GRAPHICAL CALCULATION OF RECYCLED CHEMICAL REACTORS

V. G. Gorskii UDC 518 : 621.039.4

The theory of continuously operated chemical reactors to which part of the reaction mixture leaving the reac-
tion zone is recycled and which are finding ever wider application in chemical and petrochemical processes, was
developed in papers [1-5]. The authors derived analytical equations describing the statics (macro-kinetics) of the
various important irreversible, reversible, and autocatalytic processes in the reactors. Analysis of the results enabled
us to find interesting properties of recycled chemical reactors.

In particular, it was established that in many cases (simple irreversible first-order reactions etc.), the capacity
of flow reactors to which the product is recycled is intermediate between the capacities of ideally-mixed and ideal
prop flow reactors. It was further established that, if autocatalytic first-order reactions are carried out in such reac-
tors, there may be found an optimum degree of recycling at which the capacity of the recycled reactor exceeds that
of ideally-mixed and ideal prop flow reactors.

Below wereport a graphicalmethod for calculation of recycled reactors. A typical feature by which the graphi-
cal method differs from the analytical calculation method is that with the former one has not to use an analytical
expression for the kinetic plot from the experimental data. The method is simple and graphical. It enables the op-
timum degree of recycling to be rapidly calculated with a minimum amount of computation work. It contributes
to a better understanding of the specific operation of a recycled reactor, permits evaluating the position of this re-
actor type relative to that of ideally-mixed and ideal prop flow reactors from the shape of the original kinetic plot.

We shall discuss the very general case that a simple kinetic reaction takes place in the apparatus. Such a
process can be described by a single differential equation of the type:

dx
i 4G

where x denotes the concentration of one of the reaction products (key component); ¢(x) is the kinetic function de-
termined by the reaction type.

Figure 1 shows a diagram of a flow reactor to which the products are recycled. We shall use the following
simplifying assumptions: the reaction takes place without causing a change in volume, no radial velocity gradient
exists in the apparatus, the hydrodynamical regime of ideal prop flow establishes, and the system is operated iso-
thermally. The mass balance taken over the total current and the reaction product in the point where the fresh cur-
rent is mixed with the recycled stream then reads:®

@me:fIDV+{>VI, (2)
®ymfmf = Pv¥n * Pyr¥k: (3)
where & denotes the volume of fresh material supplied per unit time to the reactor, ®y; the flow rate of the re-

cycled current, ® ¢ the total flow rate (after mixing of the fresh and recycled currents) of the current entering
the reactors; Xp, Xk, X uf denote the concentrations of the key component in the fresh, recycled, and total streams,

respectively.
Introducing the notation r = &, /&, where r denotes the degree of recycling, we derive
Pymi= 2, (1 +1), 4)

Xmf = Xk — (Xk—Xn)/(l + 1), (5)

« The principles of the derivation of macrokinetic relationships for recycled reactors are discussed in more detail in
papers [2, 5].

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 12, pp. 34-39, December, 1967.
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Fig. 1. Diagram of a recycled reactor.
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Fig. 2. Graphical calculation of the reactor
in the general case of a monotonously increas-

ing function P =y (x).

The mean residence time of the reactant liquid Ty in the appara-
tus equals

p o= e e

b, ¢me(1+r)21mi(l+r)’ (6)

where Op denotes the effective reactor volume, Ty 5 the residence
time of the mixed flow in the apparatus (the recycled part being
taken into account). To find Tif, we return to the kinetic Eq. (1).
We shall introduce the parameter

dt 1 (M

P L

which may be considered as the differential time increment needed
for increasing the conversion from the concentration x to x + dx.
The residence time of the flow Tymf in the apparatus then equals

Xk
%F5¢WM

*mf

hence it follows that

.‘(k
w=a+ojwmm.

= ‘X1l ~X
Xmf ¥k }1<+rn_

8

We now assume that the plot of the differential time ¢
versus x is known (Fig. 2).

The differential reaction time ¢ = dr /dx, which is the
reverse of the true reaction rate, has quite often been used in
graphical kinetic calculations by Hougen and Watson and other
authors. Plots of g versus x can be constructed in two ways.

First, by graphical differentiation of experimental x-T plots taken
either in a batch reactor or in a continuously operated ideal prop

flow reactor. Second, by starting from x-0 plots taken in an ideally-mixed reactor to which a current without the
key component (reaction product) is supplied (@ denotes the mean nominal residence time). In the latter case the
plot needed is constructed by applying the relationship 6/x = dr/dx = p (x).

Let the points xp and xy on the axis of abscissas (Fig. 2) represent the concentrations of the key component at
the inlet and outlet of the reactor system. To find the position of the point x; ¢, we divide the line segment xpxg
in the ratio r : 1, so that Xpa : Xga =r. The length of the segment x| will then be equal to r + 1 times the length

of the segment xpxy, i.e.,

of segment Oq, equals

Ak _

1 Consequently, the abscissa of point a, or the length

Yotk matary

1+r

o — — ¥Rk -
0‘1=0xk—ax-k=0x,k—>;“ k = - Xg-Xp

Hence, it follows that point a represents the concentration X,

We shall now graphically determine the mean value of function ¢ (x) in the interval xpmf — Xi. The mean
value of function y (x) in the interval x5 — x| equals
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X
X ¥ (x) dx
— Xmf (9)

=

Xk — Xmf

The graphical interpretation of this formula is that parameter 3,

is represented by the height of rectangle adexy, whose area equals
the area under the  (x) curve in the interval X3¢~ Xk, i.e., equals
the area gefxk. In other words, the horizontal line bc must be so
drawn that the areas of the curved triangles deg and f gc are equal.

The area of rectangle xpbexy with basis xpxk and height
¥, then equals

Fig. 3. Graphical calculation of a reactor for

the hypothetical case of monotonously decreas- — Xg—zxp *k
ing f tion X). SX bex. = (X "‘Xk“—P = - S‘IP x) dx
g tunc v nber k™ (Xn ) Xk — %t (%)
Xmf
Xk
¥k
— ‘fq)(x) dx. (10)
axk
Xmf
Taking into account that Zn;‘k =1 +1, we find
k
Xk
Stporc= (14 1) | 09 = (00 =, a
xmf

in other words, as follows from a comparison of Eq. (10) and formula (8), the area of rectangle xbexy is numerical-
ly equal to the mean residence time of the original liquid reactant in the reactor.

we shall now discuss how the required reaction times in ideally-mixed and ideal prop flow reactors can be de-
termined by applying the same procedure. In the first reactor type r = o, and, therefore, the length of segment axj
tends to zero, while the point xp,¢ coincides with the point xi (see Fig. 2). The corresponding mean value of func-
tion ¢ (x) will then equal ¢eo = ¢ (xi). This can easily be demonstrated by means of formula (9},

Xk Xk
[ e ar {ve@ar
—— L e . mf T xkeAx
= = —_  —=lim A =1 (x).
Yoo = llriﬂngo_ lim — g Av=0 Ax ¥ ()

Xg— Xmf= Ax =0

The corresponding value of the mean residence time is given by

“o==0 = g, (k— X) = b (x,) (F—xp). (12)

If the rexctor is operated in the regime of ideal prop flow, then, r = 0, the point X coincides with the point
‘Xp, and parameter 3 o is represented by the mean ordinate of curve ¢ (x) in the range xp~Xk,

Xk
i P (x) dx
P =1 :
*g—%*p
Consequently, the reaction time required will equal
Xk
%o = Yo (X —Xp) = Ylp (x) dx.
'xn (13)

864



From the constructions mentioned above it is evident
that it depends on the ratio between parameters zp_o, ¥ and
E)—m, i.e., on the mean increment of the resistence time, what
regime will be the most suitable. In the example considered
the specific mean rate (reactor capacity), which is defined as

Xk "Xp . .
T, =T = T , and equals the inverse mean incre-
ment of the residence time, will be highest in the regime of
ideal prop flow; at a finite degree of recycling r it will have
an intermediate value, since the following inequality holds:
Yoo > ¥ > Pg (see Fig. 2). The specific mean rate generally
z depends on the shape of the 3 (x) curve in the concentration
interval xp — xy, and on the position of the point Xy, ¢ in this
interval, i.e., on the degree of recycling.

Fig. 4. Calculation of a recycled reactor for the
case that the differential time increment passes
through an extreme.

In many cases it can a priori be concluded from the
shape of the g =  (x) curve what regime will be the most
suitable for a given reaction. This problem is easy to solve,
in particular, when the curve is a monotonous one. In fact,
if the curve rises monotonously (this holds, for example, for irreversible and reversible nth order reactions at n> 0,
both when the reagents are present in the stoichiometric ratio and when they are present in other ratios, etc.), then,
dy/dx > 0. Hence we easily derive the following inequalities: Voo > ir and Jr > ¥4, which hold for any finite
degree of recycling. Under these conditions the regime of restricted recycling will always take a position interme-
diate between the regimes of ideal mixing and ideal prop flow (Te < T < 7).

In the hypothetical case of a monotonously-decreasing function, the differential quotient d ¢/dx < 0 [this
would formally correspond to a hypothetical reaction of negative order (n < 0) and to regions of the kinetic #-x
curves in which the inverse reaction rate drops with increasing concentration, as it does in autocatalytic reactionsl;
in this case the sequence of the specific mean rates would be reversed; at any final degree of recycling the regime
of restricted recycling is less efficient than the regime of ideal mixing, but more efficient than the regime of ideal
prop flow, i.e., Yo < P < ¢ o (Fig. 3) and 7y <7 <Teo.

If the plot of function ¢ is a straight line parallel to the axis of abscissas, or d¢ dx = 0 (which corresponds
to a zero-order reaction), all three regimes are equally efficient: oo = 9 = ¢gand 7y = Tr = Teo.

Analysis of the more complicated situation where the function ¢ (x) is a nonmonotonous function of the con-
centration x in the operation range, is of considerable interest. We suppose that the curve ¢ is unimodal, has a
single minimum, and that its two branches are monotonous (Fig. 4). Autocatalytic reactions of the first and second
orders etc., yield a curve of this shape.

From general considerations we may suppose that here, unlike in the cases considered previously, we may
find a degree of recycling r = r* at whick the capacity of the recycled reactor is higher than that attainable with
the regimes of ideal-mixing and ideal prop flow, i.e., T ¢ > mgand mrs > TewOr Yra < Pgand Yrs < Yoo

We shall derive a general relationship which enables us to find the concentration xmf = xpp* (or the degree
of recycling r = r+) corresponding to the maximum specific mean rate , or to the minimum residence time 7y for
a given conversion range xp—xy. Utilizing Eq. (11), we transform (9) into

*y
j P (x) dx
Imf

T = (x'k'—xn)-‘_l’_;(xmf) = (% —*1) m

The necessary condition for the minimum of the residence time reads

dy, 4 (xpp)

»

utilizing formula (9), we find
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Xk
IR
. (14)

Ymp= - ="V
xk——me

From the equation thus derived we can determine the opti-
mum concentration x}r. The corresponding optimum de-
T gree of recycling is found by means of Eq. (5); this yields:

I ﬁ "~Yor01e:0:ovo'-l'"&“
| M///// r* = M . (15)
& Lk A /] - R =T
SRR I'k“ Condition (14) implies that the mean differential time

increment over the range of conversions x#, — X} achieved
in the reactor at the optimum degree of recycling equals
the differential time increment corresponding to the concen-
tration x = xfj 5 at the inlet of the reaction zone. Hence, it
follows that the horizontal line bc for the optimum degree
of recycling must intersect the curve in the point with ab-
scissa @ = xfjy . We shall now consider how condition (14) can be satisfied in the graphical construction. We
write:

Fig. 5. Operation at the optimum degree of re-
cycling compared with operation under the re-
gimes of ideal mixing and ideal prop flow for
cases where function ¥ passes through anextreme.

Xk
S' P (1) dr = (x5 ) B (<5 0.

*mf
The integral at the left-hand side of this equality equals the area of the figure

S aehgfxg = S aehgexi*t Sgfc:

The product at the right-hand side equals the area

Sadgexy = aehgexy *Sehg
Consequently,

ngc =S ehg’

i.e., the areas of the hatched figures must be equal. It follows, therefore, that to meet condition (14) in the graphi-
cal construction and to find the optimum point x},¢, it suffices to find such a point e on the left-hand branch ofthe
curve that the areas of the figures gfc and ehg enclosed by the horizontal line through this point, the ¥ (x) curve,
and the vertical line x = xy, are equal. The abscissa of this point equals x4, .

We shall now prove that the degree of recycling thus found warrants a higher efficiency than the regimes of
ideal-mixing and ideal prop flow. We first remark that relationship (14) was derived on the assumption that the
point x4 ¢ lies in the interval xy—xy and xf ¢ > xp. In the opposite case (x;‘nf < Xp) the optimum degree of re-
cycling found by means of formula (15) would be negative, which is physical nonsense.

Figure 5 shows the graphical calculation of reactors operated under the regimes of ideal-mixing and ideal
prop flow, or at the optimum degree of recycling. From the graphical construction it is quite evident that param-
eters Yoo is always larger than o p«, sothat 7 ;4 > o Parameters my will be smaller than re. In fact, the
residence time for the optimum degree of recycling will equal the area of the figure

Tre= Sxpbdgexy = Sxpbehgfxy
and the residence time for the regime of ideal prop flow is given by
Ty = Sx kdhgfx; = Sxpkehgfxy +Sbkds
Hence it follows that

T = ’tr* + Sbkdr
Viz., T < Ty, T > T,
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The difference between the efficiency achieved at the optimum degree of recycling and the efficiencies at-
tained with the regimes of ideal mixing and ideal prop flow depends on now much Jo and J, exceed parameter
;Zr, . The latter ratios are actually determined by the shape of the curve in the interval xp—x.

The following relationships are easily derived for the relative efficiencies of the regimes of ideal mixing and
ideal prop flow. If xp < x; (where the point x; is defined by the condition Syjj = Sipf, see Fig. 5), then, P ¢ > P
If x; =x; then ¥ =_z/1°° , and if xp > x; the inequality ¥y < Voo holds.
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