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It has been established that in a strongly aniso- 
tropic fibrous material such as wood, Mode II or 
mixed-mode fracture can be important in certain 
loading situations [1-3] .  The mixed-mode fracture 
test methods used by Wu [1] and by Williams and 
Birch [3] involved combined tension and shear of 
large flat plates containing cracks at suitable orien- 
tations. The practical difficulties of obtaining the 
theoretical stresses with such test methods is well 
known, and Barrett and Foschi [2] suggested a 
Mode II test method using the three-point bending 
of a beam in which the crack was located on the 
neutral plane at one end of the beam. Friction 
error resulting from crack closure by the beam 
support was avoided by making the machined 
crack-mouth wide enough to allow the insertion 
of two metal rollers between thin metal plates. 
Whilst this method is much easier to perform than 
the flat-plate method, there is the possibility that 
if the crack mouth is slightly too wide the crack 
would still suffer from closure friction and if it 
was too narrow the insertion of the rollers would 
superimpose a positive Mode I component. The 
previous mixed-mode results on wood [1,3] and 
those of Fig. 4 in this paper suggest that the error 

in the KIt value caused by a superimposed K1 
could be considerable. 

In order to avoid these problems i~ was proposed 
to make mixed-mode tests on beams in which the 
KI and KII values were known, in order to obtain 
a pure Mode II fracture toughness by extrapolation 
or interpolation. The test method is shown in 
Fig. 1. The relative proportions of support given 
by Po and Pc can be varied by means of shims and 
measured by means of load cells. 

To assess the results from this test it was 
necessary to determine the values of K I and K n 
for various relative values of P0 and Pc and, in 
particular, the Pe/Po ratio for which KI = 0. 
Since experimental compliance methods are not 
applicable to mixed-mode loading, a finite-elements 
calculation was required. 

Sih, Paris and Irwin [4] demonstrated on theor- 
etical grounds that the stress-intensity factors for 
isotropic and orthotropic materials are identical 
for a cracked infinite plate. Such a conclusion is 
often assumed to apply to finite-sized test-pieces. 
However, Walsh [5] showed, using both an 
approximate "strength of materials" approach and 
finitelelements analysis, that the above conclusion 
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Figure 1 Test-piece for mixed- 
mode fracture of wood. 
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Figure 2 Long test-piece for Mode I fracture. 

is only valid for certain test-piece shapes; for very 
long cleavage test-pieces, for instance, the KI value 
of the orthotropic material is only about a third of 
that of the isotropic material. Differences in the 
K1 values between the isotropic and the aniso- 
tropic cases were also observed by Mandell et al. 
[6]. Others have avoided the problem by deter- 
mining the KI or KII values directly with ortho- 
tropic finite elements [7]. 

Since no direct KII comparison between 
isotropic and orthotropic materials appears to have 
been made, it was decided to pursue this matter 
by comparing the results of  finite-elements calcu- 
lations of both K I and KII for isotropic and 
orthotropic materials for the test-piece shapes used 
in this study. In addition to the mixed-mode test- 
pieces shown in Fig. 1, this included also the 
standard compact-tension and single edge-notched 
bend test-pieces [8] and a KI test-piece shown in 
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Figure3 Stress-intensity factors for mixed-mode test- 
piece calculated by finite elements for an iso~ropic and 
an orthotropic material. Closing support fraction = 
Pe/(Po + Pc). 

Fig. 2, whose proportions are roughly similar to 
those of the mixed-mode test-piece shown in 
Fig. 1. 

The finite-elements calculations were made 
with the PAFEC [9] program using 8-noded 
orthotropic plane elements on a DEC-10 computer. 
The stress-intensity factors were calculated from 
the computed plane-stress displacements near the 
crack tip from 

Ki = Eiu(2rr/r)i/z/4, (1) 

where i is the fracture mode, u is the displacement 
in the appropriate direction at a distance r along 
the crack face from the crack tip, and the values 
o f E  i are given by 

E I =  ((a-lla2211/2[(a2-~211/2 

t\ z ] [\a~/ 
2a12 + a6611/2/-1 

+ 2a~, ] J (2) 
and 

E:I = [ \a: l /  

. ° .  +.06]"'t ', 
2--a,--~ J ) (3) 

where a# are the anisotropic compliances. The 
modular ratios for the orthotropic materials were 
taken from [10] for sitka spruce at a moisture 
content of about 12%. The values of u/r v2 were 
plotted and extrapolated back to the limiting value 
at the crack tip. 

The mixed-mode finite-elements results are 
given in Fig. 3, both for isotropic and orthotropic 
calculations, as a function of the "closing support 
fraction", PJ(Po + Pc). These were scaled for a 
total support of P0 +Pc  = 1 kN. It can be seen 
that for both types of material, KI is zero at a 
value of closing support fraction of about 60%. 
In other respects the orthotropic and isotropic 
materials are very different. 
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T A B L E I Comparison between computed K! values for isotropic and orthotropic materials 

Type of test-piece Type of K I (MN m -3/2) 
material Displacement method Compliance method Formula 

Long test-piece Isotropic 3.922 3.970 - 
(see Fig. 2) Orthotropic 1.742 1.744 - 
Compact tension Isotropic 2.425 2.447 2.400 
specimen Orthotropic 2.165 2.164 
Single edge-notched lsotropic 2.616 1.653 
bend specimen Orthotropic 2.662 

Notes: (1) Compact tension specimen and single edge-notched bend specimens according to [8] with a = 20 mm, W = 
40 mm, B = 20 mm. (2) Formulae for test-pieces are given in [8]. 

The finite-elements results for pure Mode I 
are summarized in Table I. These values are for 
nominal loads of l kN, and the same modular 
ratios were used as for the mixed-mode calcula- 
tions. It may be seen from Table I that the ratios 
of K I (orthotropic) to KI (isotropic) are: 

long test-piece 0.44, 

compact tension specimen test-piece 0.88, 

single edge-notched bend test-piece 1.02. 

The results of the mixed-mode tests on baltic 
redwood (Pinus sylvestris) at 10% moisture con- 
tent are given in Fig. 4, for crack growth in the RL 
[3] system. For each test the "closing support 
fraction" Pe/(Po + Pc), was determined at failure. 
Reference to Fig. 3 then gave values of KI and 
KII for a total load of 1 kN, and these values were 
scaled up for the actual failure load, (Po + Pc). As 
expected, with a variable material such as wood, 
the results show considerable scatter, although 
possibly less than those obtained by previous 
authors using biaxially-stressed plates. Fig. 4 also 
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Figure4Mixed-mode fracture results for baltic red- 
wood. The fitted curve has the equation KI/KIe+ 
(KII/KIIe) 3"4 = 1. 

shows a least-squares fitted curve based on the 
equation 

KI ~ [ KII ~ ~ 
Kic t K l l c )  = 1" 

The values of the constants a and /3 were 1.005 
and 3.4, respectively. 

If the value of ~ is taken as 1, the value of 
3.4 for t3 may be compared with a value of 2 
obtained by Wu [1 ] using biaxial stressing of balsa 
plates. Fig. 4 also gives the ratio Klxc/Kie of 2.7, 
which agrees reasonably well with the value of 2.4 
obtained by Williams and Birch [3]. 

Whilst the results from this method depend 
partly on a theoretical calculation of the stress- 
intensity factors, it can be shown that the variation 
in the modular ratios from species to species has 
a very small effect on the stress-intensity factors. 
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