Determination of the potassium composition in $K_x MoO_3$ (x = 0.1–0.5) by EDX spectroscopy

T. HIRATTA

National Research Insititute for Metals, 2-3-12, Nakameguro, Meguro-ku, Tokyo 153, Japan

Y. FUKUDA

National Research Institute for Metals, Tsukuba Laboratories, 1-2-1, Sengen, Tsukubashi, Ibaraki 305, Japan

It is known that the 'blue bronze' $K_{0.3}MoO_3$ is a one dimensional conductor along the crystallographic *b*-axis and the metal-semiconductor transition of a Pierls type occurs at about 180 K [1, 2], whereas the 'red bronze' $K_{0.33}MoO_3$ is highly anisotropic semiconductor at all temperatures [3, 4].

In general, transition metal oxides M_x — T_aO_b exhibit various structures and a variety of physical properties, depending on various amounts of x a third element M, where M is usually an alkali metal or an alkali earth metal, which donates its electron(s) to the conduction band of the host metal. With regard to $K_x MoO_3$ belonging to a class of ternary transition metal oxides, structural determinations and/or measurements of physical properties are mostly limited to x = 0.3 or x = 0.33 [5–7].

Recently, Hirata *et al.* [8] tried to prepare $K_x MoO_3$ with x = 0.1 to 0.5 by a solid state reaction, and infrared reflectivity spectra of the reaction products were measured in the region with wavenumbers from 400 to 4000 cm⁻¹ at room temperature. In this situation, it became a matter of importance to know the potassium composition of the predominant phase(s) in $K_x MoO_3$ whose structure and lattice parameters are determined and which is responsible for three phonon peaks.

Knowledge about the concentration of potassium in a phase tells if phase separation would occur in a solid state reaction and/or whether the molybdenum bronzes with K composition, different from the 'blue bronze' $K_{0.3}MoO_3$ or the 'red bronze' $K_{0.33}MoO_3$, are formed. The objective of the present work is to determine the potassium composition of the predominant phase(s) in K_xMoO_3 prepared by the solid state reaction:

$$\frac{x}{2} \operatorname{MoO}_{3} + (1 - x) \operatorname{MoO}_{2} + \frac{x}{2} K_{2} \operatorname{MoO}_{4} \to K_{x} \operatorname{MoO}_{3}$$
$$(x = 0.1 \text{ to } 0.5).$$

Carefully ground and mixed reactants were pressed at 50 MPa into pellets; these pellets were subjected to CIP (Cold Isostatic Pressing) at 200 MPa, vacuumsealed into quartz tubes at a pressure 10^{-5} Torr, and sintered at 435° C for 96 h. *In situ* diffuse reflectance Fourier transform infrared spectroscopy confirmed that no decomposition or volatalization of any reactants occurs under our sample preparation conditions. X-ray diffractometry revealed that all reaction products are not of single phase; $K_x MoO_3$ with x = 0.1 to 0.2 contains some quantity of MoO₃ which is somewhat expanded due to intercalation of K-ions, K, MoO₃ with x = 0.3 is almost of single phase, and K, MoO₃ with x = 0.33/0.4 and x = 0.5 contain traces of the 'blue bronze' and the 'red bronze', respectively. An EDAX PV 9100 spectrometer was applied to determine the potassium composition of the predominant phase(s) in $K_x MoO_3$ with x = 0.1 to 0.5, based on MoL α (2.29 KeV) and KK α (3.31 KeV) using K_2MoO_4 for reference. No elements other than molybdenum and potassium were present except for oxygen in the reaction products which was not analyzed in the present work. In K, MoO₃ with x = 0.1, 0.2 and 0.3, plate-like particles with a blue colour are formed, whereas platelets with a red colour are formed with x = 0.3 and x = 0.4, as represented in Fig. 1 for K_x MoO₃ having x = 0.3 and x = 0.33. With x = 0.5, granular particles with a light blue colour are observed, indicating the formation of a different phase from that in $K_x MoO_3$ with x = 0.1 to 0.4.

Table I shows the potassium composition determined from an area of $1000 \times 800 \,\mu\text{m}^2$ or $100 \times 80 \,\mu\text{m}^2$ of the reaction products (area analysis) and such particles themselves as shown in Fig. 1 (point analysis). The potassium composition determined from a wide area of the reaction products, $x_{exp}(I)$, is close to the nominal one, x, in $K_x MoO_3$, whereas the potassium composition from a small area of the reaction products, $x_{exp}(II)$, is equal to or larger than $x_{exp}(I)$. The composition (II) varied somewhat from place to place (chosen at random for analysis). Nevertheless, it is of particular interest to note $x_{exp}(II) \simeq 0.3$, in spite of $x_{exp}(I) \simeq x$ in $K_x MoO_3$ with x = 0.1 and x = 0.2. This reflects that the formation of the 'blue bronze'

TABLE I The potassium composition in $K_x MoO_3$ (x = 0.1 to 0.5) determined by EDX spectroscopy.

x (nominal)	$x_{exp}(I)^*$	$x_{\exp}(\mathrm{II})^{\dagger}$	$x_{\exp}(III)^{\ddagger}$
0.1	0.11	0.26	0.28
0.2	0.20	0.28	0.32
0.3	0.31	0.32	0.33
0.33	0.35	0.35	0.34
0.4	0.41	0.42	0.39
0.5	0.57	0.58	> 0.45

*From an area of $1000 \times 800 \,\mu\text{m}^2$.

[†]From an area of $100 \times 80 \,\mu\text{m}^2$.

[‡]Average of three particles or more in point analysis.

Figure 1 Comparison of microstructure and colour of the reaction products $K_x MoO_3$ with the nominal potassium composition: (a) x = 0.3 and (b) x = 0.33.

 $K_{0.3}MoO_3$ is preferred in combination with another phase of a lower potassium composition, i.e. phase separation occurs, during the solid state reaction to yield K_xMoO_3 with x = 0.1 and 0.2.

In fact, X-ray diffractometry on K_xMoO₃ with x = 0.1 and 0.2, demonstrates a few reflection peaks due to MoO₃ that is somewhat expanded by intercalation of K-ions plus reflection ascribed to 'blue bronze'. Also, infrared reflectivity spectra of K, MoO₃ with x = 0.1 and 0.2 [8], reveals traces of the Mo-O-Mo bridging band at 820 cm^{-1} and the Mo = O terminal band at $999 \,\mathrm{cm}^{-1}$ for MoO₃ [9], in addition to three phonon peaks due to the predominant phase. In K_x MoO₃ with x = 0.33 and x = 0.4, the 'red bronze' is predominantly formed. With x = 0.5 the predominant phase has a tetragonal structure and its lattice parameters are comparable to that given in [10], while the predominant phases in $K_x MoO_3$ with x = 0.1 to 0.4 are all monoclinic [5, 6, 11]; it is not well understood why $x_{exp}(II) > x$ for x = 0.4 and x = 0.5, however, it seems that appearance of the phase with a different structure causes a higher x_{exp} (II) than x in $K_x MoO_3$ with x = 0.5.

Fig. 2 shows a scanning electron micrograph for the reaction products as represented for $K_x MoO_3$ with x = 0.2. Though no attempt has been made to subject

Figure 2 Scanning electron micrograph for the reaction product $K_x MoO_3$ with x = 0.2; magnification $\times 1000$.

all particles as shown in Fig. 2 to EDX, x_{exp} (III)'s represents the average of at least three particles in point analysis within an area of $100 \times 80 \,\mu\text{m}^2$ of the reaction products. It is worthwhile noting that x_{exp} (II) $\simeq x_{exp}$ (III) in K_xMoO₃ with x = 0.1 to 0.4. It should also be noticed that x_{exp} (II)'s or x_{exp} (III)'s tend to increase by 5% or so with x in K_xMoO₃. This suggests a possibility that the molybdenum bronzes with K-composition slightly different from the 'blue bronze' and/or the 'red bronze' are formed by solid state reactions.

In fact, the lattice parameter 'a' and/or 'c' for the predominant phase (monoclinic) in $K_x MoO_3$ with x = 0.1 to 0.4 showed a slight tendency to increase with $x_{exp}(II)$, and the three phonon peaks in the infrared reflectivity spectra also shift upwards with x_{exp} (II); $x_{exp}(II)$ or $x_{exp}(III)$ is considered to represent the potassium composition for the predominant phase in the reaction products.

Thus, the determination of the potassium composition in KMoO₃ (for x = 0.1 to 0.5) concludes that solid state reactions have a potential for preparing the molybdenum bronzes with different potassium composition from the 'blue bronze' K_{0.3}MoO₃ and/or the 'red bronze' K_{0.33}MoO₃. It is of interest to measure physical properties of the molybdenum bronzes with variable amount of potassium, in spite of the twophase nature of the reaction products.

Acknowledgement

We particularly thank Drs K. Yagisawa and K. Furuya, respectively, for directing our attention to the potassium composition in $K_x MoO_3$ (x = 0.1 to 0.5) prepared by a solid state reaction and for critical comments in an EDX spectroscopy.

References

- J. H. PERLSTEIN and M. J. SIENKO, J. Chem. Phys. 48 (1968) 174.
- 2. G. TRAVAGLINI, P. WACHTER, J. MARCUS and C. SCHLENKER, Solid State Commun. 37 (1981) 599.
- 3. G. TRAVAGLINI and P. WACHTER, *ibid.* 47 (1983) 217.
- G. TRAVAGLINI, P. WACHTER, J. MARCUS and C. SCHLENKER, *ibid.* 42 (1982) 407.

- 5. J. GRAHAM and A. D. WADSLEY, Acta Cryst. 20 (1966) 93.
- 6. N. C. STEPHENSON and A. D. WADSLEY, *ibid.* 18 (1965) 241.
- 7. W. FOGLE and J. H. PERLSTEIN, *Phys. Rev.* 6 (1972) 1402.
- 8. T. HIRATA and K. YAGISAWA, to be published.
- 9. S. R. SEYEDMONIR, S. ABDO and R. F. HOWE, J. Phys. Chem. Lett. 86 (1982) 1233.
- 10. T. A. BITHER, J. L. GILLSON and M. S. YOUNG, Inorg. Chem. 5 (1966) 1559.
- 11. M. CHEDIRA, J. CHENAVAS, M. MAREZIO and J. MARCUS, J. Solid State Chem. 57 (1985) 300.

Received 2 January and accepted 5 February 1990