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A new proof of  the impossibility of  reconciling realism and locality in quantum 
mechanics is given. Unlike proofs based on BelFs inequality, the present work 
makes minimal and transparent use o f  probability theory and proceeds by 
demonstrating a Kochen-Specker type of  paradox based on the value 
assignments to the spin components o f  two spatially separated spin-1 systems in 
the singlet state of  their total spin. An essential part of  the argument is to 
distinguish carefully two commonly confused types o f  contextuality; we call them 
ontological and environmental contextuality. These in turn are associated with 
two quite distinct senses of  nonlocality. We indicate the relevance of  our 
treatment to other related discussions in recent literature on the philosophy of  
quantum mechanics. 

1. INTRODUCTION 

Since the inception of quantum mechanics (QM), realism has been a 
prominent issue in its interpretation. Of late, particularly after the work of 
Kochen and Specker m and Bell, (2) two serious allegations have been brought 
against realism in quantum mechanics. First, that a realistic interpretation 
involves an algebraic contradiction--this charge came from the work of 
Kochen and Specker. Second, that realism entails nonlocality--this came 
from Bell's work. In this paper, by showing that any local realism leads to a 
Kochen-Specker type of contradiction, we shall show how the results of 
Kochen-Specker and of Bell are linked. 2 

i Department of History and Philosophy of Science, Chelsea College, University of London, 
Manresa Road, London England. 

2 The connection between nonlocality and the Kochen-Specker paradox appears to have been 
suggested by Simon Kochen in an unpublished comment to A. Shimony. (We are grateful to 
Professor Shimony for this information.) The idea was developed in a rather different 
context by Stairs. ~3) Stairs was attempting to criticize Fine's defense of (effectively) what we 
call CVR below. By assuming locality, Stairs showed that CVR led to a Kochen-Specker 
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Let us explain some simple notation. 3 The sentence [Q]~=,~ ,  where Q 
is any physical magnitude, 4 ~ is any quantum state, and 2 any point on the 
real line, shall mean that in state ~i the physical magnitude Q has the value 
2. 5 It should be noted that these are assertions about values possessed by 
physical magnitudes; they say nothing of  the values that will be found upon 
measurement. Notice also that in a realistic interpretation of QM, [Q]* is 
well-defined whether or not ¢t is an eigenstate of  the corresponding operator 
(~. We use the term "physical magnitude" rather than "observable" because 
we wish to distinguish sharply between physical magnitudes and self-adjoint 
operators. It is perhaps easier to slide from observables to operators than 
from physical magnitudes to operators. "Physical  magnitude" also benefits 
from the lack of  any anti-realist connotations that might attach to the 
"observable." At present we are following the common assumption that to 
every self-adjoint operator there corresponds a unique physical 
magni tude- -we will revise this shortly. The sentence P ~ ( 2 ) =  r for any 
quantum state ~ and physical magnitude Q, and for any point r in [0, 1 ], 
shall mean that the quantum mechanical probability that a system in state 
on measurement of  Q will be found to have the value 2, is r. 

We shall be concerned with the sort of  realism which asserts at least 
that at all times and in all states every physical magnitude which pertains to 
the system has some value. 6 However, we must have a more detailed 
specification of  the realist thesis before we can assess its merits. There is in 
the literature a profusion of  " ru les ' - -essent ia l ly  constraints restricting the 
possible value ass ignments--each of  which, it is supposed, must be accepted 
by any realist. We shall use several and we beg the readers forgiveness for 
the introduction of  still others. 

The following rule has been widely accepted as central to any realist 
interpretation of  QM and will be important in our proofs: 

Value Rule (VR): P~(2) = 0 ~ [O]O :¢: 2 

contradiction and concluded that CVR must be false. We show below that CVR is derivable 
from the generally accepted VR and FUNC* and hence deduce a different conclusion from 
Stair's work, namely a demonstration of nonlocality. We acknowledge our debt to Stairs, 
although the details of our arguments are quite different. 

3 Our notation is simple initially, it gets a little more complicated as we adapt it to cope with 
problems as they arise. 

4 A physical magnitude is a property of an object or a physical system, the associated self- 
adjoint operator Q is of course a mathematical entity; let's not confuse the two. 

5 This is our adaptation of a notation due to Fine. ") We confine our discussion to physical 
magnitudes whose associated self-adjoint operators have a discrete spectrum. 

6 This, of course, excludes what might be called "dispositional realism," according to which 
systems have dispositions (propensities) to manifest properties under certain conditions, 
though they need not possess these properties at all times. 
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Essentially this rule constrains a physical magnitude's value assignments to 
its eigenvalue spectrum and for any state 0 to those eigenvalues which have a 
nonzero probability of  being found on measurement. 7 

VR is usually justified by appeal to another rule: 

Faithful Measurement (FM):  Any measurement of  a physical 
magnitude Q reveals the value which Q had immediately prior to the 
measurement. 

This rule allows us to move freely between measured and possessed 
values. We cannot actually use FM to prove VR since we must in addition 
assume the identity of  probability distributions for measured and possessed 
values. 8 But it would demonstrate a remarkable conspiracy on Nature 's  part 
if possessed values were always revealed on measurement, but repeated 
measurement did not uncover all those values which were possessed. If  we 
reject such a conspiracy then FM may indeed be regarded as justifying VR. 

Another rule much discussed since the work of  Kochen and Specker is 
Functional Composition, commonly known as FUNC.  

FUNC"  If  `4 and /~ are two operators and there exists a function f 
such that B : f(`4), then 

[B] ° = f ( [ A ]  ~) 

for any state 4, where A and B are the (unique) physical magnitudes 
corresponding to ,4 and /~, respectively. We shall sometimes express this 
result in the form 

[f(A)] ° = f ( [ A ]  ~) 

where the symbol f ( A )  derives its significance from the fact that it is the 
physical magnitude whose associated self-adjoint operator is f (A) .  
Essentially the idea of  F U N C  is that the algebraic structure of  the operators 
should be mirrored in the algebraic structure of  the possessed values of  the 
physical magnitudes. Kochen and Specker (1) showed that if F U N C  
constrains the value assignments a contradiction will result provided that the 
Hilbert space of  state vectors has a dimension greater than two. Their 
important result is purely algebraic. 9 

7 VR only makes sense for physical magnitudes associated with a discrete spectrum. For 
physical magnitudes associated with a continuous spectrum it would imply that no precise 
value was possessed by the physical magnitude in question. Compare Teller (6) for further 
discussion of this point. 

s See Ref. 5. 
9 Kochen and Specker's result is in fact a corollary of Gleason's (7) theorem, and is also 

implicit in the work of Bell/s) For a comprehensive discussion see Fine and Teller. (9~ The 
question of submitting FUNC to experimental test is examined in Redhead. ¢~°~ 
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Kochen and Specker believed that they had shown the impossibility of 
any realist interpretation of QM (except for the special case of spin-½ 
systems). Naturally there has been much discussion as to whether a 
commitment to FUNC is necessary for realism. It is undisputed however that 
the Kochen and Specker result relies on FUNC holding in the following 
situation: 

A = f(/~), A ----- g(C), [/~, C] 4= 0 

for some functions f and g. In this situation FUNC constrains the values of 
incompatible magnitudes: 

[A] ~ = f ( [B]  ~) 

and 

Hence 

[A] ~ = g([C] ~) 

f ( [B]  ~) = g([C] ~) 

As is well-known this situation can only arise if f and g are many-one 
mappings, so in particular if/~ and C are maximal 1° (nondegenerate) then 
must be a .degenerate operator having some of its eigenvalues equal. 

This reasoning and with it the Kochen-Specker proof can be blocked by 
restricting FUNC. The restriction is that FUNC applies only within the set 
of functions of a single maximal operator. Thus we will break the 
relationship between the algebraic structure of operators and the algebraic 
structure of physical magnitudes just where Kochen and Specker used it to 
get their contradiction. Let us make this clearer. So far we have assumed that 
to each operator there corresponds one and only one physical magnitude, in 
the future we shall assume this only for maximal operators. So we will still 
write [R] ° for the possessed value of a physical magnitude whose 
corresponding operator /~ is maximal. But corresponding to each 
nonmaximal operator we shall assume there are many physical magnitudes, 
Furthermore these many physical magnitudes are distinguished from one 
another by the functional relationship between their values and the values of 
physical magnitudes corresponding to maximal operators. Thus, suppose as 
above that 

A = f (B) ,  A = g(¢), [B, ¢] ¢ 0 

J0 Operators are, of course, maximal or nonmaximal.  When we describe physical magnitudes 
as maximal or otherwise, we mean to impute the property to their associated operators. 
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where /~ and C are maximal so we can unambiguously associate physical 
magnitudes B and C with them. But A is nonmaximal and with it we 
associate two physical magnitudes--there may be more--A B and A c and 
these physical magnitudes are identified by their functional relations with B 
and C in respect to the value assignments--specifically 

[A~] ° = f ( [B]  ~) and [Ac] ~ = g([C] ~) 

In a sense physical magnitudes corresponding to maximal operators are 
ontologically prior to those which correspond to nonmaximal operators. 
Knowing to which self-adjoint operator it corresponds is not sufficient to 
identify unambiguously a nonmaximal physical magnitude, we must know 
also to which maximal physical magnitude its values are related. It requires 
a "context"--a t  least this is, we believe, one idea that has been in the minds 
of those who speak of contextuality. Every nonmaximal self-adjoint operator 
now corresponds not only to one, but to many different physical magnitudes. 
In fact this is to de-Ockhamize QM d la van Fraassen. (11) We shall refer to 
it as Ontological  Contex tual i ty .  Of course this blocks the Kochen-Specker 
proof because we have no reason to think, as they require, that 

[ A . ] °  = [Ac] ° 

when /~ and C does not commute. Notice that in order to measure  A 8 for 
example we proceed by measuring B and applying the function f to the 
result. Similarly A c is measured by measuring C and applying the function g 
to the result, and so on. 

We accept then a restricted version of FUNC--ca l l  it FUNC*--which  
follows directly from the definit ion of [As] ° given above. 

FUNC*:  Let/~ be a maximal self-adjoint operator and d a n d / )  self- 
adjoint operators such that for functions h, f ,  and g we have the relations 

= f(/~), /} = g(/~), A = h(/)) 

then 

[A~] ~ = h([D~] '~) 

In particular, i f /5  is also maximal, so we can identify D B with the unique 
physical magnitude D, 

[ a , ] o  = [A . ]  ~ 
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So the value of A s in a given state ~ does not depend on the maximal 
physical magnitudes of which it is considered a function in the equivalence 
class of 1 : 1 functions of a given maximal physical magnitude. Thus if we 
denote the equivalence class generated by B, by {B} our notation can be 
conveniently modified be defining a new symbol 

[A. ]  ° 

which serves to stress that [As]* depends only on the equivalence class {B}, 
or, which comes to the same thing, the complete orthonormal basis of eigen- 
vectors for/~ (in the case of the discrete spectrum we are considering for the 
purposes of this paper). 

With regard to our avowal of FUNC* two questions immediately arise. 
Is it consistent with and is it independent of VR? Both questions can be 
answered in the affirmative. Let R be any maximal physical magnitude with 
a unique (up to phase) orthonormal basis of eigenvectors. Order this set in 
some way 01, 42 .... Then let n o be the first n such that [(0n I~i)] 24:0  and 
def'me 

[f(R)] ~Rj = f(2,0) (1) 

where ;tn0 is the eigenvalue corresponding to Cn0" By choice of no this satisfies 
VR and also agrees with FUNC*.  Hence we have established consistency. 
But now suppose (1) holds only i f f  is not the identity function and define, 
[R]~m = J'nl, where n 1 is the second n such that I(~, I~)12 :/:0 and ~,1 is the 
eigenvalue corresponding to 4~,  then VR still holds but FUNC* is violated. 
Hence we have established independence. 11 There is also the question of 
whether FUNC* is consistent with the algebraic structure of maximal 
physical magnitudes. Here we can cite a theorem of Maczynski (12) to the 
effect that it is indeed possible to assign values to the set of maximal 
physical magnitudes consistently with maintaining functional relationships 
between them. 

With regard to the proliferation of physical magnitudes envisaged by 
the van Fraassen solution to the Kochen-Specker paradox, an interesting 
question arises in the case of two spatially separated systems. 

Let S1 and S 2 be two such systems which may or may not have 
interacted in the past and let their associated Hilbert space H 1 and H 2 be of 
arbitrary dimension. If we so choose we may describe the combined system 
(S 1 ~- S2) in the product space H 1 (~) H 2 . Let .,t be a maximal operator in the 
space H~ and let/~ be a maximal operator in the space H 2. The following 

~ The above argument is due to Professor Fine. We are grateful for his advice on the question 
of consistency and independence of F U N C *  and VR. 
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problem occurs: since (A ® 1), the magnitude associated with the operator 
(A ® 1), is not a maximal magnitude in the product space, should (A ® 1]~xl 
and [A ® 1 ]~rl, where X and Y are maximal incompatible magnitudes on the 
product space, be treated as different physial magnitudes? A straightforward 
application of ontological contextuality would lead us to do so. The 
intuitive consequences of doing so are peculiar. A sort of hotism is involved, 
physical magnitudes maximal in the product space are somehow prior to 
physical magnitudes maximal locally in the factor spaces. Perhaps this might 
be called "nonseparability," but we shall refer to it as failure of "ontological 
locality." Let us state the principle of Ontological Locality. 

Ontological Locally (0LOC): If H t and H 2 are the Hilbert spaces for 
A 

two spatially separated systems and (1t ® 1) is a locally maximal operator 
then 

[A @ 1]~x~ = [A ® 1]~rl 

for any state ~ of the joint system where J~ and l > are both maximal 
operators in H 1 ® H z and [J(, I~] 4: 0. In other words, locally maximal 
physical magnitudes on either of two spatially seperated systems are not 
"split" by ontological contextuality relative to the specification of different 
maximal physical magnitudes for the joint system. 

There have been attempts in the literature to find a purely algebraic 
proof of nonlocality. Thus Demopoulos (13) has attempted to prove that the 
partial algebra of locally maximal and maximal magnitudes on two 
separated systems cannot be embedded in a commutative algebra. If 
successful this would demonstrate that we must treat (A ® 1)lXl and 
(A @ 1){rl as different magnitudes. In fact the proof fails. 12 This means that 
we do not need to violate OLOC to rescue realism from inconsistency. It 
does not follow of course that OLOC is not violated. 

But locality was an issue brought to the fore in the foundations of 
quantum mechanics by Bell and in the proofs of nonlocality which proceed 
via the violation of some form of the Bell inequality there is another sense of 
locality involved.13 Associated with this is another form of contextuality. We 
have ontological contextuality, the further form of contextuality which we 
will call Environmental ContextuaIity is totally different in origin though, as 

~2 See papers by Humphreys  (~4) and Bub (~5) and a forthcoming review by Heywood. (t6~ The 
algebraic approach appears to have originated with Bub (~7~ who posed the problem of 
extending Maczynski 's  (~2) theorem on the Boolean representability of  maximal magnitudes 
to locally maximal magnitudes, 

~3 See Clauser and Shimony (~8) and Redhead (~9) tbr a detailed discussion of this approach. 
The effective tacit assumption of OLOC in this work should be noted. 
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we shall see, it is experimentally indistinguishable from ontological contex- 
tuality. Environmental contextuality involves the idea that there is some 
nonquantum interaction between the system of interest and its surroundings 
which occurs before the act of measurement and alters the values of the 
magnitudes of the system. These interactions are invoked to explained the 
failure of the Bell inequalities and are thus supposed to occur just before a 
measurement takes place, but presumably there is no reason why they should 
only occur immediately prior to a measurement which is why we call this 
kind of contextuality 'environmental.' By their very nature we know next to 
nothing about these supposed interactions, but we do presume that when they 
occur just before a measurement they are in fact a nonquantum mechanical 
interaction taking place between the measured system and the measuring 
apparatus depending on among other things the maximal magnitude on the 
measured system which the apparatus is set up to measure. Expanding our 
notation a little further we write [A]~RI (B) which is the value that the 
magnitude A s takes after the interaction between the system and an 
apparatus set to measure B, but before the actual measurement takes place. 
The letter in parentheses labels the magnitude which the apparatus is set to 
measure. To make the meaning o f  this symbol clearer consider [A ]~B~ (C) 
where B and C are incompatible maximal magnitudes. This simply means 
the value that the magnitude A B would take if the measuring apparatus were 
set to measure C, of course we can never know what this value is, because 
we cannot measure A B and leave the apparatus set to measure C--B  and C 
are incompatible. When we apply this idea of contextuality to spatially 
separated systems we come up with another form of locality, we shall call it 
Environmental Locality. 

Environmental Locality (ELOC): If S 1 and S 2 are two spatially 
separated systems, Q, a physical magnitude for $ l ,  X and Y maximal 
magnitudes for the joint system $1 + S 2, then if the difference between an 
apparatus set to measure X and one set to measure Y is only in the setting of 
that part of it at S~ 

[ Q G  1]~xl(X)= [O@ 1]~xj(Y) 

In other words, the value possessed by a local physical magnitude cannot be 
changed by altering the arrangement of a remote piece of apparatus which 
forms part of the measurement context for the combined system. Note that 
we have not presumed OLOC in the spcification of ELOC, although as we 
shall discuss later, it is only when OLOC obtains that ELOC can properly 
be called a locality principle at all. 
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What we shall do in this paper is to link these discussions of locality in 
the following way. We shall show for an appropriate physical system that 

F U N C *  + VR + ELOC + OLOC ~ Contradiction 

where the contradiction is derived from a connection between value 
assignments that is very closely connected with FUNC although as we shall 
see differs from FUNC in a rather subtle way. Hence, F U N C *  + VR=~ 
(~ELOC)  o r  ( ~ O L O C ) .  14 So we are presented with a dilemma. If  we hold 
on to F U N C *  and VR we must violate either ELOC or OLOC (or both). 
The implications of grasping either horn of the dilemma will be discussed in 
section 4. W e  turn now to the formal proof of our main result. 

2. THE COMEASURABLE VALUE RULE 

We begin by slightly amending VR to take proper account of environ- 
mental contextuality. Considering the case of a maximal magnitude R, we 
write 

P~(2) = 0 ~ [RI~(R) ¢ 2 

i.e., the vanishing probability of observing measurement results constrains 
the values R may have in the measurement context of R, and is silent about 
the quantity [R]O(P) for example, where P is an incompatible maximal 
magnitude. 

Similarly we adapt F U N C *  to take account of environmental contex- 
tuality: for any environmental context C 

[A ]~BI(C) = h([D]~m(C)) 

where/~ is maximal and d = h(/}), 

= f(/~) and D = g(/?) 

In particular we have the result 

[A ]~BI(B) = f ( [B]  O(B)) 

which is the form in which we shall employ F U N C *  later in this section. 
From VR and F U N C *  we shall now derive what we call the 

Comeasurable Value Rule (CVR). In his paper "On the Completeness of 

~4 We are indebted to the eagle-eyed Arthur Fine for pointing out to us that F U N C *  should 
be included among the assumptions of our proof. 
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Quantum Theory ''~4) Fine moots, but quickly rejects, a constraint on value 
assignments which we call the Extended Value Rule. It is as follows: 

Extended Value Rule (EVR): If Q1 and 02 commute, P~l ,o2(2 , /a )=  
0=~ either [Q1] * ¢ 2  or [Q2]* 4:g where P~,,Q2(2,l t)  denotes the quantum 
mechanical joint probability of finding measurement results 2 for the 
physical magnitude Q1 and g for the physical magnitude Qz in the state ~. 
The reason he so swiftly rejected this rule is because it is easily shown to 
imply FUNC. Thus we have, from the statistical algorithm of QM, if W~ is 
the density operator associated with the state ~ and ;G denotes the usual 
characteristic function associated with the set A, 

P~,I~o)(2, ~t) = Tr W~. za(Q) " z , ( f ( Q ) )  

= Tr W o • z a ( Q ) "  )¢:-,~.)(Q) 

= Tr W o • zlal~- ,~,)(Q) 

Hence if 2 ~ f -  l(g) i.e., if/~ ¢ f (2 )  it follows that 

and hence by EVR 

But suppose 

[Q]~ 4:4 or [f(Q)]~ :~ g 

[O] ° = 4  

then it follows that 

i,e., 

which is FUNC. 

[f(Q)]°  4:/2, vp 4: f (~)  

[f(Q)] ~ = f (2 )  = f ( [Q]*)  

We shall now introduce our CVR as a restriction of EVR to certain 
comesurable magnitudes. 

It is a necessary condition for two magnitudes to be comeasurable that 
their associated self-adjoint operators commute, but this is not sufficient 
when account is taken of contextuality. It is certainly  a sufficient condition 
for genuine comeasurability that the two magnitudes Q1 and Q2 are defined 
in the context of the s a m e  maximal magnitude R. 

We now introduce our new rule. 
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The Comeasurable Value Rule (CVR): If (~ and Q2 commute, and 
is a maximal operator such that 0~ = f ( /~ )  and (~ = g(/~) for functions f 
and g, then P~,Q~(,~, # ) = 0 = ~ e i t h e r  [Q1]~kj(R)¢£ or [Q2]~R~(R)¢ p. We 
shall now show that CVR follows from VR and FUNC*.  It is easy to see 
that 

P~,~2(2, p) = Tr W~,. Xa(f(R)). ).(g(R) = Tr Wo- Xy ~(~)(R) • Xg ~.)(R)) 

= Tr W o • ,,~f_a(A))ng_l(u)(R) 
= p $ ( f -  1 (~) (-.~ g -  l(u)) 

Hence from the Value Rule 

P~,e2(2, p ) = 0 ~  [R]°(R)q~ f-~(2)N g-~(U) 

But suppose 

[QI]~RI(R) = 4  and [Qd~t(R) =/~ 

Then by FUNC* 

[R]°(R)E f-I(2) and [RI°(R)e g-~(U) 

Thus, 

[RIO(R) E f -~ (2 )  A g -  ~(~z) 

Hence, 

P~,,o2(2, p)=O=> ~([Qll~m(R)=2 and [Q2]~m(R)=fl) 

either [Qt]~m(R) 4= ~ or [Q2]~R~(R) 4=/~ 

which is just our CVR. Conversely from CVR it is clear that we can derive 
only the restricted, acceptable version of FUNC, viz FUNC*.  

Let us develop a particular case of CVR which wilt interest us 
especially. Suppose (~ ®/" and f ®  Q' are self-adjoint operators in some 
product space H~ ® H 2 describing the states of two spatially separated 
systems S 1 and S~. We use the convention that in the tensor product A ®/}  
of two operators the left-hand operator A acts on the space H 1 and the right- 
hand operator/~ on the space H 2. Let 0 = h(A) and Q' = k(/~) for functions 
h and k. Then Q ® [ = h(.,{) ® [ = h(A ®/'). Similarly 1 ® Q' = k(t  ®/~). 
We suppose A and/~ are nondegenerate on their respective components of 
the product space so A ® 1 and 1 ® B  are locally maximal physical 
magnitudes. Let A = ~ i  afl3i and B = Y~ifli/5[ be the spectral resolutions of 
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,4 and/~. Now any physical magnitude with associated self-adjoint operator 
6 = ~ u  eu/3i ®/3~ where cij = F(ai,  flj) and F: ~2 ~ R is 1 - 1, is sufficient 
to show that CVR will apply to Q ® I and I @  Q'. Since F is 1-1 there are 
functions f and g such that f(ctj  ) = a i and g(cij ) = flj, so 

Similarly 

hf(O)=h t;) 

:h(,'i®h 

kg(O):/® 
Thus in a product space H 1 ® H 2 

P3®,,,®Q,(x, r)  = o 

By CVR implies 

either [Q ® I]~0j(0) 4= X or [ I ®  Q']~m(0) 4: Y (2) 

Before applying this result we want to give a succint formulation of ELOC 
and OLOC. To this end we first define the symbol (,4, B) to mean just the 
maximal physical magnitude 0 for the joint system whose associated 
operator 6 is constructed from the operators .4 and /}  associated with the 
component systems in the way described. Note that the bracket symbol 
denotes a .function defined on the ordered pair (A ,B)  which is (partly) 
specified by the function F. 

Now in order to measure 0 we connect up two pieces of apparatus, one 
interacting with S 1 and adjusted to measure A on $1, the other interacting 
with S z and adjusted to measure B on Sz. The ordered pair of these 
measurement results is then subjected to the function F. The resulting 
number is a measurement of 0. The environmental context referring to a 
measurement of 0 can thus be spelled out as the ordered pair (A,B) ,  
indicating that the apparatus interacting with $1 is set to measure A and the 
apparatus interacting with $2 is set to measure B. 

Our result (2) can now be expressed in the following form: 

If P~®*a ®o'(X, Y) = 0 then either [Q @ I] ~<A,m~( A, B) 4= X or 

[ i ®  n , l~  (t4 B)--,eY (3) J{(A,B)lk 
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The suffix {(A, B)} shows that it does not matter which 1 - 1 function we 
choose for F in the specification of (.4, B). We shall follow the convention 
that in an ordered pair of symbols the first member always refers to system 
S 1 and the second member to system S 2. 

We are now in a position to state our two locality principles (one of 
them, OLOC, in a slightly extended form) using our new notation. For all Q, 
A, B, C, D, and E, where Q = h(A) for some function h, and A, B, C, D, and 
E are all maximal 

OLOC: 

ELOC: 

[Q @ I]~A,B>I(D, E) = [Q @ I]~A,c>j(D, E) (4) 

[Q ® t]~¢Aw>~(D, E) = [Q ® I]~A,s>~(D, C) (5) 

Notice that in the formulation (4) of OLOC we have employed FUNC* to 
write 

[ Q ® I]~fA,~>j(D, E) = h([A ® I][¢A,B>I(D, E) ) 

and 

[ Q ® I]~<A,c>~(D, E) = h([A ® I]~<A,c>I(D, E)) 

Eq. (4) then follows from our previous formulation of OLOC in terms of 
locally maximal magnitudes such as A ® L Mutatis mutandis we can apply 
(4) and (5 ) t o  physical magnitudes associated with operators I ®  Q' which 
are local for $2. 

3. THE INCOMPATIBILITY OF CVR AND LOCALITY 

Now we shall employ the results (3), (4), and (5) to derive a 
contradiction. In the proof we shall again consider as one system S 1 + $2, 
two spatially separated systems $1 and S z. We suppose for simplicity that 
each system is associated with a Hilbert space of N-dimension and consider 
two locally maximal self-adjoint operators A ® [ and [ ® / ~ .  Let .4 have N 
distinct eigenvalues written in some arbitrary order as a I ,..., a N and/?  have N 
distinct eigenvalues written in some arbitrary order as b~ ..... b N. Let the state 
of the combined system be 

N 

= Z cm Jam) ® Ibm) (6) 
m=l 
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where C m are unspecified complex coefficients and lain) denotes the 
eigenvector of A associated with the eigenvalue a m and [bm) the eigenvector 
of/~ associated with the eigenvalue bin. 7 j is thus a linear combination of 
simultaneous eigenvectors of A ®/" and [ ®/~, the mth eigenvalue of,4 being 
correlated with the mth eigenvalue of/~. 

Now consider some nonmaximal self-adjoint operator Q such that 
( ~ = f ( A ) =  g(A') for suitable functions f and g, where A' is another 
maximal operator which does not commute with A. By construction we have 
the result 

ip 
Pa®la®8(am, y) = 0 

Hence applying (3) we obtain 

Vy=/= b., (7) 

[A @ I]~(A,mI(A, B) = a m 

[I® BI~A,m}(A, B) 4: y 

[I@ B ]~A,B)I(A, B) = b m 

Yy 4: b,, 

(8) 

Also 

P](A®I),I®B(f(x), b,.) = P*A®,,,®8(f-'(f(x)), bin) 

by an obvious extension of our notation to allow for the value of A ® I 
revealed by measurement to be a member of the set f - l ( f ( x ) ) .  But 

p~, - i  x A®,.,®~(f ( f ( ) ) , b m ) = 0  Vxsuchthat a,n~ f - l ( f ( x ) )  

i.e., such that f(am) --/: f ( x )  

Hence again using (3) 

[I®B]* I(A, B)}(A , B )  = b m ::> [f(A ® I)]~A, ,>I(A ', B) va f ( x )  

Vx such that f (a,,) ¢ f ( x )  

[f(A ® I)]~( A ,,ml(A ', B) = f (a, ,)  (9) 

We now apply OLOC and ELOC in the form (4) and (5), 
transposed to system Sz, to give 

A' [ I® B]~A,mI(A, B) = [ I® B]~ A,,ml( , B) 

So from (8) and (9) we obtain 

[a ® I]~A,ml(a, B) = a m ~ [f(A @ I)]~A',,)I( A', B) = f(am) 

suitably 

(10) 
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or more succintly 

A' [f(A ®/)]~A'm>l( ,B)=f([A ®I]~A,s>j(A,B)) (11) 

Now (11) is not quite FUNC, since the latter principle preserves functional 
relationships between the coexisting values attributed to physical magnitudes, 
whereas in (11) we have different environmental contexts on the two sides of 
the equation. 

Nevertheless (11) can be used to demonstrate a contradiction just as 
well as the noncontextualized form of FUNC. To see this let us specialize to 
the case of two spin-1 systems prepared so that the combined system S1 + $2 
is in the singlet state of the total spin. If a is any direction and la+), ta_), 
and ]%) are eigenvectors of the spin component of either system projected in 
the a -  direction with eigenvalues 1, - 1 ,  and 0 (in units of h), respectively, 
then 7 t is given by 

~= 1/v/g (Ia+)® la_) + la )® la+)-  lao)® lao)) (12) 

We now take for the operators .4 and/~ in our general analysis the single 
operator 

Hs = aS~ + bSy z + cg~ (13) 

considered by Kochen and Specker (1) where Sx, Sy, and Sz are the operators 
associated with the x, y, and z components of spin of either system./4s has 
eigenvalues (a + b), (a + c), and (b + c) and we assume a, b, and c are 
distinct real numbers so that these eigenvalues are all unequal. Hence/4~ is 
indeed maximal. 7 j can be expressed in terms of its eigenvectors. If a is iden- 
tified with the z-direction, given the relations 

la+)= 1/v/Z(la+c)-lb+c)) 
[a_)  = l /V/2 ([a + e) + [b + c)) (15) 

lao)=la+b) 

where l a + b), [a + c), and ]b + c) are eigenvectors of/~s with the indicated 
eigenvalues, it is easily verified that 

~ = l / v / 3 ( l a + e ) ® ] a + c ) - - l b + c ) ® l b + c ) - - l a + b ) ® l a + b ) )  (15) 

This is of the form (6) to which our general analysis applies. Take now for 
A' the operator 

B~ "2 "z cS~ (16) = aSx, + bSy, + 
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where the new set of orthogonal directions denoted by the labels x ' y ' ,  and z 
are obtained from those denoted by x, y, z by a rotation about the z-axis. 
Finally take for Q the operator 

$2 = f(/~s) = f ( I : I ' )  (17) 

where f :  I~ ~ ~ is defined by 

f ( x )  = (C -- a)- l (b  - c ) - l ( x  - (a + b))(x  - 2c) (18) 

(Note that s incefdoes  not possess an inverse (17) does not imply Hs = / ~  !) 
Since f ( / t  s ® I) = f(Hs)  ® [ =  ~2 ® [ our result (11) can be expressed in an 
abbreviated notation in the form 

^ 2  tp t [S z ® I11H'~®,t (H,  ® I)  = f ( [H~  ® I] v (H s @ I))  (19) 

where we have suppressed any contextuality parameter either ontological or 
environmental on which the values of the physical magnitudes do not depend 
in the light of OLOC and ELOC. (We write the contextuality parameters as 
/ ~  ® I and H s ® I to indicate, in accordance with our convention for the 
order of factors in a tensor product, which system we are referring to. 
Having dropped the ordered pair notation used in ( t l )  we need some other 
method of distinguishing which system H s or H~ refers to.) 

Now (19) assigns to [S~ ®I]IH;®II (H~ ® I) and, most importantly, to 
the direction labeled z, a number with the following two properties: 

1. It is independent of the orientation of the x'  and y '  axes used in 
specifying H£. 

2. It has the value 0 or 1. 

Condition (2) follows from the fact that H~ ® I must be assigned one of its 
eigenvalues and the action o f f  as specified in (18) is to project the set of 
eigenvalues onto the set {0, 1 }. Now we can repeat the argument which led 
to (19) using instead an orthogonal triad x' ,  y, and z', so that we find that 

2 7fl t l  [S,, ® I]~H2®It(H s @ I) 

and hence the direction y is assigned some number which is a different 
function, say g, of [H~ × I]V(H~ ® I) where 

~ '  = aS 2, + bS~ + eS~, 
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This number again has the properties: 

1. It is independent of the x'  and z'  axes used in specifying H" .  
2. It has the value 0 or 1. 

The function g is given by 

g(x )  = (b -- e ) - ~ ( a  -- b ) - ' ( x  - (c + a ) ) ( x  - 2b) (20) 

Finally the argument is repeated for Sx 2 ® I and the number assigned to 
[S2x ® I]~,,,®,}(H~" ® I), and hence the direction x, is a new function, say h, 
of [ g  s @ -I]~'(Hs ® I )  with the properties: 

1. It is independent of the y '  and z'  axes used in specifying a rotated 
opera tor /q"  = aS 2 + bSy 2, + eS2,. 

2. It has the value 0 or I. 

The function h is given by 

h(x )  = (a - b ) - l ( e  - a ) - ~ ( x  - (b + c ) ) ( x  - 2a) (21) 

But the three functions J~ g, and h have the property that, acting on any eigen- 
value of H, ® L the sum of the three values is always 2. This can be checked 
at once from the equations (18), (20), and (21) with x given the value a + b, 
a + e ,  or b + c .  

So our final result is to assign to three arbitrarily chosen orthogonal 
directions x, y, z three unique numbers, each of which is 0 or 1, and whose 
sum is 2. But such an assignment of numbers is known to be impossible for 
an appropriately chosen finite set of orthogonal triads of directions in 
Euclidean 3-space. This is what Kochen and Specker (~) showed explicitly. 

But notice that the numbers [S~ ® ~ ' I } i n ; @ n ( g  , @ I) ,  

[S~ ® ~ " I] In;'®,J (Hs ® I)  and [S~ ® I] ~" t ~4,,, lu;,,@nv~s @ I)  

we use to get the contradiction, not only cannot in general be m e a s u r e d  
simultaneously, s ince/~ ' ,  H",  and H "  do not commute, but cannot even be 
said to coexis t  simultaneously, owing to the differing environmental contexts. 
In contrast with the original Kochen-Specker paradox we are dealing now 
not with simultaneously existing value assignments (albeit not 
simultaneously measurable) but with numbers which would  be assigned on 
the assumption of di f fer ing environmental contexts. 

825/13/5-2 
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4. CONCLUSION 

The upshot of our argument is that a quantum realist who wishes to 
impose the Value Rule and does not want to deny the innocent-looking 
FUNC* is bound to accept some form of nonlocality, that is either he must 
deny OLOC or ELOC. 

Let us look at the two horns of the dilemma in turn. Violating OLOC 
means that we can no longer specify the properties of one system indepen- 
dently of a specification of properties relating to the whole combined system. 
This leads to an ontological holism in which it is impossible to make sense 
of a realist construal of quantum mechanics which associates properties 
(physical magnitudes) independently with each of two separated systems. If 
OLOC is violated the physical magnitudes associated with locally maximal 
operators are not themselves "local" at all. Hence the question whether such 
magnitudes can have their values changed by an environmental change in the 
way denied by imposing ELOC, is not really a locality issue. The violation 
of ELOC becomes a locality issue only if OLOC obtains. In such a case 
violation of ELOC shows that the value of a physical magnitude that may 
properly be said to pertain to one of two separated systems can have its 
value changed by altering the setting of an apparatus interacting with the 
other system. The consequences for a realist construal of quantum mechanics 
of such a situation have been spelled out by one of us elsewhere. ~9~ The 
reason why ELOC and OLOC, although conceptually quite distinct, have 
been conflated in the literature 15 is that violation of either principle when 
expressed in terms of m e a s u r e m e n t  results demonstrates a dependence of the 
outcome recorded by the apparatus connected to one system on the setting of 
the apparatus connected to the other (remote) system. 

If we decide to retain OLOC then our work provides a demonstration 
that ELOC is violated of quite a different character from that involved in 
discussions of the Bell inequality. Here the very considerable literature has 
concentrated on the assumptions implicit in the derivation of various forms 
of the Bell inequality. Fine (4) in particular has argued that all such proofs 
invoke a hidden assumption of the existence of joint probability distributions 
for incompatible magnitudes. Our own approach makes minimal and 
transparent use of probability theory, but is certainly free of any joint 
distribution assumption for physical magnitudes associated with noncom- 
muting operators. In short it really does appear to us that realism in QM and 
locality just cannot reasonably be reconciled. ~6 

15 See in particular the otherwise excellent discussion by van Fraassen. 12°1 
16 Our work also has relevance to another rule introduced by Fine. ~21) This is his Correlation 

Rule, which he seeks to show implies F U N C ,  and hence is contradictory. But the 
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