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The theory of continuously operated chemica l  reactors to which part of the react ion mixture leaving the reac-  
tion zone is recycled and which are finding ever wider appl icat ion in chemica l  and pe t rochemical  processes, was 
developed in papers [1-5]. The authors derived analy t ica l  equations describing the statics (macro-kinet ics)  of the 
various important irreversible, reversible, and autocata ly t ic  processes in the reactors. Analysis of the results enabled 
us to find interesting properties of recycled chemica l  reactors. 

In part icular,  it was established that in many cases (simple irreversible first-order reactions etc.) ,  the capac i ty  

of flow reactors to which the product is recycled is in termedia te  between the capaci t ies  of idea l ly-mixed and ideal  
prop flow reactors. It was further established that, i f  autocatalyt ic  first-order reactions are carried out in such reac- 
tors, there may be found an optimum degree of recycl ing at which the capac i ty  of the recycled reactor exceeds that 
of idea l ly-mixed  and ideal  prop flow reactors. 

Below we report a graphicahnethod for ca lcula t ion of recycled reactors. A typica l  feature by which the graphi- 
cal  method differs from the analy t ica l  ca lcula t ion method is that with the former one has not to use an analy t ica l  
expression for the kinetic plot from the exper imenta l  data. The method is simple and graphical.  It enables the op- 
t imum degree of recycl ing to be rapidly ca lcula ted  with a min imum amount of computat ion work. It contributes 
to a better understanding of the specific operation of a recycled reactor, permits evaluating the position of this re- 

actor type relat ive to that of idea l ly-mixed  and ideal  prop flow reactors from the shape of the original kinetic plot. 

We shall discuss the very general  case that a simple kinet ic  react ion takes p lace  in the apparatus. Such a 

process can be described by a single differential  equation of the type: 

dx 
d~ - -  ~ (x), (1) 

where x denotes the concentration of one of the reaction products (key component);  r is the kinetic function de-  
termined by the react ion type. 

Figure 1 shows a diagram of a flow reactor to which the products are recycled.  We shalI use the following 
simplifying assumptions: the react ion takes place without causing a change in volume, no radial  veloci ty  gradient 

exists in the apparatus, the hydrodynamical  regime of ideal  prop flow establishes, and the system is operated iso- 
thermal ly .  The mass balance taken over the total  current and the react ion product in the point where the fresh cur- 
rent is mixed with the recycled stream then reads:* 

~ v m f  = q~v + ~>vr ' (2) 

~vmfXmf = ~ v X n  + ~ v r X k ,  (3) 

where ~v  denotes the volume of fresh mate r ia l  supplied per unit t ime  to the reactor, ~vr  the flow rate of the re- 
cycled current, ~ v m f  the total  flow rate (after mixing of the fresh and recycled currents) of the current entering 
the reactors; x n, x k, x ~nf denote the concentrations of the key component in the fresh, recycled,  and total  streams, 

respectively.  

Introducing the notation r = ~>vr/~v,  where r denotes the degree of recycling,  we derive 

~>vmf = ~ v  (1 + r), (4) 

Xmf = x k -  (Xk-Xn)/(1 + r). (5) 

* The principles of the derivation of macrokinet ic  relationships for recycled reactors are discussed in more deta i l  in 

papers [2, 5]. 

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 12, pp. 34-39, December,  1967. 
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Diagram of a recycled reactor.  
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Fig. 2. Graphical  ca lcula t ion  of the reactor 

in the gene ra [ ca se  of a monotonously increas-  
ing function ~ = ~ (x). 

The mean residence t ime of the reactant  liquid r r  in the appara-  

tus equals 

Op Op 
~----(1 + r ) =  Zmi(1-]- r), (6) 
~Wmt 

where Op denotes the effect ive reactor volume, r m f  the residence 
t ime of the mixed flow in the apparatus (the recycled part being 

taken into account). To find 7mf, we return to the kinetic Eq. (1). 
We shall introduce the parameter  

dz 1 (7) 
- -  - ~ ( x ) ,  

dx ~(x) 

which may be considered as the different ia l  t ime  increment  needed 
for increasing the conversion from the concentrat ion x to x + dx. 
The residence t ime of the flow ~'vmf in the apparatus then equals 

iXk 

5n f=  S $ (x) ctx, 

Xmf 

hence it follows that 

~k 

z, = (1 + r) ~ ~ (x) ax. (8) 
Xmf = x k - iXk-Xn 

l+r 

We now assume that the plot of the different ia l  t ime  
versus x is known (Fig. 2). 

The different ia l  react ion t ime ~ = d r / d x ,  which is the 
reverse of the true react ion rate, has quite often been used in 

graphical  kinet ic  calculat ions by Hougen and Watson and other 
authors. Plots of ~ versus x can be constructed tn two ways. 
First, by graphical  differentiat ion of exper imenta l  x - r  plots taken 

ei ther  in a batch reactor or in a continuously opera ted  ideal  prop 
flow reactor.  Second, by starting from x - 0  plots taken in an idea l ly -mixed  reactor to which a current without the 
key component (reaction product) is supplied (0 denotes the mean nominaI  residence t ime).  In the lat ter  case the 
plot needed is constructed by applying the relationship 0 / x  = d r /dx  = r (x). 

Let the points Xn and x k on the axis of abscissas (Fig. 2) represent the concentrations of the key component at 
the inlet  and outlet  of the reactor system. To find the position of the point Xmf, we divide the line segment XnX k 
in the ratio r : 1, so that'Tnna : xka  = r. The length of the segment a x  k will  then be equal  to r + 1 t imes the length 

of the segment XnX k, i .e . ,  ax k _ ax k _ 1 Consequently, the abscissa of point a, or the length 
Ya+a,k l+r 

of segment Oa,  equals 

O--a = O-x k -  ~ k  = O-~k-- xn-~k _ Xk-- x k__- x___~n 
1 + r  1 + r  

Hence, i t  follows that point a represents the concentration Xmf. 

We shall now graphical ly  determine  the mean  value of function r (x) in the interval  X m f -  x k- 
value of function ~0 (x) in the interval  X m f -  x k equals 

The mean 
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Fig. 3. Graphical  ca lcula t ion  of a reactor for 
the hypothet ical  case of monotonously decreas-  

ing function ~0 (x). 

Taking into account that XnXk 
ax  k 

~ r =  

Xk 

S ,  (x) dx 
Xmf 

Xk--  xmf  
(9) 

The graphical  interpretat ion of this formula is that parameter  ~r 
is represented by the height of rectangle adcxk, whose area equals 

the area under the ~ (x) curve in the interval  Xmf-X k, i .e . ,  equals 
the area a e f x k .  In other words, the horizontal  l ine bc must be so 
drawn that the areas of the curved triangles deg and f gc are equal. 

The area of rectangle xnbex k with basis XnX k and height 
~r then equals 

Xk 

Xmf 
Xk 

= _ _  ~ (x) dx. 
a x k  

Xmf 

(lO) 

- r  + l ,  w e f i n d  

Xk 

Sxnb~Xk= (1 + r) I * (x) dx = ~ (Xk--Xn) = ~r, 

xmf 
(11) 

in other words, as follows from a comparison of Eq. (10) and formula (8), the area of rectangle  xnbcx k is numer ica l -  
ly equal to the mean residence t ime of the original liquid reactant  in the reactor.  

We shall now discuss how the required react ion t imes in idea l ly-mixed and idea l  prop flow reactors can be de- 
termined by applying the same procedure. In the first reactor  type r = ~o, and, therefore, the length of segment axk 

tends to zero, while the point Xmf coincides with the point Xk (see Fig. 2). The corresponding mean value of func- 
tion ~b (x) will  then equal ~b~o = ~b (Xk). This can easily be demonstrated by means of formula (9), 

Xk Xk 

S ,~(x) dx ~ *(x)dx. 
%-~ = limxp--; = lira Xmf --  lira xk-ax - r (Xk). 

r=co ~ k ~ X n  ~x=O ~x 
x~ - -  Xmf= AX = 0 

The corresponding value of the mean residence t ime is given by 

%o=0  --= 9--~ (Xk-- x 0  = 9 (Xk! (Xk--Xn). (12) 

If the reactor is operated in the regime of idea l  prop flow, then, r = 0, the point Xmf coincides with the point 

x n, and parameter  ~ 0 is represented by the mean ordinate of curve ~ (x) in the range Xn-X k, 

Xk 

~ (x) ctx 

E -  n 
Xk--X n 

Consequently, the reaction t ime  required will  equal  
Xk 

f �9 o : % (Xk--xn) = ~. (x) dx. 

x n (13) 
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Fig. 4. Calculat ion of a recycled reactor for the 

case that the differential t ime increment  passes 

through an extreme. 

From the constructions mentioned above it is evident 

that it depends on the ratio between parameters ~ 0, ~r, and 

~0~, i.e., on the mean increment of the resistence time, what 

regime will be the most suitable. In the example considered 

the specific mean rate (reactor capacity), which is defined as 

x k -Xn  _ 1 
and equals the inverse mean incre- 

J l r  - -  1:r ~ r  ' 

ment of the residence time, will be highest in the regime of 
ideal prop flow; at a finite degree of recycling r it will have 

an intermediate value, since the following inequali ty holds: 

$~o > $r > $0 (see Fig. 2). The specific mean rate generally 

depends on the shape of the ~ (x) curve in the concentration 

interval x n -  x k, and on the position of the point Xmf in this 
interval,  i .e. ,  on the degree of recycling. 

In many cases it can a priori be concluded from the 
shape of the ~ = $ (x) curve what regime will be the most 

suitable for a given reaction. This problem is easy to solve, 

in particular, when the curve is a monotonous one. In fact, 
if the curve rises monotonously (this holds, for example, for irreversible and reversible n th order reactions at n > 0, 

both when the reagents are present in the stoichiometric ratio and when_they are present in other ratios, etc.), then, 

d~ /dx  > 0. Hence we easily derive the following inequalities: ~m > ~ r and ~ r > ~ 0, which hold for any finite 
degree of recycling. Under these conditions the regime of restricted recycling will always take a position interme- 

diate between the regimes of ideal  mixing and ideal prop flow (Trm < ~r r < ~r 0)" 

In the hypothetical case of a monotonously-decreasing function, the differential quotient d ~/dx < 0 [this 

would formally correspond to a hypothetical reaction of negative order (n < 0) and to regions of the kinetic O-x 

curves in which the inverse reaction rate drops with increasing concentration, as it does in autocatalytic :reactions]; 
in this case the sequence of the specific mean rates would be reversed; at any final degree of recycIing the regime 

of restricted recycling is less efficient than the regime of ideal mixing, but more efficient than the regime of ideal 

prop flow, i.e., ~ < ~ r  < ~ 0 ( F i g - 3 )  and 7r 0<~r r  <Try. 

If the plot of function ~ is a straight line parallel  to the axis of abscissas, or d$ dx = 0 (which corresponds 

to a zero-order reaction), all three regimes are equally efficient: ~ = ~r = ~00 and rr 0 = 7rr = 7r~. 

Analysis of the more complicated situation where the function $ (x) is a nonmonotonous function of the con- 

centration x in the operation range, is of considerable interest. We suppose that the curve $ is unimodal,  has a 

single min imum,  and that its two branches are monotonous (Fig. 4). Autocatalyfic reactions of the first and second 

orders etc., yield a curve of this shape. 

From general considerations we may suppose that here, unlike in the cases considered previously, we may 

find a degree of recycling r = r* at whictt the capacity of the recycled reactor is higher than that attainable with 

the regimes of ideal-mixing and ideal prop flow, i .e . ,  7r r* > 7r0 and 7rr. > ~r~or ~ r* < ~ 0 and ~-r* < ~ "  

We shall derive a general relationship which enables us to find the concentration Xmf = Xmf* (or the degree 

of recycling r = r*) corresponding to the maximum specific mean rate ~r r,  or to the min imum residence t ime rr for 
a given conversion range Xn-X k. Utilizing Eq. (11), we transform (9) into 

x14. 

~ ,(x)dx 
Xmf 

�9 , = ( ~ , k - - x n ) E ( X m f )  -- ( ~ k - - x f l  
Xk--xmf" 

The necessary condition for the min imum of the residence t ime reads 

d~cr gap r (Xmf) 
- -  O, dxmf dxmf 

util izing formula (9), we find 
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Fig. 5. Operation at the opt imum degree of re- 
cycl ing compared with operation under the re- 
gimes of ideal  mixing and idea l  prop flow for 
cases where function ~ passes through anext reme.  

scissa a = X~n f . 
write: 

Xk 

j'* (x) ctx 

Xmf 

Xk-- mf  

(14) 

From the equation thus derived we can determine the opti-  

mum concentration X~n f. The corresponding optimum de- 
gree of recycl ing is found by means of Eq. (5); this yields: 

r* = X~nf- xn (15) 
x k - X~n f 

Condition (14) implies  that the mean differential  t ime  
increment  over the range of conversions X~n f -  x k achieved 
in the reactor at the optimum degree of recycl ing  equals 
the differentiaI  t ime  increment  corresponding to the concen- 

tration x = X~n f at the inlet  of the react ion zone. Hence, i t  
follows that the horizontal  l ine be for the optimum degree 
of recycl ing must intersect the curve in the point with ab- 

We shall now consider how condition (14) can be satisfied in the graphical  construction. We 

Xk 

f * ex = (x -Xmf) , (Xm0. 
'~imf 

The integral  at the lef t -hand side of this equal i ty  equals the area of the figure 

S aehgfxk = S aehgcxk + Sgfc. 

The product at the r ight-hand side equals the area 

Sadgcx k = aehgcx k + S ehg" 

Consequently, 

Sgfc = 8 ehg' 

i .e . ,  the areas of the hatched figures must be equal.  It follows, therefore, that  to mee t  condition (14) in the graphi- 

cal  construction and to find the optimum point Xmf, it suffices to find such a point e on the lef t -hand branch of the 
curve that the areas of the figures gfc and ehg enclosed by the horizontal  l ine through this point, the ~ (x) curve, 

and the ver t ica l  line x = x k, are equal. The abscissa of this point equals x}n f. 

We shall now prove that  the degree of recycl ing thus found warrants a higher eff iciency than the regimes of 
idea l -mixing  and ideal  prop flow. We first remark that relationship (14) was derived on the assumption that  the 

point x ~ f  lies in the interval  Xn-X k and x~n f > x n. In the opposite case (Xmf < x n) the opt imum degree of re- 
cycl ing found by means of formula (15) would be negative,  which is physical  nonsense. 

Figure 5 shows the graphical  ca lcula t ion  o f  reactors operated under the regimes of ideal -mixing and ideal  
prop flow, or at the opt imum degree of recycling.  From the graphical  construction it is quite evident  that param-  

eters ~oo is always larger than ~ r*, so that  lr r* > 7too. Parameters % will  be smaller  than 7rr.. In fact, the 
residence t ime  for the optimum degree of recycl ing will  equal  the area of the figure 

rr* = Sxnbdgcx k = Sxnbehgfxk 

and the residence t ime for the regime of idea l  prop flow is given by 

r0 = Sxnkdhgfx k = Sxnkehgfx k + Sbkd, 

Hence i t  follows that 

% = ~r* + Shied, 
viz. ,  ~r* < %, ~'lr* > ~o. 
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The difference between the efficiency achieved at the optimum degree of recycling and the efficiencies at- 
tained with the regimes of ideal mixing and ideal prop flow depends on now much ~'oo and 50 exceed parameter 
~r*" The latter ratios are actually determined by the shape of the curve in the interval Xn-X k. 

The following relationships are easily derived for the relative effictencies of the regimes of ideal mixing and 
ideal prop flow. If x n < x l (where the point x l is defined by the condition Sml i = Sihf, see Fig. 5), then, ) 0 > Too. 
If x n = x l then ~ 0 = )oo ,  and i fx  n > x l the inequality ~-0 < r holds. 
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