Compatible materials with $YBa_2Cu_3O_v$

S. KIKKAWA, F. KANAMARU

The Institute of Scientific and Industrial Research, Osaka University, Osaka 567, Japan

S. HASHIGUCHI

Sumitomo Cement Co. Ltd, Mitoyocho, Kanda, Chiyoda, Tokyo 101-91, Japan

High-temperature superconducting materials have been investigated to make thin films for device applications. Crystallization and oxygen annealing up to 900 °C is necessary to obtain a superconductivity in YBa₂Cu₃O_Y thin film. YBa₂Cu₃O_Y is gradually hydrolysed in air [1]. Its overcoating is required to prevent the hygroscopic nature. The coating materials should be non-reactive with YBa₂Cu₃O_Y in these high-temperature treatments. They should also be transparent to visible and infrared light in optical sensitive device applications. Non-reactive materials are necessary also as substrates.

Most of the simple oxides (e.g. SiO_2 , ZrO_2 and Al_2O_3) form reaction products with $YBa_2Cu_3O_Y$ [2, 3]. The crystal orientation of $YBa_2Cu_3O_Y$ can be epitaxially controlled on $SrTiO_3$ substrate. However, its transition to superconductor is not sharp after high-temperature annealing, due to a reaction with the substrate [4]. Most of the reaction products with these substrates are compounds containing Ba, which diffuse from $YBa_2Cu_3O_Y$ [5]. These reaction products may be stable against further reactions with $YBa_2Cu_3O_Y$. BaF_2 has been used as a flux for crystal growth [6]. Alkaline-earth fluorides may also be stable against $YBa_2Cu_3O_Y$.

In the present investigation, reactions with $YBa_2Cu_3O_Y$ powder were studied on alkaline-earth fluorides, MgF_2 , CaF_2 and BaF_2 , and on Ba compounds, Ba_2TiO_4 , $BaAl_2O_4$, $BaZrO_3$ and $Ba_3Zr_2O_7$, to find possible candidates for non-reactive overcoating and substrate. Powders of these materials are white and their dense body may be transparent to visible light.

YBa₂Cu₃O_Y was prepared by firing a mixture of Y_2O_3 , BaCO₃ and CuO at 900 °C for 3 h. After grinding it was further heated at 940 °C for 5 h. The product was mixed well with 5 wt % of the candidate materials, i.e. the alkaline-earth fluorides and the Ba compounds. The mixtures were heated at 900 °C for 3 h and for a further 9 h. Powder X-ray diffraction patterns were compared in each firing step to study the reactivity with these candidates. The electrical conductivity was measured for the samples sintered at 920 °C for 7 h using the four-point probe method.

The product heated with MgF_2 at 900 °C for 3 h was contaminated with BaF_2 , Y_2BaCuO_5 , CuO and MgO as shown in Fig. 1a. Relative X-ray intensities between these components were almost the same

Figure 1 Powder X-ray diffraction patterns (Cu K_{α} radiation) for the mixture of (1) YBa₂Cu₃O_Y with (a) MgF₂ and (2) their reaction products. Similar patterns are also shown for (b) CaF₂. (*, \bigotimes) CaF₂, (\bigcirc) BaF₂, (\bigcirc) Y₂BaCuO₅, (\blacksquare) CuO and (\bigcirc) CaO.

even after further heating at 900 °C for a further 9 h. The starting $YBa_2Cu_3O_Y$ powder had a small amount of CuO. The above-mentioned contaminants except for CuO were formed by a reaction between $YBa_2Cu_3O_Y$ and MgF_2 . The products with CaF₂ were also mixtures of YBa₂Cu₃O_Y, BaF₂, Y₂BaCuO₅, CuO and CaO as depicted in Fig. 1b. The situation is guite similar to the above-mentioned case for the heated products with MgF₂. No marked reaction was observed on X-ray diffraction of the products with BaF₂. Ba₂TiO₄ disappeared with the heating and any reaction products were observed on X-ray diffraction. There have been no reports on the presence of compounds containing more barium than Ba_2TiO_4 in a $BaO-TiO_2$ binary. The compound might form a solid solution with $YBa_2Cu_3O_Y$ but no remarkable change was detected on X-ray diffraction. Any other barium compounds, $BaAl_2$ -O₄, $BaZrO_3$ and $Ba_3Zr_2O_7$, showed no obvious reactions in their heated products.

The electrical conductivity was measured on sintered bodies of the reaction products with BaF₂, BaAl₂O₄ and BaZrO₃. YBa₂Cu₃O_Y had a resistivity of $5.5 \times 10^{-3} \Omega$ cm at room temperature, a metallic temperature dependence and a sharp superconducting transition (T_c (0) = 91 K) as shown in Fig. 2. The reaction products with the barium compounds had resistivities around $10^{-2} \Omega$ cm at room temperature and semiconducting temperature dependences due to the weak link between the YBa₂Cu₃O_Y grains. The products with BaF₂ and BaZrO₃ showed a relatively sharp superconducting transition and $T_c(0) \approx 82$ K. The product with BaAl₂O₄ showed a

Figure 2 Superconductivities of $YBa_2Cu_3O_Y$ itself and its mixtures with BaF_2 , $BaAl_2O_4$ and $BaZrO_3$.

Symbol	Sample	$T_{\rm c}$ (0)(K) $\rho_{\rm PoT}$ (Ω cm)	
•	YBa ₂ Cu ₃ O _Y	91	5.5×10^{-3}
0	BaF ₂ 5 wt % addition	82	1.5×10^{-2}
\triangle	BaAl ₂ O ₄ 5 wt % addition	68.5	$1.2 imes 10^{-2}$
	BaZrO ₃ 5 wt % addition	82.5	2.4×10^{-2}

very broad transition to superconductor and $T_c(0) \approx 69$ K. The transition temperature at zero resistance has been reported to be reduced from 90 to 50 K with increasing x in $(Al_x Y_{1-x})$ -Ba₂Cu₃O_{6.5+ δ} [7]. X-ray diffraction of the product did not show any marked change in the present investigation.

In summary, BaF_2 and $BaZrO_3$ are promising candidates as overcoating and substrate materials. $BaZrO_3$ has a perovskite-type crystal structure and both an epitaxity with $YBa_2Cu_3O_Y$ and also an oxygen diffusivity can be expected. The resistivity for humidity and possibility for oxygen annealing have to be further studied for an overcoating application.

Acknowledgements

This research was partly supported by a Grant-in-Aid for Scientific Research on Priority Areas and by a grant from Sumitomo Cement Co. Ltd.

References

- 1. M. F. YAN, R. L. BARNS, H. M. O'BRYAN, JR, P. K.GALLAGHER, R. C. SHERWOOD and S. JIN, *Appl. Phys. Lett.* **51** (1987) 532.
- H. KOINUMA, K. FUKUDA, T. HASHIMOTO and K. FUEKI, Jpn. J. Appl. Phys. 27 (1988) L1216.
- 3. T. KOMATSU, O. TANAKA, K. MATUSHITA, M. TANAKA and T. YAMASHITA, *ibid.* 27 (1988) L1025.
- X. D. WU, D. DIJIKKAMP, S. B. OGALE, A. INAM, E. W. CHASE, P. F. MICELI, C. C. CHANG, J. M. TARAS-CON and T. VENKATESAN, *Appl. Phys. Lett.* 51 (1987) 861.
- D. DIJIKKAMP, T. VENKATESAN, X. D. WU, S. A. SHAHEEN, N. JISRAWI, Y. H. MIN-LEE, W. L. McLEAN and M. CROFT, *ibid.* 51 (1987) 619.
- B. R. PAMPLIN, in "Crystal growth" (Pergamon Press, Oxford, 1975) p. 268.
- 7. J. P. FRANCK, J. JUNG and M. A.-K. MOHAMED, *Phys. Rev.* **B36** (1987) 2308.

Received 29 October and accepted 20 December 1990