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Owing to their  high corros ion  res i s tance  and their  high specific strength, titanium and ti tanium alloys 
are  widely used in the chemical  industry. However, it is known [1-3] that under cer tain conditions t i tanium 
and its alloys have a tendency to ignite in oxygen-containing atmospheres .  In [4] is noted the occurrence  of 
an explosive react ion between titanium and fuming nitr ic  acid, and in [5, 6] is repor ted  the ignition of t i-  
tanium in chlorine and in liquid bromine at room tempera ture ,  and in iodine with slight heating. The basic 
requi rement  for the occur rence  of ignition of titanium and titanium alloys in oxygen containing a tmospheres  
in the simultaneous presence  of the following three factors :  oxygen, f reshly formed surfaces ,  and the t em-  
pera ture  neces sa ry  for the commencement  of burning (oxidation reaction) of titanium mater ia ls .  The c r i t -  
ical p r e s s u r e  of oxygen, which gives r i se  to ignition, var ies  according to the experimental  conditions 
(pressure,  type of s t ress ing  and consequent nature of f racture ,  test  temperature) .  

The present  work is concerned with the study of the influence of various factors  on the value of the 
cr i t ical  oxygen p res su re  causing ignition in low-alloy titanium a-al loys:  the part ial  p r e s su re  of oxygen 
in admixture with nitrogen under various types of loading (tensile, bending, and internal gas p r e s su re  on 
tube specimens);  temperature;  and sample dimensions. 
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Tensi le  tes ts  in a mixture of oxygen and nitrogen 
were ca r r i ed  out in a special  apparatus [71. The oxygen/  
nitrogen mixture was prepared  in an auxiliary h igh-pres -  
sure  vesse l  and the oxygen content was determined be-  
fore t r ans fe r  to the working vessel .  After  filling this 
with the mixture,  the specimens were tested in tension 
up to f racture .  F rom 2 to 6 cyl indrical  specimens of 6 
ram diameter  and 60 mm gage length were tested under 
each set of conditions. The tes ts  were conducted at pul- 
ling speeds of 1, 70, and 140 ram/rain.  However, as 
tes ts  in pure oxygen had al ready shown, the pulling speed 
(within the range used) did not show any significant in- 
fluence on the cr i t ical  ignition p re s su re  for the alloy. 

The resul ts  of the tensile tes ts  in the oxygen/ni t ro-  
gen mixtures  are  shown in Fig. 1, where it can be seen 
that the p res su re  to produce ignition (or part ial  melting 
of the f rac ture  surfaces) increases  for decreas ing oxy-  
gen content. It may be said that the limiting concentra-  
tion of oxygen, in mixture with nitrogen, below which 
ignition or  part ial  melting did not occur  at the highest 
p r e s s u r e s  attained was 35-40%. 
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Fig. 1. Influence of oxygen content in the oxygen/nitrogen mixture on the cr i t ica l  
p r e s s u r e  for ignition at room tempera ture  (the Pc r  for pure oxygen is shown in the 
top r ight-hand corner  of the figure). Pulling speed 1 mm/min~ �9 no ignition; ~) 
fused areas  on f rac ture  surfaces;  e) with ignition. Pulling speed 70 ram/rain:  []; 
E; []. Pulling speed 140 m m/m in :  A ; 4 ;  A, • data f rom [1]. 

Fig. 2. Relation between cr i t ical  oxygen p re s su re  for ignition and test ing t empera -  
ture  and specimen dimensions. (1) 3.0 • 0.15 mm; (2) 3.0 • 0.45 ram: (3) 3.0 • 1.0 
mm; (4) 3.0 • 3.0 mm; (5) 3.0 • 5.0 ram. 

In the tensile tes ts  in a i r  (21% oxygen) there  was no case of ignition or  par t ia l  melt ing at p r e s s u r e s  
up to 500 kg f / cm 2. 

Bend tes ts  on sheet specimens of the low alloy ti tanium ~ alloy were ca r r i ed  out in the same appara-  
tus [7] using a special  fitting enabling bending to be ca r r i ed  out on specimens 3 • 10 • 20 mm. 

It can be seen f rom the resu l t s  of the bend tes t s  in o.~cygen (see Table 1) that at room tempera tu re  
ignition occurs  if the p r e s s u r e  exceeds 50 kg f / cm 2, i.e., at a p re s su re  higher than the cr i t ical  ignition 
p r e s s u r e  in the tensile case.  This is apparently connected with the fact that the nature of the f rac ture  f rom 
bending a plate is different f rom that obtained in a tensi le  tes t  on a cyl indrical  specimen. A s imi lar  dif- 
ference was d iscovered  by other workers  [1]. At higher t empera tu res  (300-400~ f rac ture  did not occur  
with the bend tests ,  and therefore  ignition did not come into question. 

The bend tes ts  in air  on low alloy titanium ~ alloy at p r e s s u r e s  up to 400 kgf /cm 2 at t empera tu res  
up to 400 ~ and also at p r e s s u r e s  up to 300 kgf /em 2 at t empera tu res  up to 600 ~ showed that in these cases  
the alloy did not exhibit a tendency to ignite. At room tempera tu re  the specimens broke at bend angles be-  
tween 80 ~ and 100 ~ at t empera tu res  of 300-600 ~ the specimens did not break. 

In o rder  to evaluate the tendency of the alloy to ignite in a i r  under different tensile conditions, tes ts  
were also ca r r i ed  out on the tube specimens f rac tured  by internal a ir  p ressure .  A special  apparatus [81 
was used for the tests ,  capable of providing a high p r e s s u r e  of compressed  a i r  inside the specimen. The 
p r e s s u r e  was determined by a manometer .  The specimens were prepared  f rom cold rol led tube of 32 mm 
I.D., and 2-2.5 mm wall thickness.  Af ter  the specimens were broken, the nature of the f rac ture  and the 
residual  deformation (measured  as c i rcumference)  were determined. The resul ts  of these internal p r e s -  
sure  tes ts  on tube specimens in air  showed that at t empera tu res  up to 600 ~ the f rac ture  was ductile with 
considerable opening. Ignition or melt ing of the f rac ture  surface was not observed on any specimen. 

The influence of specimen dimensions and t empera tu re  on the cr i t ical  ignition p re s su re  were studied 
in commerc ia l ly  pure oxygen on rec tangular  specimens of the following c ross - sec t ions ,  3.0 m m  by: 0.15: 
0.45; 1.0; 3.0; and 5.0 ram. The gage length was 60 ram. The tensile tes ts  on these rec tangular  specimens 
were ca r r i ed  out on the same apparatus as the cyl indrical  ones. After  reaching the assigned temperature .  
the specimens were given one hour soak at t empera tu re  in air,  and then oxygen was introduced into the 
vesse l  up to the assigned p ressure .  The resul ts  of the tes ts  on specimens of var ious thicknesses  at va r i -  
ous t empera tu res  are  given in Fig. 2. 
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Fig. 3. The metal  s t ructure  at a place where melting occur red  on 
the f rac ture  surface (x 300). 

Fig. 4. Cri t ical  oxygen p r e s s u r e  for ignition, Per ,  against the rat io 
of specimen c ros s - sec t ion  pe r ime te r  (L) to c ros s - sec t ion  a rea  (S) 
for t empera tures  20 ~ and 400 ~ . 

As can be seen from the figure, the cr i t ical  p r e s su re  o f  oxygen (Per) depends to a considerable de- 
gree  on the tempera ture  at f racture .  As was established ea r l i e r  [1, 9], in the tensile tes ts  on plate speci-  
mens of 0.15, 0.45, and 1 mm tMckness, Pe r  decreases  with increased  test  tempera ture ,  this effect being 
more  sharply evident with the thinner specimens,  a considerably lowered Pe r  being already observed at 
t empera tures  of 100-200 ~ Fo r  the tMckest specimens (3.0 x 5.0 ram) the relat ion between Per  and the 
tes t  t empera ture  is reversed ,  with increas ing tempera ture  a tendency to a higher Pe r  was observed.  

The ignition of the specimens takes the form of combustion* of one or  both of the f rac tured halves, 
or  in part ia l  melting in one or more  places of the f reshly formed surfaces  (Fig. 3). Par t ia l  melting was 
observed principally on the large c ros s - sec t ion  specimens (both rec tangular  and cylindrical).  

The relat ion between P e r  and specimen dimensions was established at the same time as the relat ion 
between Pe r  and tes t  t empera ture .  At room tempera ture  Pe r  decreased  with increased  c ro s s - s ec t i on  area,  
but at high t empera tu res  (400-600 ~ ) it increased.  

The relat ion between P e r  and the rat io of la tera l  surface to volume (L/S) for t empera tu res  20 ~ and 
400 ~ is shown in Fig. 4. F r o m  this it is  seen that in tensi le  tes t s  on the ti tanium alloy in oxygen, the r e -  
lation between Pe r  and the specimen dimension and the t empera tu re  is complicated. Whereas  at room 
tempera ture  Pe r  increases  with decrease  of c ross  section (as measured  by increase  of L/S), for higher 
t empera tures ,  200 ~ and above, the r eve r s e  was observed - Pe r  decreases  with decrease  of specimen c r o s s -  
section. 

F rom the whole ser ies  of resul ts  the following conclusions may be drawn. When the concentrat ion 
of oxygen is reduced, the total p r e s su re  of the gas mixture n e c e s s a r y  to give ignition of the ti tanium 
alloy is raised.  The cr i t ica l  concentration of oxygen below which ignition of the alloy does not take place 
at p r e s s u r e s  around 500 kgf /em 2 is 35-40%. Ignition takes place, both in oxygen and oxygen containing 
mixtures ,  at lower p r e s su re s  with tensile test ing than with bend testing. When f rac tured  at room tempera -  
ture,  thinner specimens require  higher oxygen p r e s s u r e s  to ignite; at elevated t empera tu res  (200-600 ~ ) 
the r eve r s e  is the case.  As the relat ion between the Pe r  of low alloy titanium ~ alloy and specimen di- 
mensions and tempera tu re  is complicated, it follows that it is neces sa ry  before using ti tanium wares  in 
oxygen or  oxygen-containing mixtures  to c a r r y  out thorough tes ts  on the alloys under conditions closely 
approximating those to be used. 
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*When combustion of the specimen occurs ,  the oxygen p r e s s u r e  in the chamber  falls as par t  of the oxygen 
i s  expended in burning the metal .  
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