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Abstract. We have developed a shelterbelt boundary-layer numerical model to study the patterns and 
dynamic processes relating to flow interaction with shelterbelts. The model simulates characteristics 
of all three zones of airflow passing over and through shelterbelts: the windward windspeed-reduction 
zone, the overspeeding zone above the shelterbelt, and the leeward windspeed- reduction zone. Loca- 
tions of the maximum windspeed reduction and recirculation zone, as well as the leeward windspeed- 
recovery rate are well simulated by the model. Where comparisons with field measurements and 
wind-tunnel experiments were possible, the model demonstrated good performance for flows over 
and through shelters ranging from almost completely open to almost solid. 

The dynamic pressure resulting from the convergence and divergence of the flow field alters the 
perturbation pressure field. The disturbed pressure controls not only the formation of the separated 
flow but also the location of maximum windspeed reduction, streamline curvature, speed-up over the 
shelterbelt, and leeward windspeed recovery rate. The interaction of pressure with the flow produces 
complex flow patterns, the characteristics of which are determined, to a great extent, by shelterbelt 
structure. 
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i , j , k , q  

Spatial averaged value 

Temporal averaged value 

Departure of variable from its averaged value 

Leaf surface-area density 

Atmospheric boundary layer 

Drag coefficient for obstacle exerted on air 

Drag coefficient for unit plant area density 

Experimental constants of turbulent closure scheme (Mellor and Yamada, 1982) 

Turbulent kinetic energy (TKE) 

Drag force in the i direction exerted on air flow by obstacle elements 

Coriolis parameter 

Acceleration vector due to gravity 

Height of shelterbelt 

Subscript variables, indicating x, y and z directions, respectively, and grid numbers 
in these three directions 

Turbulent exchange coefficient for neutral, obstacle-free ABL 
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Turbulent exchange coefficient for momentum transport 

Turbulent exchange coefficient for TKE transport 

Resistance coefficient of shelterbelts 

Mixing length of turbulence 

Mean kinetic energy 

Timestep of model integration 

Vector and its component in the i direction of the interface of the averaging volume 

Atmospheric pressure perturbation 

Interface surface of the averaging volume 

Time 

Total mean windspeed 

Mean windspeed components in x and z directions, respectively 

Fluctuating windspeed components in ~c and z directions 

Windspeed in the i direction 

Friction velocity 

Friction velocity for obstacle-free ABL 

u and v at model top 

Intermediate prediction velocities of u and w without the dynamic pressure 
perturbation 

Prediction velocities of u and w at the n + 1 timestep of model integration 

Volume of the spatial averaging process 

Horizontal coordinate axis perpendicular to shelterbelt 

i = 1, 2, 3 - three direction coordinate, x, y, z 

Vertical coordinate axis upward 

Ground surface roughness length 

Weight coefficient for numerical differencing scheme 

Coefficient of air thermal expansion 

Dissipation rate of turbulence 

Einstein summation symbol 

Air density 

Potential-temperature departure from its basic state 

Coefficient of air molecular viscosity 

Time step of model integration 

von Karman constant 

Macro symbol, standing for u, v, w, E and E1 

2. In troduc t ion  

The  p r imary  effect of  any  shel terbel t  or w indb r e a k  sys tem is the reduc t ion  in  w i n d  

veloci ty.  W i n d s p e e d  reduc t ion  inf luences  tu rbu len t  t ranspor t  processes  and  mod i -  

fies the mic roc l ima te  in  the shel tered zone.  The  a m o u n t  of  shel ter ing and  the range  

of  the shel tered zone  are dependen t  on the s tructure of  shelterbelt .  Expe r imen ta l  
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studies of the last 30 years have been carried out to measure windspeed and tur- 
bulence, both in the laboratory with wind-tunnel models and at full scale in the 
field. Numerous papers on interpretation of empirical data have been published, 
and several review papers are available (e.g. van Eimern, 1964; Rosenberg, 1979; 
McNaughton, 1988; Heisler and Dewalle, 1988). Development of a detailed basic 
understanding of the flow field is a complex analytical and numerical problem since 
a complete treatment requires a solution of the full turbulent Navier-Stokes equa- 
tions. It is not surprising then that most shelterbelt research has been experimental, 
emphasizing windspeed reduction produced by shelterbelts. A full understanding 
of shelterbelt aerodynamics is not available, even for the relatively simple artificial 
linear barrier of  uniform porosity resting on a unifoma surface of infinite extent. 

Theoretical and numerical modeling research on shelterbelts has been reported 
by Kaiser (1959), Plate (1971), Counihan et al. (1974), Taylor (1988), Hagen et 
al. (1981) and Wilson (1985). Analytic solutions are somewhat easier to obtain for 
the far wake region (z > 10 H), well downstream of the obstacle itself; but for the 
region in which the protection is greatest (z < 10 H), the streamline shape becomes 
important, and quantitative results become rather complex and difficult to obtain 
analytically. Kaiser (1959) obtained an error-function formula by assuming that the 
momentum deficit in the sheltered region is replenished by diffusion of a passive 
scalar. This model does not have sufficient physics to describe complex turbulent 
flow interactions and cannot be expected to predict the location of maximum wind 
reduction. 

Wilson (1985) used several well-known turbulent closure models ranging from 
a simple upstream t(0 = kU.oz to K - E closure, K - E - e closure, and second- 
order closure schemes to compare patterns of flow through a porous windbreak. He 
reported that all turbulence schemes gave satisfactory agreement with the observed 
velocity deficit in the near wake region of the fence but that speed-up over the fence 
and leeward windspeed recovery rates for all simulations were less than observed. 
He concluded that the models' failure to predict the correct windspeed recovery 
rate in the lee of a fence was a consequence of the models' failure to capture the 
overspeeding over the fence. Correction of streamline curvature by modifying the 
turbulence did not give completely satisfactory results for either overspeeding or 
the recovery rate. 

Most past research considered the sheltering effect to be described by a form- 
drag force which produced a windspeed deficit immediately behind the shelterbelt 
and that this windspeed deficit is diffused downwind by turbulence to produce 
the leeward windspeed reduction. The classical interpretation of the dependence 
of horizontal sheltering distance on shelterbelt porosity is as follows: very dense 
shelterbelts cause a strong speed reduction immediately behind the belt and create 
more downwind turbulence than medium-dense shelterbelts. The higher turbulence 
may result in rapid recovery of mean horizontal windspeeds to upwind values at 
locations much closer to low-porosity shelterbelts, thus resulting in a much shorter 
protected distance (van Eimem et al., 1964). Contrary to this classical interpreta- 
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tion, measurements with tree windbreaks (Sturrock, 1969, 1972; Cabom, 1957), 
artificial barriers (Hagen and Skidmore, 1971) or in wind tunnels (Jensen, 1974; 
Raine and Stevenson, 1977) show that there is only slight fall-off of the sheltering 
horizontal distance for dense trees and solid fences, far smaller than the fall-off 
suggested by Naegeli (cited by van Eimem et al., 1964). Wilson (1985) reasoned 
that the TKE generated near windbreaks is at small scales, which dissipates rapidly 
and contributes little to transport of momentum. 

In summary, we concluded that there is need for a model that simulates effects 
of the shelter with sufficient detail to accurately simulate (1) speed-up over a 
shelter, (2) recovery rate of windspeed in the lee, and (3) recirculating flows behind 
very dense shelters. Such a model should then resolve the present disagreement 
on the relation of porosity to sheltering effect. We have developed a shelterbelt 
boundary-layer turbulence model for studying the aerodynamics of shelterbelts 
and their dependence on shelterbelt porosity expressed by leaf-area-index (LAI) 
density, i.e., the leaf area per unit volume. This model enables us to analyze 
characteristics of the sheltering effect, both upwind and downwind, in sufficient 
detail to resolve many questions about the processes governing the aerodynamics 
of porous shelters. 

3. Model 

3.1. EQUATIONS 

Under the Boussinesq approximation, the non-hydrostatic, incompressible atmo- 
spheric continuity equation and equations of motion may be written as 

ogui 
= o, (1) 

Oxl 

Oui Oui 10p O2ui 
Ot - uj Oxj Do Oxi 7giO - QjkfkUj + 11 Ox2i ~ (2) 

where the Einstein summation is used. We use the conventional definitions of mean 
and turbulent variables and Reynolds averaging. 

3.2. PARAMETERIZATION OF SHELTERBELTS 

All physical variables, such as windspeed, pressure, temperature, and turbulent 
variables and the equations for mean and turbulent properties are defined in the 
interstitial air space within the porous obstacle but have no meaning in the space 
occupied by solid elements. These solid elements of the shelterbelt act as interior 
boundaries within the ABL flow. Therefore, we are faced with very complex 
boundary conditions to properly treat the flow problem in porous shelterbelts. 
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Only for two-dimensional artificial barriers with simple geometric shapes (such 
as a fence or plane having circular holes) is it possible to treat the details of 
the barrier boundaries to the flow. For natural tree shelterbelts and most artificial 
shelterbelts, the boundaries of the solid elements are too complex and irregular 
to be treated explicitly. On the other hand, it is unnecessary to treat all details of 
solid element boundaries, because the purpose of shelterbelt research is to describe 
the flow in the protected zone outside the shelterbelt rather than in the shelterbelt 
itself. Our research focuses on flow patterns near shelterbelts, such as the leeward 
wake flow and overspeeding over the top of the shelterbelt. Therefore, we can 
neglect the detailed structure of the complex solid boundaries within shelterbelts 
and consider them as an aggregate effect, described by a form-drag force on the 
airflow penetrating the shelter. 

We are next faced with choice of a method for averaging Equations (1), (2), 
and the turbulence equations that result from them. Wilson and Shaw (1977) 
first developed a large plane averaging method to include canopy effects in their 
canopy flow model. Later Raupach and Shaw (1982) and Finnigan (t 985) presented 
time/horizontal-plane and time/volume averaging schemes. Several investigators 
used these methods to successfully simulate forest and crop flows (Yamada, 1982; 
Wilson and Shaw, 1977; Wilson, 1985, 1987, 1988; Meyers and Paw U, 1986; Naot 
and Mahrer, 1991; Li et al., 1989; Miller et al., 1991). 

We subject the equations to phase averaging (Whitaker, 1968, 1969, 1973; 
Wang and Takle, 1995), which requires an assumption that the solid elements are 
motionless. The spatial averaging length scale is both small relative to length scales 
of mean variation and large relative to the element dimensions of shelterbelts. This 
averaging process produces surface integrals over the complex boundaries of the 
obstacles that add extra terms to the mean and turbulence equations (Wang and 
Takle, 1995). The continuity equation, equations of mean motion, and Reynolds- 
stress equations, after being subjected to this averaging process, are as follows 

O(ui) 
Oxi - O, (3) 

and 

at  - ) o x ;  

-yg/(0)  1 O(p) + vO2(ui) 1 Fi, (4) 
Po Oxi Ox 2 Po 

_ 

Ot 
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_(uj) , (~k)~ )n/~,,~ 7(9~(~j)'(o)'+ gj(~d'(O)')- 

--fk(ejkq(Ui)'(%)' + ~i~q(uj)'(uq)')- 
O(uk)'(ui)'(uj)' 1 ( 0 ~  O(uj)'(p)'~ 

- Ox~ po \ Oxj + Oxi ] + 

> , + ox, / + 

_2uO(ui)' O(uj)' - 
Ox~ Ox--U + ~(~)~J + ~o (~j)~' (5) 

where the overline of variables stands for the time average of the variables, prime 
stands for fluctuation from the time average, and angle brackets around a term 
or variable indicate the spatial average. Following all previous investigators, the 
dispersive terms are assumed negligible. 

Compared to equations for the obstacle-free ABL, the continuity equation has 
the same form, but the equations of mean motion have additional terms arising from 
the form drag caused by the obstacle elements. The Reynolds-stress equations have 
two additional terms related to this force. This force can be expressed as 

1 u Ou~ 
Fi = V Js / Pni dS' - ~ /s J ~n dS'. (6) 

This is the sum of the integration of pressure and wind shear over the obstacle 
elements' surface area (S) within averaging volume (V), where n is a unit normal 
vector outward from S and ni is its component in the i direction. This force 
represents momentum sinks of (pressure) form drag (which is by far the larger 
of the two) and viscous skin-friction drag on the mean flow by the plant canopy 
elements. Following Thom (1975), the drag force per unit surface area may be 
expressed by the commonly used formula 

Fi = poCUui, (7) 

where C is a drag coefficient for an obstacle element, and U is the mean windspeed 
defined as 

= ~ ( ~ ) .  (8) U 

For the vegetation case, formula (7) can be rewritten as 

Fi = poCdAUui, (9) 

where Ca is a drag coefficient for unit leaf-area density, A, which is the leaf-area 
index divided by the height of the shelter. For convenience, hereafter we shall omit 
angle brackets and overlines over mean variables. 
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3.3. SIMPLIFICATION AND TURBULENT CLOSURE 

For simplicity let us consider the equations of motion for neutral stratification. A 
typical shelterbelt height of about 10 m is much less than the height of the ABL, so 
the effect of Coriolis forces may be neglected. Shelterbelts are generally planted 
in rows perpendicular to the prevailing wind direction, and their length is at least 
one order larger than their height. Therefore we can consider a 2-D computational 
domain (vertical and horizontal along the wind perpendicular to the shelterbelt), 
for which the basic equations of motion and continuity equation may be simplified 
as  

Ou 1 0 p  Ou Gqu Ou t2 Outw t 

Ot - poOx u ~ -  W Oz Ox Oz 
CdAUu, (10) 

Ow 1 cgp Ow Ow Ou'w t Ow '2 
Ot - P O O Z  u ~ 7  z - W Oz Ox Oz CdAUw, (11) 

Ou Ow 
0~ + ~-z = 0. (12) 

Equations (10) and (11) of mean motion include turbulent stress terms for which we 
must apply a boundary-layer turbulence-closure scheme. We tested the sensitivity 
to a hierarchy of second-order closure schemes proposed by Mellor and Yamada 
(Mellor and Yamada, 1974, 1882; Yamada and Mellor, 1975; Yamada, 1982), 
which are widely used in atmospheric sciences. Our results are consistent with 
Wilson's (1985) findings. For this paper, we select the simplified second-order 
turbulent closure scheme which Yamada (1982) used to model turbulent airflow in 
and above a forest canopy. We select this scheme for three reasons: (1) it provides 
a better physical basis than simple K schemes, (2) it is computationally efficient, 
and (3) it may be used to model the crop environment in the sheltered zones of 
shelterbelts in future applications. The K - E - l scheme that we have chosen is 
somewhat like a two-equation K - E - e scheme. The sensitivity tests showed 
that both schemes give nearly the same results for mean flows. 

In Equations (10) and (11), the velocity fluctuation correlations (Reynolds 
stress) terms may be expressed as 

(13) 

Kra = c l l E  1/2. (14) 

With the above simplifications, Equation (5) gives the TKE equation as 
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oE oE oe  o ( K o E )  
o t  = - w E  + \ - 

t I OUi E 3 / 2  
- u l u  j = ~  + CdAU 3. 

OX j C 2 - " ~  

Following Yamada (1982), the mixing length, l, can be predicted as 

(15) 

OEI OE1 OEl 0 / / / K E  OEl'~ . , , Ou~ 
_ _ c 3 l t t i t t j ~  

o t - - w + \ ) o x 5 

- c a E  3/2 1 + c5 k z  + CdAlU 3, (16) 

where Cl-C5 are constants determined from laboratory experiments (Mellor and 
Yamada, 1982). The changes of these parameters under some restraint relationships 
(Mellor and Yamada, 1982) are not as sensitive to mean flow patterns of the 
shelterbelt as to turbulence. 

3.4. NUMERICAL ASPECTS 

3.4.1. Computational domain and grid 
The model computational domain is from 30 H upstream to 50 H downstream of the 
shelterbelt in the streamwise direction and from the ground to 8 H in the vertical. The 
shelterbelt effect on airflow can be considered as a 2-D advection problem wherein 
the air encounters a very narrow surface inhomogeneity consisting of a vertically 
extended line of porous obstacles. All observations and our calculated results show 
that the windward maximum distance of perturbed flow is about 10 H, so we set the 
upstream boundary at 30 H. Our results showed no effect of the upstream boundary 
on flow near the shelterbelt. Two factors determine the selection of model height: 
omission of the Coriolis force restricts our computational domain to the lower part 
of the ABL; on the other hand, we should select a model top as high as possible 
so as to avoid the effect of the shelterbelt. In this paper, the domain height is 8 
H. Previous experimental results and our results showed negligible effects of the 
shelterbelt at the model top when we use "open"-top boundary conditions. We 
divide the domain into 81 levels in the vertical with a constant interval of 0.1 H, 
and 161 grid points in the horizontal with a constant interval of 0.5 H. The test 
of sensitivity to horizontal interval shows no obvious differences in the simulated 
results between 0.1 and 0.5 H. 

3.4.2. Solution technique 
We solve a system of 5 equations including equations for horizontal motion (10), 
nonhydrostatic vertical motion (11), mass conservation (12), TKE (15), and mix- 
ing length (16) linked by formulae (13) and (14). We use the finite-difference 
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method to discretize these 5 equations into a set of algebraic equations with tri- 
diagonal matrices, with forward differencing for the time terms, centered differ- 
encing for pressure terms, and upstream differencing for advection terms. The 
modified Crank-Nicholson scheme is used for the turbulent flux terms (Paegle et 
al., 1976). We use the Alternating Direction Implicit (ADI) method to solve these 
equations in both vertical and horizontal directions. Because they include dynamic 
pressure, the equations are of the mixed parabolic-elliptic type. The dynamic pres- 
sure perturbation gradients are dropped from the momentum equations, and a set 
of  auxiliary velocity fields u aux and w aux are computed based on Chorin's (1968) 
scheme. The results are then substituted into primitive equations: 

un+i  : uaux At Op 
Po Ox' (17) 

wn+l : waUX At  Op 
Po Oz' (18) 

where At  is timestep, u '~+1 and w ~+l are predictions of u and w at the n + 1 
timestep. To calculate divergence, we use 

OU n+l OW n+l  O~ aux OW aux /kt // 0 2 0 2 '~ 
0---~ + O~Z -- 0~- + 0~-- PO ~X2 + ~ )  p" (19) 

The auxiliary velocity fields do not necessarily satisfy the equation of continuity, 
but u '~+1 and w ~+1 are mass conserving. Therefore, Equation (19) becomes 

(02 02)_p=(0  .ux 0w aux) 
(20) 

This dynamic pressure equation is solved by the SOR method with a relaxation 
factor of 1.75 and a successive convergence criterion of I~(Pmax/PO)[ < I0  -4  

mZ/s 2. After computing dynamic pressure, we can correct the velocity field by 
Equations (17) and (18) and obtain the (n + 1)-step velocity field. 

We use the time-dependent model to obtain a stationary solution. When we 
developed this model, we first examined the changes of predicted values with time 
under stationary forcing by integrating the model out to 60 hr. The mean kinetic 
energy (MKE) and TKE reached their stationary values after about 2 hr. We also 
found that the computational accuracy for dynamic pressure was the key condition 
for keeping the cumulative error small for long-time integrations. When we use 
double precision for dynamic pressure and a successive convergence criterion of 
10 -4 m2/s 2, we controlled the model relative computational error to less than 10 -3 
and produced reliable stationary solutions. When the differences of TKE and MKE 
between successive 1 hr integrations were less than the control level (in this paper, 
0.01%), the computed results were considered to be steady-state results. 
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3.5. INITIAL AND BOUNDARY CONDITIONS 

We first omit the shelterbelt, assume that the ground is horizontally homogeneous, 
and compute the initial wind, TKE and mixing-length profiles with a 1-D version 
of the present model under prescribed windspeed at the model top boundary. The 
resulting profile of windspeed is nearly logarithmic. These profiles are also used 
as inflow lateral boundary conditions. The initial vertical velocity, w, is set equal 
to zero. 

At the outflow boundary, the normal derivatives of all physical variables (u, w, 
p, E and El) are set equal to zero. 

At the top boundary: 

~ z  Op �9 0~t 2. t ~ E  = 0; - -  = 0. (21) 
tr = ~*' Oz 

At the lower boundary, a no-slip condition is imposed for wind, i.e. u = w = 0, 
and 

~-2/3o 2 Op 
E = (~2 ~.; El = ~zoE; 0-7 = 0, (22) 

where z0 is the surface roughness length, which may be determined by the con- 
ventional windspeed log-profile, and u .  is the friction velocity which is calculated 
with the model-predicted windspeed at the lowest level (Wilson, 1985). Tests of 
the effects of zo/H on the flow showed that zo/H had little effect on the flow 
patterns of the shelterbelt but had some effect on the windspeed recovery rate in 
the lee. 

4. Results and Discussion 

We begin an overview of shelter effects by analyzing the changes of flow patterns 
with shelterbelt density, paying close attention to the formation processes, to the 
characteristics of the separated recirculations, and to the location of maximum 
windspeed reduction. We simulate 36 shelterbelts ranging from nearly open to 
nearly solid ones. We use the drag coefficient to estimate porosity, which is our 
descriptor of shelterbelt structure. The resistance coefficients may be estimated 
as 

k,. = f + ~  CdA dx. (23) 

The relationship between porosity and kT has been revealed by many tunnel exper- 
iments. Based on Figure 1 of Heisler and Dewalle (1988) and Hoemer's (1965) 
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formula, we estimate the porosities corresponding to form drag coefficients adopt- 
ed in our simulations. We emphasize that porosity only represents the planar geo- 
metrical structure of the shelterbelt, but that changes in flow are more correctly 
described by dynamic, not geometrical, parameters. The resistance coefficient (k,.) 
is a dynamic parameter that depends not only on porosity but also on the shape of 
the barrier elements. Barriers of equal porosity may have different k~ and different 
shelter effects. As reviewed by Heisler and Dewalle (1988), Baines and Peterson 
(1951) reported a range in k~ from 1.0 for a lattice of round material to 3.2 for a 
square bar lattice for a constant porosity of 0.5, and Richards et al. (1984) found 
a somewhat larger range in k~, from 1.5 for a screen of smoo:h round elements to 
5.0 for flat, sharp-edged elements, also for a porosity of 0.5. Therefore, when we 
use porosity, we also give the resistance coefficient in parentheses. 

Plots of flow patterns over the whole range of shelterbelt porosities given in 
Figure 1 provide an opportunity to understand the physical and dynamic processes 
of shelterbelt effects on air flow and to examine the entire range of shelter effects. 
We analyze these to determine the dependence of flow patterns on shelterbelt 
porosity. 

We can divide the flow patterns into two regimes: I, unseparated flow (Figures 
l a - ld ,  with porosities of 0.99-0.4); and II, separated flow (Figures le- l j ,  with 
porosities of 0.3-0.06). In regime I, streamline curvature increases with decreasing 
porosity. Figure la, which represents a nearly open-density case with a porosity 
of 0.99 (0.005), shows no obvious change in streamline curvature; for a porosity 
of 0.83 (0.125), streamlines at the top of the shelter show slight upward curvature 
from 3 H windward to 5 H leeward and then slope downward to the undisturbed 
flow (Figure lb). This feature may be more clearly seen in Figure lc for a porosity 
of 0.62 (0.5). When the porosity increases to 0.4 (2.0), the upward streamlines 
become steeper and streamline compression exists over the top of the shelterbelt. 
The streamlines show a slight downward curvature windward close to the ground 
surface near the shelterbelt. 

The characteristics of separated flow (regime II) are important features of the 
physics and dynamics of shelterbelts, because the current differences of views 
about the relationship between shelter effects and shelterbelt density centers on 
this regime. Figure le shows the initial separating recirculation for a porosity of 
0.30 (3.0). The separated recirculation is very weak and is located x = 6 H leeward 
of the shelterbelt. It separates at x = 5 H and reattaches at x = 8 H. The stagnation 
point is at x = 6.5 H and z = 0.15 H. Figures l f - l j  show results for successively 
more dense shelters. The center of the recirculation zone generally moves toward 
the shelter and up as the porosity decreases. The separation point moves to x = 0 H, 
and the reattachment point decreases to x = 5 H. 

These features agree with available observations and smoke trace experiments, 
which show that dense shelterbelts with porosity less than 0.3 may produce a 
recirculation bubble in their lee (Heisler and Dewalle, 1988; Perera, 1981; Castro, 
1971). The recirculation is rather weak, and the recirculation zone is very small 
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Fig. la. Streamline pattern of airflow through a shelterbelt with porosity of 0.99 (k~ = 0.005). 
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Fig. lb. Same as Figure la but for a porosity of 0.83 (k~ = 0.125). 
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when it just begins to form at a critical porosity of 0.3. Even for a porosity of 
0.27 (4.0), the simulated maximum reverse windspeed is still less than 0.5 m/s. 
Quantitative measurements are very difficult in highly distorted flows for small 
reverse windspeed. Therefore, small and weak recirculation far downstream very 
likely escapes observation. 
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Fig. ld. Same as Figure la but for a porosity of 0.40 (k~ = 2.0). 

Perera (1981) made  extens ive  measu remen t s  in the wind  tunnel  o f  different 
mode l  fences with poros i ty  ranging  f rom 0.0 to 0.5. He  showed  that as the poros i ty  

o f  the fence increases,  the recirculat ing bubble  detaches  f rom the fence and m o v e s  

downs t ream.  The  recirculat ing bubble  was  detected for  porosi t ies  o f  less than 0.3. 
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Fig. le. Same as Figure la but for a porosity of 0.30 (k~ = 3.0). 
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Fig. lf. Same as Figure la  but for a porosity of 0.27 (k~. = 4.0). 

Castro's (1971) observations also support this conclusion. Therefore, our results 
agree with observed dependence of the recirculation point on porosity value. 

The size of the separated recirculation increases with decreasing porosity. As 
shown in Table I, a small recirculating bubble develops near the ground far down- 
stream of the shelterbelt with porosity of 0.3, and it enlarges and moves toward the 
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Fig. lg. Same as Figure la but for a porosity of 0.25 (kT = 4.5). 

Airflow s t r e a m l i n e s  n e a r  s h e l t e r b e l t  , ,~ 
3 . 0  

~ 2 .5  

~ 2 . 0  

~ 1 . 5  

~ 0 . 5  

0 .0  
-10  -5  0 5 10 15 20 25 3C 

Windward D i s t a n c e  f r o m  s h e l t e r b e l t  (H) Leeward 

Fig. l h. Same as Figure la but for a porosity of 0.14 (k~ = 18.0). 

shelterbelt  with decreas ing  porosi ty.  The  front  and center  m o v e  faster than the rear. 

The  whole  recirculat ing bubble  u l t imate ly  deve lops  a t r iangular  zone bounded  by 

a l ine f rom the top o f  the shelterbelt  to a poin t  on  the g round  be tween  z = 5  and 8 H 
f rom the shelterbelt.  
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We now focus on specific characteristics of the flow patterns. A typical wind- 
speed distribution for unseparated flow is shown in Figure 2a. The contour lines 
of windspeed show three ridges and a trough. The first ridge represents wind- 
speed reduction immediately leeward and windward of a shelterbelt below shel- 
terbelt height. The ridge line (i.e. the maximum windspeed reduction line) inclines 
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TABLE I 

Change of recirculation bubble size with shelterbelt porosity (distances 
given in units of H) 

Shelterbelt porosity 0.30 0.27 0.25 0.14 0.08 0.06 
Bubble height (z) 0.20 0.50 0.60 0.80 0.90 1.00 
Separation point (z) 5.00 4.00 2.50 1.50 0.75 0.00 
Reattachment point (z) 8.00 7.50 6.50 6.00 5.50 5.00 
Stagnation point (z) 6.50 5.50 4.00 3.25 2.00 1.00 

(z) 0.15 0.25 0.30 0.35 0.40 0.50 

H o r i z o n t a l  W i n d s p e e d  U/U~ (%) 
8 I l l l , , l l l l , , i , l , , , i , , i , l l , , J l , , i , J l i D i l l , , , l l l g l l l J l l l , l , i i i l , , l i | l l l , l l l ~ l l l l  

~ ' iiii iiiii 
3 

2 
Z 

1 

0 

-30 -20 -1o o 1o 2 ~ ~  ~~ 5 r~  ~ 5e 
Windward D i s t a n c e  f r o m  s h e l t e r b e l t  (H) ~ew.rd 

Fig. 2a. Windspeed field in the x -z  plane near a shelberbelt with porosity of 0.4 (k~ = 2.0). The 
windspeed has been normalized by the upstream windspeed at the height H of the shelterbelt top. 
This is typical for unseparated flow (regime I). 

upstream from about x = 4-5 H at ground level to z = 0 H at the top of the 
shelterbelt. This is the triangular-shaped sheltered zone of the shelterbelt (Plate, 
1971; McNaughton, 1988). The second weak ridge is located above the top of 
the shelterbelt in the windward direction and results from the vertical transport of 
lower-level momentum in the shear flow. The third very weak ridge is due to the 
propagation of upstream divergence and convergence of windspeed. The trough is 
the speed-up zone over the shelterbelt required by mass continuity resulting from 
the pressure difference (discussed later). The trough line inclines downstream from 
the top of the shelterbelt. 
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Fig. 2c. Horizontal distribution at various heights of windspeed normalized by the upstream 
windspeed at the same height for a shelterbelt with porosity of 0.4 (k~ = 2.0), 

Shelter effects are more easily recognized from Figure 2b, which shows the dif- 
ference between local windspeed and the upstream undisturbed windspeed at the 
same height normalized by the upstream windspeed at the height of the shelterbelt 
top. The shelterbelt generates three zones: a leeward windspeed-reduction zone, a 
windward windspeed-reduction zone and an overspeeding zone above the shelter- 
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belt. The maximum windspeed reduction is located about x = 4 H leeward and at 
a height of z = 1/3 H for homogeneous shelterbelts of intermediate density. 

The shelter induces overspeeding above about 1.5 H as shown in Figure 2c. 
Below 1.5 H windspeed percentage shows a U-type distribution, with maximum 
windspeed reduction at about z = 5 H leeward at the z = 0.1 H level. The shelter 
effect, in terms of horizontal range where the windspeed is reduced at least 20%, is 
about 20 H in the lee. We also tested the sensitivity of the shelter distance to zo/H, 
and the results are consistent with experimental and previous modeling studies (Van 
Eimern et al., 1964; Wilson, 1985). In this paper, we use a zo/II of 0.005 except 
in model verification where the measured zo/II is used. With increasing height, 
the location of maximum windspeed reduction moves toward the shelterbelt, and 
the magnitude of the windspeed reduction rapidly diminishes. These simulated 
characteristics compare well with those indicated by Naegeli's data as shown in 
Figure 3 of van Eimern et al. (1964). This is typical for patterns of horizontal 
windspeed for unseparated flow. 

Figures 3a-3g show characteristics of airflow patterns which are typical for sep- 
arated flow. Figure 3a is the distribution of windspeed in the x - z plane. Compared 
to Figure 2a (regime I), the basic three ridges and a trough also exist in regime II, 
but the steepness of contour lines obviously increases and a negative windspeed 
region forms in the lee. It should be noted that there is a region of relative mean 
calm (except for vertical flow) that surrounds the negative horizontal windspeed 
zone. For comparison with shelterbelt wind observations reported without regard 
to wind direction, the negative sign in the near lee should be ignored. 

Separated flow (regime II) produces two windspeed-reduction maxima in the 
lee (Figure 3b) in contrast to a single center for unseparated flow (Figure 2b). While 
the reverse windspeed of the separated recirculation increases windspeed reduction 
near the ground, its return flow reduces windspeed reduction at higher levels 
(near 0.5 H) and forms these two centers. The reduction of absolute windspeed 
without regard to wind direction, which is perhaps more relevant for evaluating 
wind protection, is shown in Figure 3c. The distribution of reduction of absolute 
windspeed also has a center similar to that in regime I, but the center is located at 
z = 0.85 H, which is higher than the z = 0.33 H center of regime I. The reverse 
flow leads to higher windspeeds near the surface where the contour lines show a 
W-shaped distribution, thereby making the center of the maximum reduction of 
absolute windspeed much higher. 

Figure 3d shows the distribution of absolute windspeed normalized by the 
upstream windspeed at the same height, which usually is considered as the descrip- 
tor of the sheltering effect. The minimum windspeed percentage (maximum shelter 
effect) has a A-shaped distribution straddling a local maximum (caused by the 
recirculation) at the surface just beyond z = 2H, which is different from regime I 
where the minimum windspeed percentage is only a center near the ground. 

The U-type distribution of windspeed percentage typical of regime I also occurs 
in regime II, but the maximum windspeed reduction is negative due to the reversed 
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Fig. 3a. Windspeed field in the x - z plane near the shelterbelt with porosity of 0.08 (k, = 60.5). 
The windspeed has been normalized by the upstream windspeed at the height H of the shelterbelt top. 
This is typical for separated flow (regime 11). 
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Fig, 3c, Same as Figure 3b except for the reduction of absolute windspeed. 
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Fig. 3d. Same as Figure 3c except for the absolute value of windspeed normalized by the upstream 
windspeed at the same height. 

wind of  the recirculating bubble as shown in Figure 3e. In many  practical appli- 
cations, however,  windspeed without  regard to direction is of  interest, so we have  
plotted the absolute windspeed percentage in Figure 3f. The reverse flow of  regime 
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Fig. 3e. Horizontal distribution at various heights of windspeed normalized by the upstream 
windspeed at the same height for a shelterbelt with porosity of 0.08 (k~ = 60.5). 
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Fig. 3f. Same as Figure 3e except for horizontal distribution at various heights of the absolute value 
of windspeed normalized by the upstream windspeed at the same height. 

II produces a W-type distribution which is different from regime I. Because the 
zone of near-calm winds between the shelter and the recirculating bubble (Figure 
4e) is narrow, measurements by use of cup anemometers without accompanying 
direction sensors may lead to misinterpretation of the complexities of this flow 
field. The picture is further complicated because cup anemometers also respond 
partly to the turbulence. As shown in Figure 5 of van Eimem et al. (1964), the 
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recirculating bubble was observed in the wind tunnel, but does not appear in their 
Figures 2, 3 and 4. From Figures 2c and 3f, we can see that the change of windspeed 
reduction with height is smaller for a dense shelterbelt than for a medium-dense 
shelterbelt, especially within 10-20 H leeward where the shelter distance is deter- 
mined by a critical windspeed reduction of 20%. This feature also can be identified 
from Naegeli's data as shown in Figure 3 of van Eimern et al. (1964). Therefore, 
with decreasing shelterbelt porosity, the sheltering effect, expressed in terms of 
the sheltered distance, is significantly reduced near the ground but only slightly 
reduced at higher levels. 

From these results it is clear that field measurements made in the lee of shelters 
with porosity near or below the threshold for recirculation require very dense 
observations of speed and direction to capture details of the highly distorted flow. 
Since the reverse windspeed may be as large as 70% of the upstream windspeed 
at the same height, previous investigators may have treated the data of regime- 
II flows the same as regime-I flows, which may have led to a misinterpretation 
of some features of these flows. This may explain the contradictory conclusions 
in the literature about optimal sheltering porosity. Examples include Heisler and 
Dewalle's (1988) review paper, where their Figure 2b (data derived from Raine and 
Stevenson, 1977) shows a W-type distribution for an artificial barrier with porosity 
of 0 and their Figures 6, 7 and 8, where several points depart from the lines for 
smaller porosity. Also, in Figure 3 of van Eimern et aI. (1964), the wavy structure 
of the horizontal profile of windspeed at z = 0.25 H departs from the patterns from 
higher levels and for higher permeability and could well be due to recirculation. 

Wilson (1985) numerically simulated field observations for which the experi- 
mental results were described by Bradley and Mulhearn (1983) and Finnigan and 
Bradley (t983). We also have simulated these conditions and compare our results 
with both the experimental data and Wilson's (1985) results. The fence height ( H = 
1.2 m), resistance (pressure-loss) coefficient (k~ = 2.0), and roughness (z0 = 0.002 
m), used here are the measured values (Bradley and Mulhearn, 1983; Finnigan and 
Bradley, 1983), which are the same as those of Wilson (1985). We did not adjust 
these parameters. 

Figure 4a presents the horizontal distribution of windspeed at heights of 0.4 H 
and 1.9 H, which were normalized by the upstream windspeed at height of 4 m. 
The observed data plotted in Figure 4a were taken from Figure 7 of Wilson (1985). 
The simulated results are in good agreement with observed data for both heights. 
Our model correctly predicts both the recovery rate and overspeeding. 

We compare simulations of the vertical profile of wind with observations to 
further examine our prediction of the overspeeding zone. In Figure 4b, we plot 
the vertical profile of windspeed at x = 4.2 H normalized by windspeed at the 
4-m height. The observed data were taken from Figure 4 of Wilson (1985). Our 
simulation agrees well with observed overspeeding above 1.5 H. 

Wilson (1985) used several models to simulate these flow fields, but his simu- 
lated windspeed recovery rates were slower than the data indicate. Alternatively, 
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Fig. 4b. Comparison of simulated and observed vertical profiles of windspeed at x = 4.2 H. T h e  

windspeed was normalized by the upstream windspeed at z = 4 m. The vertical profile of undisturbed 
upstream windspeed is also plotted. The observed data were taken from Wilson (1985). 

the windspeed recovery distance is longer than the data suggest. If we define the 
sheltered distance to be the downwind point where at z = 0.4 H the wind recov- 
ers to 60% of the 4 m-height windspeed, the data indicate a shelter distance of 
18 H. However, Wilson's prediction in his Figure 7 is larger than 30 H. These 
results suggest his simulations underpredicted windspeed in the speed-up zone and 
overpredicted that length of  the sheltered zone. 



A NUMERICAL SIMULATION OF BOUNDARY-LAYER FLOWS 165 

2 . 0  

~ 1 . 0  

0 , 0  i ! i i |  I I i I  

- 5 . 0  

N o r m a l i z e d  P r e s s u r e  - P / I d K E n ( %  ) ,.~. 

o] / ! 

�9 ~ | I I 'T I  I I I , , t , , i 

- 2 .  0 .  o 2 . 5  5.  o 5.  

Winaward Distance from shel terbel t  (H) Leeward 

Fig. 5a. Distribution o f  perturbed pressure field near  the shelterbelt  with porosity of  0.62 (kT = 0.5). 
The pressure perturbation was normal ized by the upstream mean kinetic energy (MKE) at height  H 
of  the shelterbelt  top. 

From a comparison of our results with those of Wilson (1985), we conclude 
that past interpretations of shelterbelt flow fields, based on turbulent diffusion 
theory, may have overemphasized the role of turbulent diffusion in the formation 
of leeward flows. We find that interaction between the disturbed pressure and the 
flow is also an important mechanism for creating the sheltering effect. The pressure 
gradient on the windward side is much larger than leeward, as shown in Figure 5. 
In the first several H leeward, the pressure gradient is very small and is related to 
the porosity of the shelterbelt. The other important characteristic which affects the 
windspeed-recovery rate is the zone of larger pressure gradient beyond the leeward 
zone of weak pressure gradient. Measurements of pressure along the ground behind 
a solid obstacle have shown that the negative pressure downstream of the obstacle 
is approximately constant over a distance of about 3 H and then starts rising very 
rapidly (Chang, 1966; Plate, 1971). 

The pressure perturbation arises when air passing through the shelterbelt experi- 
ences a drag force that creates a static pressure difference. The pressure perturbation 
extends beyond the shelterbelt, forming a pressure gradient that opposes the flow 
and causes windspeed reductions both leeward and windward. The leeward pressure 
gradient causes the point of maximum windspeed reduction to locate far from the 
shelterbelt (e.g. 2-6 H) and sets up horizontal convergence in the near lee and diver- 
gence downwind of this point. The convergence and divergence of the flow fields 
create positive dynamic pressure in the near lee and negative dynamic pressure in 
the far lee. Therefore, between the shelter and the point of maximum windspeed 
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Fig. 5b. Same as Figure 5a but for a porosity of 0.4 (k~ = 2.0). 
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Fig. 5c. Same as Figure 5a but for a porosity ol 0.25 ( k , .  = 4.5). 

reduction, a second m a x i m u m  negat ive-pressure-perturbat ion center may  occur 
when dynamic  pressure is large and the static-pressure perturbation is weak (Fig- 
ure 5c). But leeward of  the point  of  m a x i m u m  windspeed reduction, the negat ive 
dynamic-pressure  perturbation produces a large pressure-gradient  zone. 
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Fig. 5d. Same as Figure 5a but  for a porosity of  0.08 (k~ = 60.5). 

In shear flow, the transport of horizontal momentum by vertical velocity also 
may result in a dynamic-pressure perturbation. Strong upward flow windward of 
the shelter transports air with a momentum deficit from lower to higher levels, 
resulting in flow convergence and a positive dynamic-pressure perturbation. In the 
lee, downward flow generates a negat:ve dynamic-pressure perturbation. The con- 
vergence of windspeed upwind of the shelterbelt also generates positive dynamic 
pressure. These effects lead to the overspeeding phenomenon that we simulate 
above the shelterbelt. 

Interaction of the dynamic pressure with the flow produces additional pressure 
that moves the location of the leeward maximum windspeed reduction away from 
the shelterbelt and makes the windspeed recovery toward its upstream undisturbed 
value more rapid. The dynamic pressure gradients exist in both horizontal and 
vertical directions. The difference between ground and free stream pressure tends 
to compress the streamlines toward the ground. These effects lead to the faster 
recovery rate of windspeed (compared to Wilson, 1985) that we simulate in the 
lee. 

We experimented with several turbulent closure schemes and observed that dif- 
ferent turbulent schemes produce some difference in the predicted value of TKE. 
However, mean flow is insensitive to different turbulent closure schemes, which is 
consistent with Wilson's (1985) findings, and the effect of the shelterbelt on tur- 
bulence is determined, to some degree, by the modification of the mean flow field. 
TKE distributions around shelterbelts with different densities are shown in Figures 
6a-d, where TKE was normalized by the undisturbed upstream TKE at the same 
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Fig. 6a. Distribution of turbulent kinetic energy (TKE) near the shelterbelt with porosity of 0.62 (k~ 
= 0.5). The TKE was normalized by the undisturbed upstream TKE at the same level. 
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Fig. 6b. Same as Figure 6a but for a porosity of 0.4 (kT = 2.0). 

level (TKE0) to min imize  the effects of  both turbulent closure schemes and wind- 
speed. These four  figures show two c o m m o n  characteristics: a strong turbulence 
zone at the top of  the shelterbelt and a weak turbulence zone near the ground. This  
is consistent with experimental  findings as summar ized  by McNaughton  (1988): 
there exists a triangular quiet zone of  reduced turbulence and smaller  eddy sizes 
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Fig. 6c. Same as Figure 6a but for a porosity of 0.20 (k~ = 8.0). 
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Fig. 6d. Same as Figure 6a but for a porosity of 0.06 (k~ = 128). 
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immediately behind the shelterbelt and beneath the strong wake turbulence zone. 
As shown in Figures 6a-6d, the shapes of the triangular quiet zone and the wake 
zone change with shelterbelt density. For a porosity of 0.62, the strong turbulence 
center of the wake zone is at x = 10 H and z = 1 H. However, the wake zone has 
two centers for shelterbelts with porosity less than 0.4. One center is immediately 
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at the shelterbelt top. The other is 3-9 H downstream, and shifts toward the shelter 
with increasing shelterbelt density, moving from x = 9 H and z = 1 H for porosity 
of 0.4 to x = 3 H and z = 0.9 H for porosity of 0.06. Therefore, the size of the qui- 
et zone decreases with increasing shelterbelt density. For a dense shelterbelt with 
porosity of 0.06 (Figure 6d), the quiet zone is limited to a horizontal distance of 
2 H immediately behind the shelter, and the region from 2 to 9 H leeward has larger 
TKE than in the undisturbed flow. This may explain why Plate (1972) reported 
higher evaporation rates behind a solid screen than behind a porous one. A dense 
shelterbelt also decreases turbulence immediately behind it, as shown within 2 H 
leeward from the shelterbelt in Figure 6d. Perera (1981) also reported that a solid 
fence provides a flow of very low turbulence in the zone close to the shelter. 

5. Conclusion 

We have used a numerical model to build a complete set of shelterbelt flow patterns 
and describe their changes with porosity. The location of maximum windspeed 
reduction, its changes with porosity, and the leeward windspeed recovery rate are 
all well simulated. The separated recirculation and the changes of its size and 
location with porosity are also well simulated, and the critical porosity leading 
to separation agrees with the observed value of 0.3. The simulated characteristics 
of shelter aerodynamics qualitatively agree with field observations and laboratory 
wind-tunnel measurements. Quantitative comparisons with observed data and the 
simulations of Wilson (1985) show that our model gives correct predictions of both 
the windspeed-recovery rate in the lee and overspeeding over the shelterbelt. The 
model demonstrated good performance for flows over and through shelters ranging 
from almost completely open, where the governing equations are parabolic, to 
almost solid shelterbelts, where the governing equations are elliptic and where 
separated flow exists. 

We studied the patterns and dynamic processes of flows over and through shel- 
terbelts as determined by the structure or porosity of shelterbelts and demonstrate 
the importance of dynamic pressure in determining wind-sheltering functions and 
characteristics. The interaction of penetrating flow with the perturbation pressure 
and flows over the shelter creates a point of maximum windspeed reduction far 
behind the shelterbelt. The dynamic pressure resulting from convergence and diver- 
gence of the flow field alters the perturbation pressure field. The disturbed pressure 
controls not only the formation of the separated flow but also the location of max- 
imum windspeed reduction, streamline curvature, speed-up over the shelterbelt, 
and leeward windspeed-recovery rate. The interaction of pressure and flows pro- 
duces complex flow patterns, the characteristics of which are determined, to a great 
extent, by the ratio of the penetrating flow to undisturbed flow, or permeability. The 
permeability is controlled by shelterbelt structure, which traditionally is expressed 
in terms of porosity or leaf-area index density. 
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Although the leeward windspeed-reduction zone is most important for practical 
applications, all parts of the flow pattern are interconnected. Overspeeding over the 
shelterbelt alters streamline curvature and hence affects windspeed-recovery rate. 
The windward windspeed reduction affects the overspeeding zone by changing the 
drag force and vertical transport of horizontal momentum. 

We have tested our model on shelters with a spectrum of densities ranging 
from nearly open to nearly solid. The resulting flow patterns can be divided into 
two regimes depending on whether the flow separates. It seems that the maximum 
shelter effects exist in the transient state between regime I (unseparated flow) and 
regime II (separated flow). Therefore, only when the theoretical and numerical 
model has good performance between parabolic-type equations when shelterbelt 
density is low and elliptic-equations when shelterbelt density is high, can we 
conclude that accurate simulation of all regimes of the flow-field evolution near 
shelterbelts is possible. 
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