaller than d. 

If one disregards the further growth of the droplet, one would think 
that our superposition will not break down, because the coherence length 
a C corresponding to the mass of the droplet is much larger than the uncer- 
tainty d in the position of the droplet. Indeed, ac ~ 100 m. 
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Still, the superposition will decay even if the drop does not grow. (2/ 
Indeed, due to the difference in the positions of the droplet in the two com- 
ponents of the superposition, phase spreads of the order of rc develop 
between many points of the multidimensional configuration space of the 
vapor + droplet system. These spreads entail a sequence of self-reductions 
of the total system, each of which changes stochastically the relative weight 
of the branches in the superposition. This win-or-lose game ends with the 
survival of only one of the branches. The probability for a given branch to 
win is proportional to its weight in the initial superposition, whereas the 
time needed for the decay of the superposition is inversely proportional to 
Z 2. Our superposition will decay through this mechanism in about 
10 7 sec. Under realistic conditions this is the dominant way of breakdown 
of the superposition during the process of drop formation in a Wilson 
chamber. Indeed, the growth of the drops is not fast enough to trigger the 
self-reduction mechanism discussed in Section 3 by bringing down the 
value of ac below that of d in 10 - 7  sec. 

We call two positions of a body macroscopically distinct if the separa- 
tion between the positions is larger than ac. Since now the breakdown 
occurs when d < ac, that is, when the separation is not yet macroscopic, we 
shall say that the breakdown occurs at the "submacroscopic level. ''(2/Note 
that the submacroscopic decay of the superposition takes place also if the 
droplets in the different branches are of unequal size. 

Of course, the important point here is not that in this example the 
submacroscopic breakdown happens to supersede the macroscopic one, but 
the very existence of a mechanism through which the presence of the 
vapor--of the surroundings--influences the breakdown of the superposi- 
tion in the composite system containing the droplet--the local system. 

The wave functions in the branches of the initial superposition are 
entangled with wave functions of the ionizing microparticle, the inter- 
actions of which initiate the drop formation. Therefore, as a result of 
the above breakdown of the superposition, only the wave function of the 
particle in the winning branch survives. 

Most of the macroscopic systems do not possess a spectacular 
amplification mechanism of microscopic signals. Still, as a rule, they con- 
vert the energy brought in by a microparticle into heat, and thereby they 
also couple many of their degrees of freedom to those which directly inter- 
acted with the microparticle. The result again is a relatively slow sub- 
macroscopic breakdown of the superposition. 

There are cases in which the microparticle does not lose energy and its 
interactions with the constituents of the macrosystem do not induce 
self-reductions. Then the coherence of the superposition is preserved, and 
under suitable circumstances an interference picture can be observed. A 
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celebrated case is that of an electron beam which passes through a crystal. 
Of course, in all the branches of the superposition, the center-of-mass wave 
functions of the crystal undergo their frequent self-reductions to coherence 
cells with linear size of about 10 -16 cm, but these self-reductions do not 
destroy the coherence between the branches containing the wave functions 
of the electron entangled with the wave functions of the crystal. 

It may be of interest to note what the models can say about super- 
conductivity. The relevant remark is that the Cooper pairs are manifestly 
microobjects which can propagate in the raw material of the superconduc- 
tor without self-reductions, whereas the piece of solid in which they move 
behaves like any other solid. This line of thought seems to be applicable in 
the framework of the GRW model also. Indeed, for a Cooper pair, x ~ o  
is certainly larger than 1019 c m  [see Eq. (25)]. (For similar reasons, the 
limitation of the GRW model to insulating solids (1) can probably be lifted: 
The wave functions of the nonlocalized electrons in a metal practically do 
not self-reduce.) 

Finally, let us point out that in the framework of the K model 
monstrous superpositions like that with Schr6dinger's cat dead and alive 
do not develop. To begin with, an exploded cat gets into a different 
coherence cell than an unexploded one in 10 1~ sec. Of course, one can kill 
a eat by gentler methods. Then, as indicated by the example of the cloud 
chamber, the superposition falls apart slower, but already at the sub- 
macroscopic level, long before the death of the cat. 

8. SELF-REDUCTIONS AND C O N T I N U O U S  MEASUREMENTS 

As we know, in Eq. (49) the non-Hamiltonian term comes from the 
self-reductions going on in an isolated system. On the other hand, in the 
theory of continuous measurements the same equation has been 
derived, (3'1°) but there the non-Hamiltonian term describes the impact of 
the surroundings on the time evolution of a local system. So, while the 
coefficient A used in Ref. 3 in place of our ~/4 measures the effectiveness of 
a specific environment in destroying the coherence of the density operator 
of a local system, ~ measures the effectiveness of the self-reductions in 
destroying the coherence of the density operator of an isolated system. We 
conjecture therefore that the relation A ~> ~ means that the influence of the 
surroundings on the local system is strong. 

As an example, let us consider a solid grain in the transition region. 
From Eqs. (20), (21), and (47) we find ~ 107 in cgs units. On the other 
hand, in Ref. 3 A was estimated for dust particles of various sizes and in 
various surroundings. Dust particles of radius R E  10 -5, called colloidal 
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grains in Ref. 2, belong to the transition region. As can be seen from 
Table 2 in Ref. 3, for them A > '7 in all the cases considered, except for 
cosmic background radiation. In particular, for air, A ~ 1032. The conclu- 
sion is that a gaseous surrounding strongly modifies the behavior of a 
colloidal grain. As mentioned in Section 6, the same conclusion has been 
reached in the K model by comparing the normal and the anomalous 
Brownian motion of the grain. The normal Brownian motion arises due to 
Hamiltonian interactions. It should be added that this is not the whole 
story. The presence of the gas also modifies the conditions of the 
self-reductions. 

As far as a macroscopic solid body of 1 g at normal density is concer- 
ned, in the K model the size of the coherence cell of its center-of-mass wave 
function is so small and the frequency of its self-reductions is so high 
[Eq. (17)] that a gaseous (or a radiative) environment does not modify the 
conditions of its self-reductions appreciably. This conclusion is not 
invalidated by the results presented in Ref. 10. Indeed, the excitations of the 
vibrational states of the tungsten cube considered there do not change the 
mass distribution of the cube, and therefore they do not affect the 
self-reductions of the center-of-mass wave function. Also, the 25 sec needed 
for the impingning atoms to change the state of the cube are much larger 
than the period of 10 4 sec of the self-reductions. In other words, we 
conjecture that in this case one will find A ~ 7 ~  1037. Note that in the 
GRW model y = ~ 2 ~  1017'~]~, SO that in this model the conditions 
of the self-reductions of macroscopic bodies are more sensitive to the 
surroundings than in the K model. 

However simplistic the above comparisons may be, they shed some 
light on the problem of the relation between models with self-reductions 
and the theory of continuous measurements raised in Ref. 12. 

9. CONCLUSION 

In the orthodox quantum theory one needs some external agent (a 
classical apparatus or the consciousness of an observer) not subject to the 
Schr6dinger equation in order to interpret the result of the Schr6dinger 
evolution of the system under investigation. Furthermore, quantum and 
classical systems obey different laws of motion. Both these laws are deter- 
ministic. Probability comes in "only" in the description of the quantum 
world in terms of concepts of the classical world. 

In models with self-reductions a different picture emerges. All systems 
obey the same law of propagation, in which deterministic (Schr6dinger 
evolution) and stochastic (self-reductions) aspects are combined. There is 
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no need for the notion of purely classical and/or purely quantum mechani- 
cal systems. Macroscopic systems possess very nearly classical intrinsic 
properties, and microscopic systems--very nearly quantum mechanical 
intrinsic properties. The gradual transition between predominantly classical 
and predominantly quantum behaviors can be quantitatively characterized. 
The influence of specific environments on various systems can also be 
evaluated. As a rule, the environment affects strongly the behavior of sub- 
macroscopic and microscopic systems not only through the usual 
Hamiltonian interactions, but also due to the ability of the environment to 
undergo self-reductions. In particular, when a microobject comes into con- 
tact with a macrosystem called a measuring apparatus in the orthodox 
theory, the Hamiltonian interactions lead to a superposition in which wave 
functions of the object and of the apparatus are entangled. This superposi- 
tion undergoes then a sequence of self-reductions, induced by the 
apparatus, at the end of which only one of the entangled branches remains 
alive. Thereby the measurement is accomplished: The wave function of the 
microobject is reduced to a state corresponding to the indication of the 
"pointer." The probability that a branch survives is proportional to its 
weight in the initial entangled superposition. This guarantees that the 
probabilistic predictions of the orthodox measurement theory are 
reproduced, More precisely, they are reproduced up to small anomalies 
akin to the anomalous Brownian motion. 

According to both models the genuinely stochastic aspect of the 
propagation of the wave function is as basic a feature of nature as the 
deterministic aspect. The opinion that genuine (or "objective") probability 
should be incorporated into our world view (16) is strengthened by the 
experimental evidence (17) against the existence of simple local hidden 
variables. (~s~ Thus, quantum mechanical nonseparability, leading to such 
striking phenomena when the wave function of microparticles extends over 
macroscopic domains, is likely to stay with us. The only comfort provided 
by models with self-reductions is the unification of the picture: Non- 
separability and the E.P.R. paradox are present in embryonic form in the 
macroworld also, and again independently of any observer. Indeed, every 
time the tiny center-of-mass wave packet of a macroscopic solid body 
undergoes a self-reduction, its value jumps to zero everywhere except in the 
coherence cell into which it projects itself. The paradoxical character of this 
jump remains unnoticed, because even before the jump the wave function 
is zero everywhere, except for a very small domain barely larger than the 
minuscule coherence cell itself. However, the accumulated effect of the 
jumps leads to the anomalous Brownian motion of solid bodies which can 
perhaps be observed. 

Even if the observation of the predicted anomaly remains beyond 
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the scope of experimental ability, models with self-reductions provide a 
way of saving the concept of "independent reality. ''(t9) The price to pay 
is the acceptance of the idea that the Schr6dinger wave function, which 
represents this reality in the theory, obeys a propagation law that has a 
dual character. 
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N O T E S  A D D E D  IN P R O O F  

1. In Eq. (39) a factor of 8 has been overlooked. The correct relations 
are 8Qoo = a~ and 8(~o = (Kac) 2. Accordingly, numerical factors appear in 
some of the subsequent equations. They do not invalidate any of our 
conclusions. Also, the correct connection between the parameter A of 

2 i s 4 A = a  2 a n d n o t A  2a~. Ref. 7. and a , .  = 

2. For further developments of the GRW and K models see the 
Proceedings (in preparation) of the Summer School "Sixty-two Years of 
Uncertainty...", held at Erice, Italy, in August 1989, to be published by 
Plenum Press. 
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