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Phase relations of the Si3N4-AIN-CaO system 
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Ceramics based on silicon nitride with a'-SiA1ON 
as a major constituent are of more interest recently 
considering their potential high temperature 
properties. The structure of an u-Si3N4 solid solu- 
tion which contains a large vacant site provides the 
possibility to absorb large impurity metal ions in 
the starting powder mixtures as sintering aids thus 
leading to a clean grain boundary phase which will 
be beneficial t o  the mechanical properties of 
ceramics at elevated temperatures. 

The crystal chemistry of a'-SiA1ONs which have 
the generalized formula Mx(Si, A1)I~(O, N)16 is 
characterized by their content of metal cations 
such as lithium, calcium, yttrium and rare earth 
elements (except lanthanum and cerium) up to 
x = 2 present in the large interstitial holes [1]. 
These cations stabilize the trigonal ot-SiaN4 struc- 
ture and thereby establishing a/3-SiaN4-a-SiaN4 
solid solution equilibrium. 

In contrast to the extensively investigated phase 
relations of the /3-SiA1ON solid solution in the 
quaternary system Si -A1-O-N [2-6],  the 
information about the phase relations of the 
0L-SiA1ON solid solution in various M - S i - A 1 - O - N  
systems is scarce. This study is one of a series of 
phase relation studies of M-S i -A1-O-N systems 
following the last work on the Si3N4-A1N-Y2Ch 
system of one of the authors [7]. 

The starting powders used were Si3N4 (AME, 
total Si 60.08, N 37.72, O 1.31, free Si 1.12 wt %), 
A1N (Japan, total AI 64.58, N32.78, O 1.37, 
others 1 wt%) and CaO (obtained by calcining 
CaCO3 99.99% at 1100°C for 2 h). The process of 
preparing and hot-pressing is the same as before 
[7]. Equilibrium was assumed to have been 
attained when no more unreacted a-Si3N4 was 
detected. 

All specimens after hot-pressing at different 
temperatures were examined by X-ray diffraction 
analysis using an automatic recording X-ray 
diffractometer with monochromated CuKa 
radiation. The compositions of some crystalline 

phases were analysed by a JCXA-733 electron 
probe X-ray microanalyser (JEOL). 

Results obtained indicated that no binary 
compound is formed in this system except for 2H ~ 
A1N-polytype. 2H ~ phase was detected in all 
binary compositions of this system after hot- 
pressing at 1500 to 1700°C in N2 for 1 h. The 
content of 2H ~ phase decreased from the A1N end 
up to the CaO end. 2H A1N-polytype can be 
characterized as AlllN903 with the ratio of 
cat ions/anions=ll /12.  In fact, it "is already 
present in the starting powder of A1N by the 
introduction of a small amount of oxygen during 
fabrication. 

In some previous works concerning the phase 
diagram of Ca -S i -A1-O-N systems [8, 9], this 

Figure 1 SEM micrograph of 2CaO.Si3N 4 phase which 
was analysed by electron probe (arrow point) with 
45.6 wt% CAO:54.4 wt % Si3N 4 ~ 2CaO.Si3N 4 (× 2000). 
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T A B  LE I X-ray data for 3CaO.Si2N20 and 3CaO-A1203 

3CaO'AI:O3 * 3Ca'Si2N20 3CaO'A1203 * 3CaO-Si~N20 

h k  I I / I  o d (X 10-1nm) dob s Iobs 
(X 10 -1 nm) 

h k l I / I  o d (X 10-1 nm) dob s Iobs 
(X 10-1rim) 

1 1 1 < 1 8.82 
2 10 6 6.83 
2 1 1 4 6.23 
2 2 0  2 5.40 5.32 mw 
2 2 1 6 5.09 
1 1 3 4 4.604 4.539 vw 
0 2 3 10 4.235 4.181 vw 
3 2 1 16 4.080 4.026 w 
0 0 4  2 3.816 3.767 vw 
2 2 3 2 3.705 3.652 vw 
3 3 1 2 3.501 3.457 mw 
4 2 1 6 3.332 3.288 mw 
3 3 2 4 3.252 3.212 mw 
4 2 2  < 1 3.120 3.074 s 
4 3 0 4 3.052 
4 3 1 4 2.993 2.952 w 
4 3 2 6 2.834 2.789 m 
5 2 1 14 2.787 2.740 mw 
4 4 0 100 2.700 2.665 vs 
5 2 2 2.662 mw 
5 3 1 4 2.581 2.547 w 
6 1 0 < 1 2.512 2.480 ww 
6 1 1 2 2.477 2.445 mw 
6 20 8 2.413 2.401 vw 
6 2 1 6 2.384 2.355 vw 
5 4 1 2 2.355 
6 3 0 4 2.277 2,247 w 
4 4 4 12 2.204 2.176 m 
6 3 2 2 2.181 2.155 vw 
7 1 1 < 1 2,138 2.111 w 
64  1 4 2.097 2,071 w 
7 2 1 2 2.078 2.052 w 
6 4 2 6 2.040 2.017 vvw 
7 2 2 < 1 2.021 1.992 vvw 
7 3 1 4 1,988 1.962 w 
6 5 0 4 1.955 1.929 vvw 
7 3 2 < 1 1.940 1.914 vw 
0 0 8 35 1.908 1.884 s 
8 1 0 4 1.893 1.871 w 
7 3 3 2 1.865 1.841 vw 
8 2 1 4 1.838 1.816 vvw 
6 5 3 4 1.824 1,802 vw 
82 2 < 1 1.799 1.776 w 
8 3 0 < 1 1,785 1,764 vw 
75 1 < 1 1.763 1.739 vw 
8 3 2 2 1.740 1.717 w 

7 5 2 2 1.727 1,705 vw 
8 4 0  < 1 1.706 
8 4 1 2 1,695 1.674 vw 
9 1 1 < 1 1~675 1.654 vw 
9 2 1 2 1.646 1.626 w 
6 6 4 2 1.627 1.607 vvw 
9 2 2 < 1 1.618 1.598 vw 
85 1 2 1.610 1.581 w 
8 5 2 2 1,583 1.563 vw 
9 3 2 2 1.574 1,553 vw 
8 4 4  25 1,558 1.537 m 

10 1 0 2 1.519 1.499 w 
10 2 0 2 1.497 
10 2 1 2 1.490 

95 1 2 1.476 1,456 vw 
10 3 0 4 1.462 1.443 ww 
10 3 1 2 1.455 1.437 ww 
10 3 2 1 1.436 

8 7 1 < 1 1.429 
104 1 2 1.411 1.392 w 
10 3 3 2 1.405 

96 2 2 1.390 1.371 vw 
10 5 0 2 1.3649 1.3478 vw 
1121  2 1.3596 1.3422 vw 

8 8 0 10 1.3491 1.3302 w 
11 3 1 < 1 1.3336 1.3160 vw 
1132  2 1.3190 1.3022 vw 
1060  < 1 1.3087 1.2919 vw 
10 6 1 1.2882 vw 
11 3 3 < 1 1.2948 1.2766 vw 
1142  < 1 1.2852 
12 1 0 2 1.2676 
12 2 1 < 1 1.2506 1.2342 vw 
11 5 2 < 1 1.2461 1.2310 vw 
12 2 2 2 1.2379 1.2216 vw 

11 6 1 - 1.2064 1.1979 vw 

a o = 1.5262nm a o = 1.507 nm 

*From X-ray card 

b ina ry  s y s t e m  was  charac te r i zed  b y  a tie line o f  

S i 3 N 4 - C a O  in equ i l ib r ium.  Some  c o m p o u n d s  m a y  

easi ly be missed ,  due  to  the  h igh  firing t e m p e r a t u r e  

c o n d i t i o n s  used.  While cer ta in  c o m p o u n d s  m a y  

on ly  be  f o r m e d  at  lower  t e m p e r a t u r e s .  

Two c o m p o u n d s  were iden t i f i ed  in th is  s y s t e m  

by  th i s  s t u d y .  The  c o m p o u n d  3 C a O ' S i 2 N 2 0  (Z 

phase )  w i t h  a me l t i ng  t e m p e r a t u r e  ~ 1 5 8 0 ° C  was  

syn the s i z e d  b y  ho t -p ress ing  a c o m p o s i t i o n  o f  

e i ther  3CaO:2 /3Si3N4 or 3 C a O : S i 2 N 2 0  a t  1 4 0 0 ° C  

in N2 for  0.5 h. It was  charac te r i zed  by  a cubic  

s t ruc tu re  (a0 = 1 .507 n m )  being the  same  as t h a t  

o f  3 C a O ' A 1 2 0 3  (a0 = 1 .5262  nm) .  The  X-ray  da ta  

o f  th is  c o m p o u n d  are l is ted in Table I, in 
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Figure 2 Lattice constants of a-SiA1ON ss as a function of 
the rn value of replacement of A1-N for Si-N. 

comparison with those o f  3CaO'A12Oa. Its 
formation is related to the int roduct ion of  a little 
excess of  oxygen in the starting powder Si3N4. 

Another compound of  the formula 2CaO. SiaN4 
(D phase) with a melting temperature ~ 1680°C 
was also found in this system in hot-pressed 
specimens at temperatures above 1400 ° C in N2 for 
1 h accompanied usually by  some 3CaO'Si2N20.  
It is difficult, however, to obtain this 
compound as a single phase. The quant i ty  o f  
2CaO. Si3N4 formed was increased by  elevating the 

T A B L E  II  X-ray datafor 2CaO.Si3N 4 

dob s (X 10 -1 nm)llob s dob s (X 10 -1 nm) lob s 

5.163 m 1.9186 
4.792 w 1.8941 
4.609 w 1.8620 
3.471 mw 1.7951 
3.314 vs 1.7717 
3.251 m 1.7390 
3.197 m 1.7211 
2.955 s 1.6676 
2.883 vw 1.6570 
2.803 w 1.6236 
2.770 m 1.5640 
2.583 mw 1.4940 
2.542 vs 1.4780 
2.437 m 1.4261 
2.422 rn 1.4037 
2.396 ms 1.3952 
2.379 mw 1.3406 
2.305 m 1.3306 
2.288 m 1.2711 
2.2108 m 1.2472 
2.1445 w 
2.1091 w 
2.0157 vw 
1.9947 mw 

temperature.  Up to 1650°C for 1 h, a nearly pure 
phase of  this compound could be obtained.  Its 
real composit ion was determined by  electron 
probe microanalysis (Fig. 1). Its X-ray data are 
listed in Table II without  indexing. 

A limited range of  solid solutions of  
Ca-a-SiA1ON was determined to exist extending 
on the tie line Si3N4-CaO:3A1N. The generalized 
formula of  the Ca-a-SiA1ON solid solution can be 

represented as CaxSi12- (m+ n)Al(m+ n)OnN16 - n 
[1], where the replacement of  A1-O (0 .175nm)  
for S i - N  (0 .174nm)  and the fill o f  calcium in 
interstit ial holes would cause no structural change. 
But the replacement of  A1-N (0.187 nm) for S i - N  
(0 .174nm) would give rise to a large structural 

change. The results of  analysis of  two composit ions 
of  Ca-a ' -SiAIONs as examples by  electron probe 
are 

Cao.TSi9.4A12.601.2N14.s (m = 1.4) 

and 

Cal.2SiaA1401.6N14.4 (m = 2.4) 

with 
a = 0 .7851nm 

and 

a = 0 .7917nm 

c = 0 .5708nm c/a = 0.727 

c = 0 .5756nm c/a = 0.727 

respectively. It was found that  only ~ 70% of  the 
calcium in the starting composit ions could fill in 
the intersti t ial  holes. The change of  unit cell 
parameters of  Ca-a-SiA1ON ss in relation to the 
m value of  replacement of  A1-N for S i - N  is 

mw shown in Fig. 2. It can be postulated that the 
v w  

w solubility of  calcium in a-SiAION ss spans from 
w 0.3 to 1.4 Ca per unit cell (m = 0.6 to 2.8) at 
w 1700 ° C, which is less than the highest c o n t e n t ,  
w 'Cai.s3Sis.34A13.66N16, as determined by  Jack [10] 
w and is considerably higher than that of  
w 
m Y-~-SiAION ss [7]. 
w In this quasiternary system, a metastable phase 
w of  2CaO. Si3N4" A1N (M phase) was synthesized by  
mw hot-pressing at only 1450 ° C. Its d spacing data are 
m listed in Table III without  indexing. By elevating 
v w  
mw the temperature it decomposes to two crystalline 
m phases, CaAISiN3 (E phase) and A1N, and with 
w some glass phase. The different phases appeared 
w with a starting composit ion of  2CaO:Si3N4:A1N 
mw by treating at different temperatures which are 
w 

also listed in Table IV. The CaA1SiN3 phase was 
characterized to be or thorhombic  (Table V). In 
fact the E phase does not  occur on the plane of  
this system. It is interesting to note that CaA1SiN3 
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Figure 3 Subsolidus diagram of Si3N4-A1N-CaO system. Figure 4 Isothermal section of Si3N4-A1N-CaO system 
at 1700°C. 

and A1N phases appear s imul taneously  at 1500°C 

in a lmost  all composi t ions  restr ic ted in the  

3CaO" S i 2 N 2 0 - 2 C a O .  Si3 N 4 - A 1 N  subsystem, Up 

to 1 7 0 0 ° C  the  compos i t ion  2CaO:Si3N4:AIN 

forms a-solid solut ion wi th  glass. 

No calc ium-containing po ly type  was found.  

By phase analysis and varying heat  t r ea tment  

condi t ions  o f  about  fo r ty  composi t ions  wi th in  this 

T A B L E I I I X-ray data for 2CaO- Si a N 4. AIN 

dob s (X 10 -1 rim) lob s dob s (X 10 -1 nm) lob s 

5.19 w 2.421 ms 
4.85 vw 2.393 mw 
4.706 w 2.366 ms 
4.436 w 2.343 m 
4.308 mw 2.289 vw 
4.101 w 2.163 m 
3.555 m 2.0823 w 
3.457 vw 2.0526 w 
3.376 w 2.0234 vw 
3.149 s 2.0014 w 
3.100 w 1.9762 vw 
3.054 w 1.9201 mw 
3.005 w 1.8922 m 
2.943 wv 1.8280 w 
2.883 w 1.8050 mw 
2.861 w 1.7317 vw 
2.820 mw 1.6834 w 
2.720 m 1.6603 w 
2.696 s 1.6132 vw 
2.659 mw 1.5898 vw 
2.611 vs 1.5657 mw 
2.535 w 1.5527 ms 
2.512 w 
2.485 m 
2.440 w 

quasi ternary system, the  subsolidus phase diagram 

of  the S i 3 N 4 - A 1 N - C a O  system was cons t ruc ted  

(Fig. 3). The fol lowing compat ib le  phase equilibria 
were established, respectively.  

/3-Si3N4-a-SiAION ss -A1N 

/8-Si3N4-a-SiA1ON s s - 2 C a O .  Si3N4 

a-SiA1ON ss-A1N 

a-SiA1ON s s - 2 C a O -  SiaN 4 

C a O - 3 C a O .  S i ~ N 2 0 - A 1 N  

2CaO. S i a N 4 - 3  CaO" Sis N 2 0 - A 1 N ,  

2CaO. Si3N4-a-SiA1ON ss-A1N 

Considering the  metas tabi l i ty  o f  the  2CaO. 

Si3N4"A1N phase, the tie lines starting f rom 

it are jo ined  by  the do t t ed  lines. 

The upper  part o f  this system presents a low 

melt ing tempera ture  region. The isothermal  

sect ion o f  this system at 1700 ° C was de te rmined  
as shown in Fig. 4. For  all composi t ions  studied, 

the compos i t ion  Si3N4:9CaO: 10A1N possesses the  

TAB LE IV Crystalline phases formed at different 
temperatures for the composition 2CaO: Si 3 N 4: A1N 

T( ° C) (HP. for 1 h) Crystalline phases * 

1400 M + D 
1450 M 
1500 E + A1N 
1600 E + A1N + ~' 
1600 (for 1.5 h) c~' + D + E + A1N 
1700 cg 

*M: 2CaO'Si3N4.AIN, D: 2CaO.Si3N4, E: CaA1SiNa, 
a': c~-SiA1ON ss. 
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T A B L E  V X-ray data for CaA1SiN3 phase 

hk  l dea I (× 10-~nm)l dob s (X 10-tnm) lobs 

1 1 0 4.853 4.839 vw 
0 2 0 4.792 4.789 vw 
1 1 1 3.478 3.482 vw 
200 2.814 2.819 m 
1 3 0 2.778 2.773 s 
0 0 2 2.493 2.495 s 
2 0 1 2.451 2.453 s 
1 3 1 2.427 2:422 s 
04 0 2.396 2.394 vw 
223 2.182 2.183 w 
2 0 2 1.866 1.866 vw 
1 3 2 1.855 1.854 w 
330 1.618 1.618 m 
0 6 0 1.597 1.598 vw 
3 3 1 1.539 1.539 vw 
2 0 3 1.431 1.433 mw 
1 3 3 1.426 1.426 w 
223 1.371 1.371 vw 
3 3 2 1.357 1.356 mw 
26 1 1.338 1.339 vw 

Orthorhombic ao = 0.5629(2) nm b o = 0.9584(3) nm 
c o = 0.4986(1) nm. 

lowest melting temperature with T m " -1450°C,  

although the exact eutectic point has not been 

determined thoroughly. 

The following conclusions can be made. 

1. In the Si3N4-CaO system, two compounds, 

2CaO'Si3N4 and 3CaO'Si2N20 were identified 

and the latter was characterized by a cubic 

structure (ao = 1.507nm) same as that of  

3CaO'A1203 (ao = 1.5282 nm). 

2. In the A1N-CaO system, no compound was 

found except for the 2H ~ A1N-polytype intro- 

duced by the A1N starting powder. 

3. The subsolidus phase diagram and the iso- 

thermal section at 1700°C of  the Si3N4-A1N-CaO 

system were determined. Within this system the 

extent o f  Ca-a-SiAION ss was determined to have 

a solubility of  calcium in a-SiAION ss within a 

range of  0.3 to 1.4 Ca per unit cell. The a-SiAION 

ss is in equilibrium with /3-Si3N4 and/or A1N as 

well as with 2CaO" Si3N4. A metastable phase o f  

2CaO'Si3N4"AIN at 1450°C was found. No. 
calcium-containing polytype could be identified. 

Within the low melting region, the composition o f  

SiaN4: 9CaO: 10A1N possesses the lowest melting 

temperature with T m "~ 1450 ° C. 
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