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Fortes and Emilio Rosa [1] have published recently 
complete constitutive equations containing a single 
structure variable. The authors claimed to have 
derived the general equation compatible with the 
scaling relationship, based on the following 
arguments: assume first, that one parameter, p, 
family of  y(x, p) curves have a scaling relationship 
with Ax// ' ,y  = 0, that is, the curves can be made to 
coincide by a translation parallel to the y-axis. The 
general form of a family with this property is 

y (x, p) = p + f ( x )  (1) 

where f denotes an arbitrary function. In addition, 
by making a change of the coordinate axes the 
authors have shown that the general form of  the 
family of  curves which superimpose under a 
translation along the direction with slope 
A y / A x  = 1/Mis 

y = p + f ( x  -- My)  (2) 

Furthermore and always according to these 
authors, on taking y = l o g o ,  x = l o g 4  and 
p = log oi, Equation 2 leads to 

o/o i = g(d/o  2u) (3) 

or, inverting 

= oMF(o/oi) (4) 

where g and F are arbitrary functions, o is the 
applied stress, e" is the plastic strain rate and o i is a 
structure variable. Then, Equation 4 should be the 
general form of  a mechanical constitutive equation 
with one structure variable, compatible with the 
scaling relationship. 

Povolo and collaborators [ 2 - 5 ]  have studied in 
detail the scaling relationships observed frequently 
in the log o - log  d curves, obtained either during 
creep or stress relaxation experiments. Further- 
more, it was discussed if the scaling relationship 
was a sufficient condition to ensure the existence 
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of  a state variable dependent on o and ~. In 
addition, the scaling relationships were applied in a 
normalized diagram [4, 6] of  the type 

f(c o, t3) = 0 (5)  

where a, 4" and/3 are parameters that depend on 
the particular model considered and f is a general 
function, to study the restrictions imposed on the 
theoretical model by the scaling property observed 
in the log o - log  d diagram. It should be pointed 
out that Equation 2 is a particular case of  the 
function considered by Povolo and Rubiolo [2]. 

It is the purpose of  this paper to give the general 
form of a family of  curves which superimpose 
under a translation along a given direction. It will 
be demonstrated that Equation 2 is not  the general 
form of this family of curves and, consequently, 
that Equation 4 is not the general form of a 
mechanical constitutive equation with one 
structure variable, compatible with the scaling 
relationship. 

In order to study the general conditions that a 
scalar field must satisfy to present a scaling 
behaviour, it is convenient to change the notation 
and denote all coordinates by x distinguishing the 
axes by subscripts, as for example: 

X --> X 1 

y -~  X 2 

Z -+ X 3 

Let us assume the function 

g ( A i x i )  = aix i 4- d i = 1,2,  3 (6) 

where g is a real function, continuous, single- 
valued and differentiable and Ai,  ai, d are real 
constants. The Einstein convention that summation 
over repeated indices within a given term is implied, 
was used in Equation 6 and will be implied in what 
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follows, unless otherwise stated. Furthermore, all 
subscripts will take the values 1, 2 and 3. 

Equation 6 can be written, in general, as 

F = g ( A i x i ) - a i x  i - d  = 0 (7) 

and, for example, set of  curves in the xi, xj plane, 
at different xk levels, etc., can be defined. On 
taking increments o f  Equation 7 leads to 

&ax~ = -g ' (u )  ( & a x 3  + (a~axi) = 0 (8) 

where u = A i x  i, g' (u)  = dg/du and Fi = 3F/3xi .  
For fixed increments A x  i Equation 8 can only be 
satisfied if 

A i A x i  = 0 (9) 

a j A x  i = 0 (10) 

By combining Equation 9 with Equation 10 it is 
easy to show that 

AXle /Ax i  = (Aiaj - -  aiAj)/(Ajale --  a jAk)  
(11) 

(; ~ i ~/c) 
This equation gives the three scaling relationships 
that can be defined in the three different planes. I f  
the translation path is parallel to the xk-axis, then 
A x i  = 0 and Equation 11 leads to 

Ajak ajAk = 0 (12) 

o r  

A~/ay = A k / a k  = K = constant (13) 

Then, if the function defined by Equation 6 shows 
a scaling relationship in the xi ,  xk  plane, between 
curves at different xj levels, with a translation path 
parallel to the xk-axis, Equation 13 must be satis- 
fied,i.e. Equation 6 must be of  the form 

g ( A x i  + Kajx j  + K a k x k )  

= a ix  i + a j x j  + a k x  k + d  (14) 

(i 4= / 4: lc) 

In the particular case where Equation 6 reduces to 

g(A ix i )  = d (15) 

that is a i = 0, on taking increments leads to Equa- 
tion 9 and the scaling conditions reduce to 

A x k /  A x  i = --  (1 /Ak  )[Ai(  Ax.i/ A x i )  + Ai] 

(i=~ j=/= k)  (16) 

This equation means that any translation path is 
possible, since only a relationship between scaling 
in different planes is established. 
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By a transformation of  the coordinate axes, the 
translation path inclined with respect to the co- 
ordinate axes can always be transformed to a 
translation path parallel to one axis. Let us assume 
that the cartesian coordinate system x i is changed 
to another cartesian system x'i with a common 
origin. Then 

! 
x i  = ~ijxj (17) 

i , j  = 1 , 2 . 3  
t ! 

x ,  = 13ijx j (18) 

where/3ij gives the direction cosine between axis x '  i 
in the new system and axis xj in the old system" 
similarly for/3'. Since both coordinate systems are 

l J "  

cartesian, the linear transformations described by 
Equations 17 and 18 are orthogonal transforma- 
tions [7] and 

/3!. u = /3ji (19) 

On taking into account Equation 19 it is easy to 
show that Equation 6 can be written, in the new 
coordinate system, as 

/ l ! t 
g ( A i x i )  = a i x i  + d (20) 

where 

t ! 
A i  = [Jjiaj  = [dijAj (21) 

Furthermore, it is easy to show that the scaling 
relationships, expressed by Equation 11 in the old 
system, are transformed in the new system to 

! ! 

Z ~ X k / A X i  

Y~ (&~jn - ~,~ &)(&an --,,tAn) 
= t, n (22) 

l ,  r t  

( i=/=j4:k,  1 4 : n , l , n  = i , j , k )  

Equation 22 cannot be simplified further. For the 
purpose of  this paper the important transformations 
of  coordinates are the two-dimensional ones, i.e. a 
rotation of the axes in the plane defined by tWO 
coordinate axes. The coordinate corresponding to 
the axis perpendicular to this plane is left 
unchanged by the transformation. If  a clockwise 
rotation is performed in the xi, xk  plane, through 
an angle ~b, then 

g.j = 1 , &  = & = flkj = /3jk = 0 

J~ii =- cos ~, fiki = -- sin q5 

fiik = sinq~, /3kk = COS q~ 

(23) 



and Equation 22 reduces to 

ax'd ax', 

cos (~(Aiaj -- aiA fl  -- sin ¢(Ajak  -- ajAk ) 

sin ¢(Aiaj - - a i A i )  + cos dp(Aia h - - a j A k )  

(i ¢ ] 4= k) (24) 

and 

[g' (u )A  i -- ai] 
(a(°/aXi)xk - [g ' (u )Aj  - a  i] (30) 

[g' (u)Ak - -ak]  
(a¢ /axk)x i  = - [ g ' ( u ) A ~ - a ~ ]  (31) 

which, on taking into account Equation 11, can be 
written as 

A x k / A x  i ( A X h / A x i )  cotg ¢ 1 
(Axk / zSx i )  + cotg ¢ (25) 

(i ¢ j ~: k) 

I f  in the new system the translation is parallel to 
the ' " xk-axls, then A x i  = 0 or 

cotg q~ = -- A x k / A x i  (26) 

This result should be expected, since Equation 26 
means an anticlockwise rotation of  the coordinate 
axes by an angle equal to the angle defining the 
translation path. 

In the particular case where Equation 15 holds, 
with the scaling conditions given by Equation 17, 
it is easy to show that in the new coordinate 
system 

t ! 
A X k / A X  i 

= A i c o s ~ + A k  s i n q ) + A i ( A x j / A x ' i )  (27) 

(A i sinqS--Ak cosqS) 

(i--/==1. ¢ k)  

Following the analysis outlined by Povolo and 
Rubiolo [2], it can be seen when Equation 6 is an 
equation of  state, interpreted as defining curves in 
the xi,  xje plane, at different xj levels. In fact, even 
i f g ( A i x i )  is unknown explicitly, it can be assumed 
that Equation 7 defines a function x i = ¢ (X i ,Xk ) ,  
where i 4:1. 4= k, and a differential 

dx.i = (O¢/aXi)xk d x  i + (O¢/axle)xidx k 

(i 4:]" 4: k) (28) 

The necessary and sufficient condition for this to 
be a perfect differential is 

a a 
axk  (3¢/aXi)xk  - axi  ( a¢ /axk)x  i (29)  

By taking into account Equations 30 and 31, 
Equation 29 can be written as 

0ik = G i  = 

-g"(u) (A~& + AkAj¢~ + AiAjCk + A~ 4)~¢k) 
[g' (u )A  i -- aj] 

(3,2) 
where $i=(3(p /Oxj )xk ,  c) k =(a$/Oxk) , : i ,  ~ki = 
(O/axi)(oO/axk),:i  and Oik = ( a / a x k ) ( a O / a x i ) x  k. 
According to Equation 32, Equation 29 is 
continuous i f  g ' (u )A j  -- aj 4= 0 or 

g' (u) 4: aj/Aj (33) 

Then, the scalar fields described by Equation 6, 
with the scaling relationships described by 
Equation 11, will be a consequence of an equation 
of  state unless the condition implied by Equation 
33 is not satisfied. If  this is the case, the scalar 
field will be an equation of  state on ly in  a restric- 
ted domain of  the variables, where Equation 33 is 
obeyed. Furthermore,  if Equation 33 does not 
hold, two curves, at different xj ,  will have a cross- 
ing point in the xi,  xk  plane given by 

g(Aix i  + Ak xk + A j x j l )  

- - g ( A i x i  + A k x k  + A j x n )  = c(xj,  - - x j 2 )  

(i 4:1" 4: k) (34) 

where xjl and xj2 are two fixed values ofx j .  
Equation 6 describes the general function lead- 

ing to a scaling behaviour when curves are con- 
sidered in the plane determined by two coordinate 
axes, parameterized in the third coordinate. An 
important point to be noticed is that a scaling 
behaviour in one of the planes leads to scaling in 
the other two planes, with different translation 
paths, defined by a pair of  coordinate axes. Let us 
consider, as an example, the very well known state 
equation for ideal gases 

p v = n R  r ( 3 5 )  

and is continuous. By using the change of  variables 
U = A i x i  and the theorems for derivatives of  
implicit functions [8], it can be shown that 

As pointed out in [2], written in this way Equation 
35 does not generate a scalar field with a scaling 
behaviour. However, if the equation is written as 
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log p + log V = log (nR) + tog T (36) 

and the variables changed to 

xl = logp, x2 = logV, x3 = logT (37) 

and on assuming, without loss of generality, that 
the mass is constant, i.e. 

log(nR) = constant = d (38) 

the result is 

X 1 + X 2 - -  X 3 = d (39) 

Equation 39 has the form of Equation 15 with 
A~ = A s  = 1, A3 = - -  1. According to Equation 
16 the scaling conditions are 

Ax2/Ax l  = A tog V/Alog p 

= 1 + (AlogT/Alogp)  (40) 

and 

A x 3 / A x  2 = Alog T/Alog V 

= l + ( A l o g p / A l o g  V) (41) 

Ax3//',xl = Alog T/A logp 

= 1 + (A log V/A log p) (42) 

In this particular case, Equations 40 to 42 
could have been obtained, in a straightforward 
way, by taking increments of Equation 36. Any 
translation path can be chosen in the log p- log  V, 

log T-log V and log p - log  T planes, since parallel 
straight lines are obtained on parameterizing with 
respect to the third variable. Furthermore, Equa- 
tion 36 is an equation of state, in any one of the 
planes, since g'(u) = 1 and Equation 33 is always 
satisfied. The function 

y = g ( A x  + Bz) + az + b (43) 

considered in [2] is a particular case of Equation 
6 with x = x l ,  y = x 2 ,  z = x 3 , A = A a , A s  = 0 ,  
Aa =B,  al = 0 ,  as = l, a3 = - - a  and b = - - d .  
According to Equation 11 the scaling conditions 
are 

Ax2/Ax l  = A y / A x  = --aA/B (44) 

Axa/Ax l  = A z / A x  = - - A / B  (45) 

Axa/Ax2 = A z / A y  = 1/a (46) 

Equation 44 has been already given in [2]. The 
function described by Equation 2 is a particular 
case of both Equation 6 and of Equation 43, with 
X =X1, y = X  2 and xa = p .  It is clear that 
Equation 2 is not the general form of the family of 
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curves which superimpose under a translation 
along the direction with slope Ay// ' ,x = 1/M, as 
stated in [1]. In fact, the general form is given by 
Equation 6 with xl = x, x2 = y and xa = p, i.e. 

g ( A l x  + ARy + Aap) 
(47) 

= a l x + a 2 y + a 3 p + d  

and with the scaling relationships given by Equa- 
tion 11. If A y / A x  = 1/M, then 

Ala3 - -a lA3  
A y / A x -  - 1/M (48) 

A3a2 --a3A2 

There are several functions of the form of Equa- 
tion 47 which satisfy Equation 48, for example 

g ( x - M y )  = a l x + a 3 p + d  (49) 

g ( x - - M y )  = azy  + a3p + d (50) 

g(My + p) = ai(x + p) + d (51) 

g(x + Mp) = a2(y + p) + d (52) 

g ( x  + p) = M y  + p + d (53) 

g(y + p) = x + Mp + d (54) 

g ( y - - p )  = x - - M p  + d (55) 

On taking y = l o g c r ,  x = l o g e ' ,  p = l o g o i  and 
d = log K Equations 49 to 55 can be written as 

f(e/G M) = K e ° ' ~  ~ (56) 

f ( i /o ~ )  = m ° ~  3 (57) 

f(~Mai) = X(~oi) "1 (58) 

f(eo3 I) = K(~ i )  a~ (59) 

f ( ~ )  = Ko~o M (60) 

f(o~i) = Ke@ ¢ (61) 

f(o/oO = K&:l M (62) 

Equations 57 to 62 illustrate some of the possible 
mechanical constitutive equations with one struc- 
ture variable, compatible with a scaling relation- 
ship A log o/A log ~ = 1/M. It should be pointed 
out that Equation 4, which is of the form of 
Equation 62, was obtained in [1] by inverting 
Equation 3, which is of the form of Equation 57 
with a2 = 1  and aa = - - 1 .  This inversion is not 
always possible as, for example, in the 
case where f@/o M) is of the form f((:/O M) = 
/11 + As(i/o M) + Aa(i/oM) 2 + . . .  

Finally, the general discussion on possible 
forms of mechanical constitutive equations and on 
the meaning of the scaling relationship, observed 



in the experimental  log e - l o g  ~ curves, viewed 

within the framework of  a theoretical model, will 
be presented in a forthcoming paper [9]. 

The general form of  a family of  curves which 
superimpose under a translation along a given 

direction has been given. It has been shown that 

scaling relationships must exist in any one of  the 
three planes defined by two variables, for family 
of  curves parametrized in the third variable. 

The necessary and sufficient condit ion that a 
scalar field with a scaling behaviour must fulfil in 
order to be a consequence of  an equation of  state 

have been given. The results have been applied to 
the very well known state equation for ideal gases. 

Finally,  some results reported previously in the 
literature for mechanical constitutive equations 
have been shown to be particular cases of  the 
formalism developed in this paper. 
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