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In the contemporary discussion o f  hidden variable interpretations o f  quantum 
mechanics, much attention has been paid to the "no hidden variable" proof  
contained in an important paper o f  Kochen and Specker. It is a little noticed 
fact  that Bell published a proof  o f  the same result the preceding year, in his 
well-known 1966 article, where it is modestly described as a corollary to 
Gleason' s theorem. We want to bring out the great simplicity o f  Bell's formula- 
tion o f  this result and to show how it can be extended in certain respects. 

1. As a basis for comparison of Bell's le~ and Kochen and Specker's 15~ 
algebraic no-hidden-variable proofs, we begin by outlining Kochen and 
Specker's strategy, omitting much of the technical detail. Kochen and 
Specker begin with two assumptions: 

(i) Corresponding to each quantum state of a system, there is an 
underlying phase space f2. Corresponding to each quantum 
mechanical observable A (self-adjoint operator on the Hilbert 
space of the system), there is a measurable functionfA : g? --+ ~ that 
assigns, for each point in the phase space g?, a real number, which 
is to be thought of as the value of the observable for the point in 
the phase space. 

(ii) For each observable A and each Borel function g we have g( fA)  = 
fg (A) ,  i.e., for each o) c £2, g[fA(oo)] = f~(A)(co). 

Kochen and Specker then proceed by introducing the notions of a 
partial algebra of observables and a partial Boolean algebra of the projectors 
on the Hilbert space. Assumptions (i) and (ii) imply that there is an imbedding 
of the partial algebra of observables into a commutative algebra and an 
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imbedding of the partial Boolean algebra of projectors into a Boolean 
algebra. This last in turn implies that there are homomorphisms from the 
partial Boolean algebra of projectors to the two-element Boolean algebra Z2 ; 
indeed there is a homomorphism for each pair of distinct observables which 
separate the pair. Finally, they show that for each three-dimensional Hilbert 
space, there is a finite partial subalgebra of projectors that cannot be homo- 
morphically mapped to Zz,  thereby showing that (i) and (ii) lead to a contra- 
diction. 

We want to describe the last step in the proof in a little more detail. Let 
P i ,  PJ ,-.. range over projectors onto one-dimensional subspaces i, j,... of a 
three-dimensional Hilbert space / /3 .  (We shall sometimes use these sub- 
scripts to refer to vectors spanning the subspaces.) A homomorphism from 
the partial Boolean algebra of these projectors to Z2 assigns to each projector 
the value 1 or 0 (the maximal and minimal elements of Z2); and if i, j, and k are 
pairwise orthogonal, then exactly one of P ; ,  P~, Pk gets mapped to 1 and the 
other two get mapped to 0. This can be pictured conveniently as a mapping 
of the points on the unit sphere in Ha to 0 and 1 such that for each triple of 
orthogonal points on the sphere, one gets mapped to 1 and the other two get 
mapped to 0. Kochen and Specker use a straightforward geometrical argu- 
ment to show that under these conditions, the angle subtended by points that 
get distinct values must be at least cos-11/2. In other words, points that 
subtend a smaller angle must both receive the value 0 or both the value 1. 
The proof is then essentially done; since at least one point gets the value 1, 
all must get the value 1. But of each orthogonal triple, two are supposed to 
get the value 0. Furthermore, since all points within a cone of fixed small 
angle get assigned the same value, it is straightforward to show that there is a 
finite number of orthogonal triples for which the required assignment of 0's 
and l's is impossible. Kochen and Specker's continuation of the argument 
(Ref. 5, Lemma 2, pp. 68~69) merely counts the number of points needed, as 
we will illustrate below in the context of Bell's work. 

One is struck by the prominent role of the partial Boolean algebra of 
projectors in Kochen and Specker's work. Judging by the frequent references 
in discussions of this work, it would appear that a formulation in terms of the 
partial Boolean algebra of projectors is generally thought to be the correct, or 
even the only way to understand this material. Using Bell's presentation, we 
shall show shortly that this idea is mistaken. Indeed, we shall simplify the 
presentation of this material in two stages. In the first stage we can follow 
out an idea suggested by Kochen and Specker themselves and notice that 
each oJ E t-2 defines what we shall call a valuation function v; that is, a function 
that assigns an exact value ( =  real number) to each observable. Namely, for 
each observable A, let 

v(A) = fA(~o) 
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Assuming that the Hilbert space of the system is at least three-dimensional, 
it is easy to see that (i) and (ii) imply the existence of a three-dimensional sub- 
space such that for each triple i, j, k of its orthogonal one-dimensional 
subspaces, v assignes the value 1 to exactly on~ of P~, P~., and Pk,  and 0 to 
the other two. Since the implementation of Kochen and Specker's argument 
requires no more than that there be one such subspace and v, all that needs to 
be assumed to arrive at a contradiction is that; 

(i') There is a valuation function v from observables to ~, on a 
Hilbert space of at least three dimensions; and 

(ii') For each Borel function g, v[g(A)] = g[v(A)], for each observ- 
able A. 

Before proceeding to a still simpler formulation, we want first to under- 
mine what we believe is a widespread motivation for the emphasis on partial 
Boolean algebras of projectors in the discussion of hidden variables, namely 
the assumption that projectors can be construed as "propositions." The 
thought seems to be that the partial Boolean algebra of projectors will then 
in some way capture the "logic" of these propositions. To show the difficulty 
with this line of thought, we shall first establish the following: 

Propos i t ion  1. The functional relation condition (ii') is satisfied by any 
valuation v that satisfies: 

(iii) v(Pa) = 1 iff v(A)E 6~, for all observables A, where Pa is the 
projector onto the 6~-eigenspace of A (for 6~ a set of real numbers). 

Proof. Where X~ is the characteristic function of b (for b a single real 
number or a set of reals) notice that for any observable B, xo(B) is the pro- 
jector onto the b-eigenspace of B. Repeated use of (iii) yields the following 
chain of  equivalences: 

v[g(A)] : h iff 

~(x~[g(A)]) = 1 i l l '  

v(xo-l(a~(A)) = 1, since xa[g(A)] = Xg-I(~(A), iff 

v(A) ~ g-lO0 iff 

g[v(A)] = h 

i.e., for any observable A and Borel function g, 

v[g(A)] = g[v(A)] 

Suppose, now, that each observable of  the system has a precise value; 
i.e., suppose there is a valuation function v that gives the ("true") value that 
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each observable has [in satisfaction of (i')]. To say that projectors can be 
interpreted as propositions is to say that the projector Pa [as in (iii)] represents 
the proposition that the value of A is in 6g. This requires that 

Pa is true iff v(A) ~ 

(where Pa is used ambiguously for the projector or for the proposition it 
represents). Since a is the {1}-eigenspace of P~, this condition implies that 

Pa is true iff v(P~) --  1 

But these last two conditions imply that (iii) holds for this valuation v. It  
follows from Proposition 1 that v satisfies (ii'), which in turn leads to a 
contradiction, as explained above. 

The upshot is that once we have assumed (i'), that is, once we have 
assumed that each observable gets a precise value, the further requirement 
that projectors be interpreted as propositions is already contradictory. Thus, 
in order not to beg the question against hidden variables (at least insofar as 
the existence of a valuation function is contained in a hidden variable 
interpretation), we must regard projectors neutrally; i.e., we must regard 
reference to them and to the partial Boolean algebras they form as no more 
than a technical convenience in certain proofs or constructions. In particular, 
one must not suppose that these algebraic structures have any special bearing 
on the logic of quantum mechanical propositions. In fact, the appeal to 
partial algebras of any sort turns out to be completely superfluous in connec- 
tion with the no-hidden-variables results. 

2. In order to show this, we shall proceed with the second stage in our  
simplification of those results and turn to the work of Bell. 

Bell starts from the assumption that there is a function v defined on the 
projectors Pi on the one-dimensional subspaces of the at least three-dimen- 
sional Hilbert space H such that: 

(iv) v(Pi) = 0 or 1 for each i; and 

(v) ~ v(P~) = 1 for each orthonormal basis B of H. 

Bell's result is that these conditions lead to a contradiction. Of course, the 
contradiction is an immediate consequence of Gleason's theorem. It was 
Bell's intention, however, to exhibit this contradiction without recourse to 
harmonic analysis and the other technicalia of Gleason's proof. To this end 
Bell uses (iv) and (v) in an elementary geometrical argument, very similar to 
the one employed by Kochen and Specker, to show that if v(P~) ~ v(P~), 
then II i -- j [1 >~ 1/2; i.e., that the angle between i a n d j  is at least 2 sin-l(1/4). 
Bell then observes that (iv) and (v) imply that v(Pi) = 1 for at least one i. By 
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the geometrical argument it follows that v(Ps) = 1 for all j, since one could 
interpolate between i and any j a sequence of vectors pairwise separated by 
an angle no larger than 2 sin-l(1/4). Of course, (iv) and (v) also imply that 
for some.L v(Pj) = 0. Thus the conjunction of (iv) and (v) leads to a contra- 
diction. 

We know of only two authors who have noticed any connection between 
Bell's proof and that of Kochen ~nd Specker. Bellinfante (Ref. 1, Appendix C, 
Part I) notes that Bell's argument establishes Kochen and Specker's main 
result. Bub (Ref. 3, pp. 69-71) writes that Bell's argument can be adapted to 
establish a result weaker than that of Kochen and Specker, and a few words 
on Bub's remarks will help to make clear the closeness of these two arguments. 
First of all, Bub correctly remarks that Bell presents his argument in terms 
of expectation values for dispersion-free states. But this is literally just 
another name for a valuation function. Second, Bub claims that Kochen and 
Specker do, while Belt does not, prove the impossibility of a valuation 
function satisfying (iv) and (v) which breaks down on a finite set of subspaces 
in / /3  • This is just mistaken. Both proofs work by showing that all pr~ectors 
corresponding to subspaces in any cone of a fixed angle must receive the 
same value, and given the fixed angle of the cones, the number of projectors 
needed in both proofs is finite. 

Since, as Kochen and Specker recognize (see Ref. 5, Remark, p. 70), the 
primary advantage of their complex argument over a simple application of 
Gleason's theorem lies in this finitization, an expansion of the preceding 
remark for Bell's work seems in order. It is most convenient to recast Bell's 
(iv) and (v) for a three-dimensional subspace of H, and indeed to confine 
attention to a unit sphere. In this setting Bell's geometrical argument estab- 
lishes the following result. 

Corresponding to each pair of points S, T on the sphere there are six 
other points on the sphere such that if all eight points are assigned O's or l's 
and if S gets the value 1, then so does T, provided the angle between S and T 
is no larger than 2 sin-l(1/4). The problem of finitization is to show that there 
is some finite set of points on the sphere to which it is impossible to assign O's 
and l 's in satisfaction of Bell's (iv) and (v). Using the result just cited, such a 
finite set can be constructed as follows. Start with an orthogonal triple, 
i, j ,  k. Interpolate three points between i and j, so that the angular distance 
between any two neighboring points is less than 2 sin-a(1/4). Similarly, 
interpolate three such points between j and k. Now for each pair of neigh- 
boring points add the six points required by the result of Bell's geometrical 
argmnent. All these points taken together constitute the desired finite set. For, 
suppose that there were an assignment of O's and l 's to these points, satis- 
fying Bell's (iv) and (v). In a three-dimensional space (iv) and (v) imply that 
one of i, j, and k gets the value 1, and the other two get the value 0. Without 
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loss of generality, suppose that i gets the value 1 and j the value 0. Bell's 
geometrical argument now applies successively to show that each point 
interpolated between i and j, and finallyj itself, gets the value 1. Bu t j  had the 
value 0, which is the desired contradiction. 

A final comment on the connection between the proofs of Bell and 
Kochen and Specker concerns the differences in their assumptions (not 
discussed by Bub). Assumptions (iv) and (v) follow so immediately from (ii') 
that they deserve to be called special cases of Kochen and Specker's much 
more general condition: (iv) follows from (ii') by taking g to be the squaring 
function; (v) follows from (ii') because the sum of commuting observables 
can be written as a sum of functions of one operator and thus as a function 
of one operator. 

3. In closing, we would like to provide two extensions of Bell's result. 
Bell's conditions (iv) and (v) are extended from projectors to general observ- 
ables: 

(iv') v(A) is an eigenvalue of A (spectrum rule); and 

(v ~) v(Z Ai) = Z v(Ai), for commuting Ai (sum rule). 

(Bell's proof uses these assumptions restricted to projectors onto one- 
dimensional subspaces of H.) If H is infinite dimensional, then of course the 
sum in (iv') may be an infinite sum. We want to show that in the presence of  
the spectrum rule (iv'), the full functional relation rule (ii') follows merely 
from the finite counterpart of (v') alone, i.e., from: 

(vi) v(A -- B) = v(A) + v(B), for commuting A and B (finite sum rule). 
Throughout we consider only observables with a discrete spectrum and 
assume the existence of the valuation function v. 

Proposition 2. The spectrum and finite SUlTI rules [i.e., (iv') and (vi)] 
imply the functional relation rule (ii'). 

We shall first establish the following result. 

Lemma. The spectrum and finite sum rules imply 

(iii') v(x0z(A)) = 1 iff v(A) ~ 6g 

Proof. Since the spectrum rule implies that 0 and 1 are the only values 
possible for a projector, we can suppose first that v(x~(A)) = O. Let a be any 
point of 5 .  Then since x~(A) = Xe-{a}(A) + xa(A), the spectrum and finite 
sum rules yield that v(x,(A)) = O. Using that sum rule again, it follows that 
v(A) = v(A) 4- v(x,(A)) = v(A + x,(A)). Since a s 6g is not an eigenvalue 
of (A + x~(A)), the spectrum rule implies that v(A) ~ a. So, if v[x~(A)] = O, 
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then v(A)¢ 5. Suppose, second, that v[x~(A)] ~ 1. Then, where I is the 
identity, the spectrum and finite sum rules imply that 1 = v(I) = v[xg~(A ) 4- 
I -  x~(A)] = v[x~(A)] + v [ I -  x~(A)]. Hence v[I--  x~(A)] ~ 0. But ( I -  
xe(A)) = x?(A). Repeating the argument of the first part, it follows that 
v(A) ¢ 6 ;  i.e., that v(A) ~ 5. 

Proposition 2 now follows immediately from the preceding Lemma and 
Proposition 1 (of Section 1). As remarked above, the functional relation rule 
(ii') implies the infinite sum rule. Hence Proposition 2 has as a consequence: 

Proposition 3. In the presence of the spectrum rule, the finite sum rule 
implies the infinite sum rule. 

Since l~ell's result shows that the infinite sum rule is inconsistent with 
the spectrum rule, Proposition 3 thereby establishes: 

Proposition 4. There is no valuation function satisfying the spectrum 
and finite sum rules. (The reader is referred to Ref. 4, where these questions 
were first raised, and to Ref. 6, where the sum rule is discussed from an 
experimental point of view.) 

In certain respects these propositions clearly strengthen Bell's results. 
Moreover, if the Hilbert space is infinite dimensional, Bell's proof actually 
uses the infinite sum rule. But by Proposition 3, the proof need only use the 
finite sum rule. In other respects, however, appeal to these propositions 
weakens the result, because the sum rule used there must be assumed to hold 
for observables other than projectors, while Bell's proof requires a sum rule 
only assumed to hold for projectors. Proposition 2 has further interest, 
nevertheless, since we need it to establish a second result: Just as there can 
be no valuation function satisfying the spectrum rule and sum rules (v) or (vi), 
there can be no valuation function satisfying the spectrum rule and the 
following product rule: 

(vii) v(AB) ~ v(A) v(B), for all commuting A and B. 

Proposition 5. There is no valuation function satisfying the spectrum 
rule (iv) and the product rule (vii). 

Proof Suppose there were some valuation function v satisfying the 
spectrum and product rules. Define a function v' from observables to real 
numbers as follows: 

v'(A) = l o g 2 [ v ( 2 A ) ]  

Since v(2 A) is assumed to be in the spectrum of 2 A, which is nonnegative, v' 
is well defined and always v'(A) will be in the spectrum of A. Moreover, a 
straightforward calculation shows that the product rule for v yields 
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v'(A + B) = v'(A) q- v'(B) for commuting observables A and B. Thus v' is a 
valuation function satisfying the spectrum and finite sum rules. By Proposi- 
tion 5, there is no such function. Hence there is no v satisfying the spectrum 
and product rules. 
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