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,The assumption that a classical gravitational field interacts with a quantum 
system is shown to lead to violations o f  either momentum conservation or the 
uncertainty principle, or to result in transmission o f  signals faster than c. 
A similar argument holds for the electromagnetic field. 

1. INTRODUCTION 

It has been suggested that it is unnecessary to apply the quantum theory to 
the gravitational field (1) even though it interacts with quantum fields, if the 
gravitational field interacts with the expectation value of the energy tensor 
of these fields. It has also been proposed that one does not have to quantize 
the electromagnetic field to get the results of quantum electrodynamics(2~; 
e.g., the photoelectric effect has been consistently explained by Lamb and 
Scully (31 within the framework of semiclassical radiation theory. There thus 
seems to be no compelling argument against the thesis that a classical field 
can in some manner interact with quantum particles and fields. We shall 
show, however, that the assumption that a classical field interacts with 
quantum systems in any physically reasonable fashion leads to violation of 
either momentum conservation, the uncertainty principle, or relativistic 
causality in the form of signals traveling faster than c. 

Briefly, we show that if a gravitational wave of arbitrarily small momen- 
tum can be used to make a position measurement on a quantum particle, 
i.e., to "collapse the wave function into an eigenstate of position," then the 
uncertainty principle is violated. If  the interaction does not result in collapse 
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of the wave function, it is then possible to distinguish experimentally between 
superposition states and eigenstates. We show that this ability allows one to 
send observable signals faster than c when applied to a state consisting of two 
spatially separated particles with correlated spins. 

2. MEASURING THE POSITION OF A QUANTUM PARTICLE 
WITH GRAVITATIONAL WAVES 

The idea that the gravitational field is classical seems quite elementary, 
but we must specify precisely what we mean by this concept before we can 
consider how it might interact with a quantum system. First, for the gravi- 
tational field to be "classical," all of its components must simultaneously 
possess precise values. Second, the field must satisfy the usual wave equation, 
at least for weak amplitudes, i.e., the field possesses wave excitations or 
arbitrarily small amplitude and wavelength which may be superimposed to 
form wave packets. Further, the momentum and energy flux are proportional 
to the square of the amplitude. These statements imply that the position and 
momentum of a wave packet can be simultaneously well defined. 

We now consider an experiment in which the position of a quantum 
particle is measured by scattering a classical gravitational wave from it. To 
utilize the classical gravitational field as a reliable probe of a quantum system, 
we must show that it is possible to determine the properties of the field 
(such as the momentum and localization of its wave excitations) to arbitrary 
precision, using only quantum systems as preparing equipment and as 
detectors. If this is impossible, then, at least on an operational level, it is 
doubtful if one even has a classical field, since the fact that it must be 
measured with quantized matter imposes an observational limit on the 
precision of the field variables. We analyze this question in detail in 
Appendix A, but briefly describe here how it is possible to perform such 
measurements. 

Our method is to prepare and detect gravitational waves with quantum 
matter acting in the classical limit, so quantum uncertainties will result in 
negligible perturbation of the classical wave. While we wish our preparation 
and detection apparatus to operate in this limit, we desire the opposite limit 
to be in effect during the probing of a quantum system with a classical wave. 
That is, we wish the gravitational wave to leave the quantum system unper- 
turbed. It is possible to accomplish these apparently conflicting aims. The 
fluctuations the quantum theory imposes on matter are inescapeable, but 
the magnitudes of quantum parameters such as level spacings, binding 
energies, zero-point oscillations, etc., scale in a continuous and unrestricted 
fashion with the masses and coupling strengths of quantum systems. To 
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prepare the initial state 0f the classiCal wave, we use extremely massive 
shutters, collimator slits, etc., which can be localized arbitrarily well for 
finite times. We also make the amplitude and wavelength of the classical 
wave so small that diffraction effects during the preparation process and 
momentum perturbation from the wave to the probed quantum system are 
negligible. For  detectors we use extremely weakly bound systems or harmonic 
oscillators of very low frequency. Then any sudden excitation of finite 
energy will cause detectable transitions from the ground state. Thus by 
scaling masses and binding energies, amplitudes, and wavelengths, we can 
use the wave as a precise probe of the quantum system. 

Let us now consider the sort of interactions possible between a gravi- 
tational wave and a quantum particle. In Fig. 1 we show a particle prepared 
in a state of highly well-defined momentum and thus of very poorly defined 
position. If  a gravitational wave enters the localization region of this particle 
and interacts with it, the wave will be scattered from its initially well-defined 
trajectory. Any such interaction must fall into one of two exclusive categories. 
Either the scattering event constitutes a position measurement of the particle 
with a consequent collapse of its position wave function to a smaller region 
of  localization, or else it is not a position measurement and does not result 
in collapse. In the latter case, the only spatial attribute the particle possesses 
to act as a source for scattering of the gravitational wave is the probability 
amplitude of the quantum wave packet. That is, the source term for the 
scattered gravitational waves at the point x must be constructed in some 
fashion (not necessarily local) from ~b(x, a). For example, the source term 
might be a function of the probability density I ~b(x)] 2 (scattering from a con- 
tinuous, extended source), or possibly pointlike scattering from the spatially 

BEFORE INTERACTION 

T t ~  Region of localization 
Ax ~ of quantum wave packet 
_L 

Incoming classical wave packet 
(X<<Ax) 

Fig. la. A quantum particle is prepared in a 
state of highly defined momentum and poorly 
defined position. Gravitational wave packets 
localized to a region Z ~ Ax are directed 
at the region of localization. 
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AFTER COLLAPSE EVENT 
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/ . ~  classical wave 
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Scattered waves } 

i " Lrtic al hon ~ ~x' T ~ a  l e  ~oc izo LJ 
_/~/ ~%% region after 

/ \ 
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Direction of incoming wave 0 

Detection event is 
measurement of position 
of scattering source to 
Ax '~X 

Fig. lb. If  the interaction results in wave function 
collapse, the particle is now localized to a region 
of size A, which is determined by observation of 
the scattered waves and the known trajectory of 
the incoming wave packet. Since there was 
negligible momentum perturbation, both position 
and momentum of the particle are now highly 
defined. 

averaged position. Roughly speaking, a localized test probe must "see" a 
quantum object either as a particle or as an extended wave function. The 
strictly yes or no character and irreversible nature of wave function collapse 
in quantum measurement theory permit no mixing of these possibilities) 

Consider the first possibility, in which a position measurement is 
performed with the consequent collapse of the wave function into a small 
localization region. In principle we can make the position localization as fine 
as we wish if the wavelenth )~ of the gravitational wave is short enough 
(because the final Ax is of order )0. We can also ensure that arbitrarily little 
momentum is introduced to the quantum system from the gravitational wave 
by making its amplitude vanishingly small. If  we used a quantum object, 
such as a photon, as a probe, it is of course impossible to simultaneously 
satisfy both conditions. If the classical probe gives the particle a very good 
position localization, then quantum mechanics implies that the particle is 
now in a state of very high momentum. If the quantum description of the 

3 The peculiar assumption that the wave function undergo only a partial collapse would 
result, as our analysis will show, in violating both relativity and the uncertainty principle ! 
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particle is valid, then momentum is not conserved, since the momentum of 
the initial quantum state was very well defined and the classical probe 
imparted negligible momentum. Conversely, if momentum is conserved, 
the uncertainty principle is violated, since the ability to detect the scattered 
gravitational wave and thus determine the source of the scattering event to 
an arbitrarily good localization means that the particle is in a state whose 
position and momentum are simultaneously arbitrarily well defined. This 
outcome directly contradicts observation, for such a particle must be regarded 
as having a classical trajectory. A beam of such particles sent through an 
arbitrarily narrow slit would show no diffraction, contrary to fact. We 
conclude that if both momentum conservation and the uncertainty principle 
are valid, we must reject the possibility that a gravitational wave of vanishing 
momentum can collapse the wave packet of a quantum particle. 

3. SENDING SIGNALS FASTER THAN L I G H T  W I T H  
TWO-PARTICLE CORRELATION STATES 

Now consider the other possible type of interaction: scattering of the 
gravitational wave from the wave function of the quantum particle with no 
collapse. In this case there is no measurement of the particle's position, 
a n d  thus no violation of either momentum conservation or the uncertainty 
principle. A problem remains, however. A measurement made on a system 
in a superposition state of some observable results in a collapse of the 
wave function into an eigenstate of  that observable. I f  the wave function 
extends over a large spacelike interval, an influence produced at one point in 
space would seem to be propagated across this spacelike interval, which is 
forbidden by relativity. Because there is no way to observe the wave function 
without collapsing it by using ordinary quantum mechanical measurements, 
the apparent communication of the collapse event over a spacelike interval 
does not actually contradict relativity, which really only demands that no 
operationally well-defined signals be communicable at speeds faster than c. 
If, however, there exists any experimental method for observing the wave 
function without collapsing it, then there exists a direct way of viewing the 
collapse event when it is produced by an ordinary measurement. This would 
lead to the possibility of sending signals faster than c. Consider an apparatus 
similar to that of  Einstein, Rosen, and Podolsky (4~ (see Fig. 2). We have taken 
a 7r ° which decays to two oppositely directed photons, 4 whose total spin must 

4 Our previous discussion considered the scattering of classical gravitational waves from 
massive particles. There is, however, no reason why gravitational waves should not also 
scatter from the massless particles, such as photons, which also carry energy and moment- 
um. The second thought-experiment of our paper could, in fact, be done just as well with 
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\'x\ 

~ Phdtotubes 
/ ~ 1  2 I 7 7" 

/ colcite Calcite / /  
~ Gravitational scattering devices 

/ ( as in F igure  I ) 

Fig. 2. Apparatus for sending signals faster than c if gravitational wave 
packets do not collapse the wave function. Case I. When no measurement is 
made on photon 1, scattered gravitational waves will be observed along both 
possible paths for photon 2. Case II. When photon 1 is measured to be in 
a definite channel, scattered gravitational waves will be observed only along 
the opposite channel for photon 2. 

be zero. Before a measurement  is made of either particle's polarization,  the 

state of the two particles is a superposit ion of both  possible helicity states. 
Experimentally,  as shown by Freedman and  Clauser, c5) this superposit ion 

results in polarizat ion correlations of a nonlocal  nature,  i.e., measurement  of 

one photon ' s  circular polarizat ion causes the second photon ' s  polar izat ion 

state to be collapsed to an eigenstate. Now we set up an apparatus  which 
splits photons  into different spatial trajectories according to their polarizat ion 

in a manne r  analogous to a calcite crystal with optical photons.  If  neither 

particle's polarizat ion is measured, 5 then the fact that  they exist in a super- 

posit ion state means that  the second pho ton  possesses equal probabil i ty  to 

be found  in each polarizat ion channel  of the splitter. The si tuat ion changes 
when we measure the polarizat ion of pho ton  1. Then  photon  2 must  have 
the opposite polarization. The opposite channel  of the second beam splitter 

massive particles. For example, consider a polarized 27 o decaying to a A and a 7- The z 
components of their spins are correlated. We send both through beam splitters (for the 
A, this would be a Stern-Gerlach type of device). We can certainly scatter gravitational 
waves from the A, while the z' is detected by conventional devices. Then the conclusions 
of the thought-experiment are exactly the same as those in our paper for the ~r ° --+ ~, + ~, 
decay. 
A beam splitter alone does not constitute a measuring device. A measurement of polariza- 
tion also requires a device that detects which channel the particle travels through by 
undergoing some sort of irreversible change. An example is a phototube or a photo- 
graphic plate. Without such a device, it is possible to reconstruct the original polarization 
state by recombining both channels with the inverse of the beam splitter. An example 
of this process is linearly polarized light sent through a calcite circular polarization 
analyzer. If the beam splitter alone were a measuring device, the recombined beam would 
be an incoherent, rather than a coherent sum of the two circular polarization states. Then 
the recombined beam would be a mixture of both linear polarizations, rather than a 
single one, as is the case. 
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will contain a photon;  the corresponding channel of  this splitter will contain 
no photon.  Thus the spatial distribution o f  the probabili ty amplitude ~b 
for  pho ton  2 depends upon  whether or not  an operat ion is performed on the 
first photon,  which is separated by a spacelike interval. The two cases are 
por t rayed in Fig. 3. (A more detailed discussion of  the probabili ty amplitude 
for  the elctromagnetic field is given in Appendix B.) Thus if  we possess an 
experimental method to distinguish these two cases, we could send signals 
across arbitrarily large spacelike distances. This clearly violates relativity. 
A gravitational wave which is scattered by the particle's position wave 
function without  collapsing it provides this experimental tool. N o  matter  
what  specific coupling is assumed (see Appendix B for  a detailed discussion), 

CASE(I) 

,~,(X) 
A 

×I 

CASE IT(a) 

V" (x) L , ~  
x t 

CASE I I  (b) 

V,(x) 

X 
x 2 

T X 
X z 

f• X i 
X I X 2 

Fig. 3. The wave function of the 
photon field for photon 2 after 
passing through the beam splitter. 
Case I. When no measurement is 
performed on either photon's 
polarization there is equal ampli- 
tude for the photon to be in 
channel 1 or channel 2 of the beam 
splitter. Case II. (a) When 
photon 1 is observed to be in 
channel 2, there is nonzero ampli- 
tude for photon 2 only in 
channel 1. (b) When photon 1 is 
observed to be in channel 1, 
there is amplitude for photon 2 
only in channel 2. 
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we will always be able to arrange the two trajectories so that the resultant 
scattering of gravitational waves we direct into this region will be different, 
depending on whether one or both channels possessed nonzero probability 
amplitude. We conclude that the principles of special relativity forbid the 
existence of a classical field which couples to a wave function without 
collapsing it. 

One might suppose that a similar experiment could be used to send 
signals even without using a classical field as a probe, but this is not the 
case, for a measurement performed on a quantum system in a superposition 
state by definition causes the wave function to collapse to an eigenstate of 
that observable. Thus in our experiment any measurement with an ordinary 
measuring device that detects a photon in either channel causes a collapse 
of the wave function. This collapse cannot be distinguished from the collapse 
into a single channel caused by a measurement of the other particle's polari- 
zation. Thus, measuring which trajectory the photon went through tells us 
nothing about whether or not a measurement was made on the other photon. 
Likewise, attempts to distinguish the superposition state from the eigenstate 
by creating interference between the two trajectories fail, because these 
trajectories represent orthogonal quantum states. 6 Thus there is no incom- 
patibility on the operational level resulting from the Einstein, Rosen, 
Podolsky paradox between the postulates of quantum mechanics and those 
of special relativity. 

It has been argued that a correct analysis of these phenomena must 
involve quantum field theory since we are mixing relativity and quantum 
mechanics. This objection is not valid because of the hierarchic structure 
of relativity, quantum mechanics, and field theory. Field theory assumes 
that the ideas of relativity and quantum mechanics are true as limiting cases. 
Clearly any contradiction between the axioms of relativity and those of 
quantum mechanics would also result in a contradiction built into the 
axiom base of field theory. Relativity and quantum mechanics separately, 
however, each permits certain phenomena which are not allowed by the other 
theory. Field theory is more than a simple union of quantum mechanics 
and relativity, for it insists that all phenomena obey the postulates of both 
theories, and as a result makes predictions in certain contexts which do not 
follow from either theory separately. The special context of field theory 
involves lengths of the order of the Compton wavelength, energies of the 
order of particle rest masses, and other factors associated with particle 
creation and annihilation. Our thought-experiment does not involve any 
of these phenomena and is thus suited to the non-field-theoretic description 
we have given. The fact that the ordinary quantum mechanical description 

6 Pointed out by Claude Swanson in a private communication. 
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of just this sort of nonlocal correlations has been experimentally verified 
confirms our view that a field-theoretic description would not modify our 
conclusion. 

We conclude that the gravitational field cannot be a classical field 
without violating accepted principles of  physics. We therefore conclude that 
this field must satisfy the principles of quantum mechanics. (We also note 
that a s~mitar argument holds for the electromagnetic field.) Semiclassical 
theories may of course be valid in various limits, but there must be circum- 
stances for which their predictions become incorrect. We conclude that the 
world cannot be half classical and half quantum. 

APPENDIX A. PREPARATION AND D E T E C T I O N  OF CLASSICAL 
GRAVITATIONAL WAVES W I T H  QUANTUM MECHANICAL 
DEVICES 

We assume a classical gravitational field which satisfies the usual linear 
wave equation and which is coupled to quantum matter in such a manner as to 
allow the generation of wavelike disturbances. As with a quantized field, 
we can produce a monochromatic  wave train which corresponds to a state 
of well-defined wave vector. The intensity of such a wave is continuously 
variable, by the attenuation with distance of a spherical wave, if  by no other 
means. We must now select a segment of this wave by means of timed shutters 
and direct its trajectory precisely if we are to use it as a reliable test probe. 
Timed shutters and collimators constructed out of  quantum matter will of  
course obey the uncertainty principle. We need to make the position uncer- 
tainty of these devices arbitrarily small for a finite time. Because of the 
momentum uncertainty Of a quantum system, the position uncertainty 
will grow with time as 

Ax(t) ~ {Ax(0) 2 + [ht/m Ax(0)]2} 1/2 (A1) 

Thus if we allow m to be arbitrarily large, we can make Ax(t) as small 
as we wish for any finite time. We now have a very large Ap. I t  might there- 
fore be thought that the trajectory of the classical wave passing through 
such a collimator would be disturbed by sideways momentum transfer. 
However, the slits are very massive, and have vanishingly small velocity. 
By conservation of energy and momentum (scattering a very light object 
from a very heavy one) the momentum transfer to the wave packet must be 
of the order of  its initial momentum, which was also arbitrarily small. Thus 
we can select from an originally monochromatic wave train a short packet 
whose amplitude, wavelength, and momentum are simultaneously as small 
as we wish. 
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A more realistic but less conceptually simple method of generating a 
pulse of gravitational radiation is to drive a massive quadrupole oscillator 
for a few cycles. The wave will be spherical rather than localized to a small 
region, but it is still possible to measure the particle position to uncertainty ,~. 
As with the slits, Ax of the generator is negligible compared to A for large 
enough mass. The Ap of the generator is not important because the total 
energy carried by the gravitational wave is very small, due to the weak coupling 
between matter and gravitation, and the maximum momentum perturbation 
to the probed system can still be vanishingly small. Note that the only 
assumption we have made about the way gravitational waves interact 
with quantum objects is that the correspondence principle applies for 
systems, such as our generator, that act in the classical limit. 

The probing of a quantum particle with our gravitational wave has been 
previously discussed. By making the amplitude vanishingly small, the 
momentum disturbance of the wave on the quantum particle is negligible. 
Making the wavelength very short also allows an extremely fine localization 
of the scattering center. 

Using ordinary scattering theory, 7 the result of scattering a classical 
wave which is a superposition of plane waves is an outgoing wave packet and 
a scattered spherical wave. Since the coupling between the scattering source 
and the incident gravitational wave is very weak, the energy carried by the 
scattered wave is extremely small compared to that of the incident wave. 
However, conservation of energy and momentum in the center-of-mass 
frame implies that the maximum momentum transfer to the particle is not the 
momentum of the incident waves, but is of the order of the momentum 
carried by the scattered waves. Thus the intensity of the incident wave can 
be made strong enough to produce appreciable scattering, while still 
measuring the particle position and momentum to better than the uncertainty 
principle, as long as p?~ ~ h holds for the scattered waves. 

To measure the position of the scattering source we must detect the 
time of arrival of the scattered waves at points off the original trajectory. 
As detectors we can use massive harmonic oscillators or simple bound systems 
in the ground state, which will absorb energy from the gravitational wave 
and can undergo transitions to excited states. Although the energy carried 
by the scattered wave is small, there is no restriction in principle on the 
transition energy of such detectors. By making this energy small enough 
(i.e., by making the mass of the oscillator large and thus its frequency small) 
the scattered waves will have enough energy to excite transitions. 

As usual, we can represent the scattered wave by fU~(x) (e~o~,/r) e -~o~, where f,~ depends 
on the details of the scattering but has no effect on the kinematics of determining the 
position of the scattering center. 
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Since the coupling between the scattered waves and the detectors is 
weak, the probability of transition is small, even though the wave possesses 
sufficient energy to induce a transition. However, there must be some finite 
cross section for absorbing energy and undergoing transition at any frequency 
co of the wave. By using a very large number of  detectors we can make the 
probability that one will undergo a transition of order unity. Those that do 
not undergo a transition absorb no energy from the wave. 

Since the detectors are massive, their position uncertainty can easily 
be made to order )t or better. It  is also necessary to know the time at which 
the transition occurs to order A/c if the position of the scattering center is to 
be known to order A. At first sight this seems difficult because the frequency 
coo is small, and the characteristic oscillation time 1/co 0 is much longer than 
)/c. However, to observe a transition we do not need to measure the energy 
of the final state to an uncertainty c%, which would in fact require a time of 
order 1/coo • We only need to know if the energy of the detector is above some 
level. We can ask experimentally if the energy is in some broad band much 
wider than coo, but with its lower edge above the ground state. Then the time 
at which the transition occurred can be determined to much better than 
1/co 0 . Alternately, we could use timed shutters to expose the detectors to 
the wave only for a time A/c, and then examine whether the detectors had 
made transitions. 

One might reasonably ask whether the gravitational field generated by 
the massive objects that we must use to observe the scattered gravitational 
wave does not in some way interfere with the measuring process and prevent 
us from doing better than the uncertainty principle. Since there are quantum 
fluctuations in the positions of these detectors, presumably there are uncer- 
tainties in the gravitational field which they produce. I f  one demands as an 
a priori definition of a classical field that it have no uncertainties in its attri- 
butes, then this question does not arise. One can, however, regard the uncer- 
tainties as being uncertainties of  knowledge (as Bohr did), in which case it is 
conceivable to have a field which may be treated classically, but which 
possesses this sort of uncertainty. These two points of view essentially corre- 
spond to the distinction we made of whether or not the classical field could 
be used to make measurements on a quantum system with which it interacts. 
When the uncertainty is one of knowledge, then it is clear that a measurement 
on the classical field removes the uncertainty and thus also determines the 
corresponding attributes of a quantum system with which the field has inter- 
acted. If, however, there are no uncertainties allowed in the classical field, 
the only interaction possible with a quantum system is of the wave function, 
which is precisely defined. 

For our first thought-experiment we must therefore consider whether 
or not the effect of the measuring devices upon the probed particle will allow 
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us to violate the uncertainty principle. We must assume a specific type of  
scattering of the gravitational wave from the particle. For  simplicity consider 
the deflection of the trajectory of the wave in the particle's own gravitational 
field. The change in the angle of the trajectory is of order (Ref. 6, Chapter 4) 

A 0 ~-~ Gm/rc 2 (A2) 

where m is the particle mass and r is the distance of closest approach. To 
detect a change AO the detector must be at a distance R large enough to that 
the transverse deflection is larger than the size of the wave packet, i.e., 

R >~ ~/AO ~-~ Arc~/Gm (A3) 

If the position uncertainty of the detector is initially of order )t and 
remains of  order A during the experiment time T = R/c, then from (A1) 
its mass M is at least 

M >~ hT/Ax(O) Ax(T) ~-~ hR/cA 2 (14) 

The gravitational field of this mass at the particle's location is 

q~ = G M / R  2 (15) 

Since the uncertainty in R is of order ;~, the uncertainty in ¢ is 

A ¢ ~ GMA/R  a (A6) 

Thus the uncertainty in the particle's momentum after time T is 

Ap ~ A f  . T ~,~ m A (~ T ~-~ GMrnA/R2c (A7) 

From (A4) this implies, since A x  ~ 2t for the particle, 

Ap A x  ~-~ (GIn/Re ~) Ah (A8) 

which is negligible for ordinary matter. 
However, Salecker and Wigner (v) have pointed out that there are also 

fundamental quantum limitations on the accuracy of clocks constructed 
from quantum materials. They found that for a clock of characteristic size I, 
which is to measure intervals to accuracy ~ after a running time T, the mass M 
must be at least T3/-r~l~. For our experiment the required z is )t/c. Putting this 
into (A7), and using (A3), we obtain 

Ap A x  ~-~ (r)~/l 2) h (A9) 

There is no reason why we cannot make l 2 >~ rh (the clocks may be 
distinct from the detectors). We observe that in the limit in which the wave 
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becomes more and more like a classical particle (A --+ 0), this limitation on 
the accuracy to which we can measure the particle's position and momentum 
becomes negligible. 

We have shown that the existence of  the classical limit allows us to use 
classical waves as probes of  arbitrary precision for quantum particles, even 
when they are prepared and detected by quantum devices. 

APPENDIX B. DETECTING WAVE FUNCTION COLLAPSE BY 
S C A T T E R I N G  OF G R A V I T A T I O N A L  W A V E S  

With appropriate choice of gauge, the wave equation for linearized 
gravitational waves in vacuum is tS) 

~2h..  = 0 (h.. = g.~ -- ~/.~) (B1) 

which has plane wave solutions of arbitrarily small amplitude, The scattering 
of gravitational waves by matter is given by the equation (in units with 
G = c  =-: 1) ~8~ 

V72h.~ = -- 167rS.~ (B2) 

in the same gauge, where 

S.. -~ T.. -- 1-~/.vT (B3) 

and T.. is the energy-momentum tensor for the scattering source. If  the source 
is a single nonrelativitstic particle, then the only important component of 
T.~ will be Too, which has the expectation value at x of m j ~b(x)] 2. Whatever 
the source term S..(x) is, it must be some functional of ~(x'), because the 
wave function ~b(x) completely describes the spatial distribution of the 
particle. 

Strictly speaking, ~(x) is not well defined for a photon, because if one 
tries to localize a photon to too small a region, one will create new photons. 
However, the amplitude to observe a photon in a region large compared 
to its wavelength certainly exists, One can be more rigorous and describe 
the electromagnetic field completely in terms of  the field variables F,~(x). 
The state of the field is given by ~b(F,v(x)), i.e., the amplitude to observe the 
field to have the values F,,  at the point x. For  a field which contains a single 
photon of well-defined trajectory, the amplitude to observe this photon in a 
region corresponds to the amplitude to observe an intense distribution of  
electric and magnetic fields in this region. 

The source term in (B12), S(x) (suppressing indices), must be some 
functional of ~b(F,.(x)), since ~b completely describes the state of the field. 
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Figure 3 shows the spatial distribution ~b(x) to observe the photon (more 
precisely, to observe an intense electromagnetic field) after it has passed 
through the beam splitter in the second part of our thought-experiment. In 
case I no polarization measurement has been performed; in case II a measure- 
ment has been made. 

Since an interaction does occur, we know that S(x)[~(x')] is not 
identically zero in either case 1 or case II. The correspondence principle 
also tells us that in the classical limit S must becomes S,~(x), as defined by 
(B3), for the classical matter distribution. 

We have shown in Appendix A that the scattered radiation is detectable. 
Thus S(x) is experimentally observable. We wish to use the measurement of 
S(x) to distinguish case I from case II(a) or II(b), as shown in Fig. 3. Any 
S(x) that depends locally on ~b(x) and its derivatives at x is clearly different 
for case I and case 2I. Suppose S(x) is any functional of q~(x') for which case I 
cannot be distinguished from either case II(a) or II(b), i.e., S(x)[~bi] = 
S(x)[~bn(a)] = S(x)[~bn(b)]. Obviously we then cannot distinguish case II(a) 
from case II(b) either. But we know from the correspondence principle that 
this is false, since the peaks in cases II(a) and II(b) can be separated by any 
arbitrary distance. In this limit the radiation scattered from a single, peaked 
source distribution must be centered about this source, and not some other 
point. 

We conclude that the existence of a field which scatters from quantum 
particles without collapsing their position wave functions allows us to 
distinguish experimentally between a superposition state and an eigenstate 
of position. 

APPENDIX Co NUMERICAL ESTIMATES 

We now make order-of-magnitude calculations to see what would be 
needed to perform the conceptual experiment of measuring the position of 
a quantum particle with a classical gravitational wave. We want to show that 
the experiment is possible in principle, in the sense that it does not require 
any masses, lengths, or times greater than those of the universe. 

We can generate a pulse of gravitational radiation by colliding two 
objects of mass m and size X initially at velocity v ~ c. Gravitational 
radiation is emitted only during the period of deceleration, so the pulse 
length is also of order ~. In units with G = c = 1, the energy of gravitational 
radiation emitted is of order (Ref. 6, Chapter 37) 

Eaw ~ ~2m1~/~ (C1) 

where 7 =: (1 -- v2/c2)-1/~. 
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The outgoing wave pulse travels a distance r to the particle whose 
position we wish to measure. This particle, of  mass rn 2 , has a gravitational 
scattering cross section of order rn~ ~. Thus the scattered wave carries off 
energy of order 

(energy incident] y'~ ml 2 
Escatt \ per unit area ! m2~ ~ A- ~ m22 (C2) 

The scattered wave at a distance R carries a density of  energy of order 

Ede~ ~ Escatt/AR 2 (energy per cm ~) (C3) 

This energy can also be written in terms of the amplitude A of the 
difference of the metric from the flat-space value, 

Eaet N A2/A~ (C4) 

This radiation acts on the detector. We model the detector by two masses 
m a bound elastically at distance L with frequency oJ 0 . When a classical 
oscillator of  this type is driven by a gravitational wave with A >~ L, 
oJ >~ w 0 (¢o = 2~re/A), and amplitude A, it will oscillate with energy (Ref. 6, 
Chapter 37) 

Eose ~ maoJ~A2L z ~'~ m3LZEdet ¢'~ m3L2Escatt/R2A (C5) 

I f  these detectors are quantum oscillators, initially in the ground state, 
the scattered wave can induce transitions to excited states. We can estimate 
the transition probability for these oscillators f rom their known behavior in 
the classical limit. In this limit, the expectation value of the energy which the 
oscillator absorbs from the wave is given by (C5). I f  the transition energy is 
hoJ 0 , the probability of  undergoing a transition must then be 

Ptrans ~ (m2L2/cOo) Escatt/R2A (C6) 

To observe a transition we need the probability that at least one oscillator 
is excited be of order unity. For  this we require N--~ 1/Ptrans oscillators. 
The total mass of detectors required to detect the scattered waves is 

m 3 .  hCOo R2~ h°J°A2 r~R2 (C7) 
Mtot ~ Ptrans ~'~ Z ~ EscaCt ~ L272 m12m22 

We minimize Mtot by making L ~ A and R as small as possible (for 
a fixed density of the detectors). We can substitute Mtot ~ R a into (19) 
and solve first for R, then Mtot ,  getting 

Mtot ~-" 1 (.h~o o r 2 ~ 3 (C8) 
~:2\ yz mlZmzZ! 

825/7/I/z-5 
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(In these units h = 2.62 × 10 -68 cm 2, ¢o 0 has units cm -1, and ml and rn 2 
have units of cm.) An array of detectors of mass Mtot will measure the 
position of mass m2 to precision A. 

I f  we wish to keep the detector mass Mtot within limits, we need to make 
the masses of the generator and the probed particle as large as possible. 
Now the scattered gravitational pulse will be extended over a distance of 
the order of the size of this probed particle. Thus the final position uncer- 
tainty in our thought-experiment will be of this order. In  order to do better 
than the uncertainty principle, this final Ax must be smaller than the initial 
Ax of the particle, i.e., the initial Ax must be larger than the particle's size. 
To accomplish this we must measure the particle's velocity to an uncertainty 
Av~ ~ h/(m Ax). For example, an object of mass 10 g, of size 1 cm, and 
Ax of 10 cm needs Av~ of order 10 -29 cm/sec. We wish to accomplish this 
by scattering from it a low-mass particle, such as a proton, whose velocity 
has been measured to this precision. 

We can measure velocities to great precision by using a diffraction 
grating. The grating consists of a linear array of scatterers, such as atoms in 
a crystal, separated by a distance d. Diffraction will occur at angles where the 
Brag condition n?t = 2d sin 0 is met. (The process is precisely the same as that 
in x-ray diffraction by crystals.) By making the grating curved rather than 
straight, the diffracted rays from different parts of the lattice can be focused 
to a point. For  a grating of finite extent W, the spread in the wave vector 
d k  of the diffracted beam from a monochromatic source is of order 1/W. ~9) 
Thus to resolve velocity components differing by Ak we must have 

The difference in 
by Av is 

W >~ 1/Ak ~ h/(m Av) (C9) 

diffraction angle for particles with velocities differing 

AO ~ dA/d ,~ h dv/dm v 2 (ClO) 

To select velocities to the precision Av we use an aperture of size D at 
a distance L from the grating. This will select an angular spread A 0 ~ D/L. 
To distinguish velocities differing by Av, L must be at least 

L >~ dDmv2/(h Av) (Cl l )  

To measure a proton, with m ~-~ 10 -~4 g, to a Av ,.~ 10 .29 cm/sec, we 
must have W ~ 1026 cm. We must make v ~ 109 cm/sec if the measurement 
time T ~ W/v is ~<1017 sec. I f  we make d ,~ D ~ 10 -13 cm, then we need 
L >~ 102~ cm. 

The proton exits with Av~ ~ 10 -29 cm/sec in the direction perpendicular 
to the exit aperture. (Since its y position was localized to distance D, it 
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will have a Avu much larger.) We wish to use this proton to measure the 
velocity of a 10-g object to the same precision. We assume the object has 
a flat surface perpendicular to the x direction and we scatter the proton 
elastically from it. The 10-g mass is effectively infinite for the collision, so 
the velocity of the proton afterward is 

v1~ = 2V~ -- v~i (C12) 

where v~ is the initial x velocity of the proton and V~ is the x volocity of  
the 10-g object. 

The scattered proton can then be sent back through the same diffraction 
grating. Now we can use an array of detectors instead of a single exit slit, 
and observe which detector the particle triggers. This measures v~ to the 
same precision as that of the proton. 

Thus we can prepare a particle of mass 10 g and size 1 cm in a state with 
zlx ~ 10 cm. Therefore we can choose m~ to be 10 g and take A to be 1 cm. 

In order that the momentum uncertainty of  the probed particle after 
the position measurement be less than the quantum value of h/Ax,  we require 
that the initial pulse of gravitational radiation be weak enough that the 
momentum carried by the scattered wave be small compared to the quantum 
value h/Ax  ~ h/A. This condition is easily satisfied. Since the size of  the 
generators is of order )t ~ 1 cm, their mass will be of order 10 g, or 10 26 cm 
in geometrical units. The smallest r we can take will also be of order A. I f  
we take ~, ~ 3 × 1016, then from (A6) we findpseat~ ~'~ Eseatt ~ 10 -67 cm ~,  
lO-lh/A. The generation process requires a total energy of order 10 -s earth 
masses. 

For detectors we use harmonic oscillators of linear dimensions of order 
1 cm. We also make the springs so weak that the period is of order 105 sec, 
i.e., ~o 0 is 10 -15 cm -1. We assume that the mass density of detectors is of  order 
10 g/cm 8, or 10 -26 cm -2. From (20) the total mass of detectors is of order 
1019 cm or about 1000 galactic masses, located at an average distance of 
order 1015 cm. Note that this value for Mtot is really an upper limit. I f  we 
could focus the scattered wave, for example by bending it in strong gravi- 
tational fields, the required value of Mtot would be reduced by many orders 
of  magnitude. 

Our idealized experiment is fantastically difficult to perform, but 
nevertheless in principle possible. The thought-experiment dealt with weak 
fields and classical limits so that we could predict accurately what would 
happen. In the limit of strong fields and short distances, where present 
theories are uncertain, the effects of the quantum theory on gravitation should 
be far greater. I t  has been often proposed that quantization of gravity may 
have important consequences for gravitational collapse and the small-scale 
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structure of  spacetime. It  is possible tha t  quan tum fluctuations of  spacetime 
may  provide cutoffs for otherwise divergent integrals of  field theory and 
thereby permit a laboratory observation of  these effects. 
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