
Foundations o f  Physics, Vol. 8, Nos. ll /12, 1978 

When Can a Classical Electron Accelerate 
Without Radiating ? 

Philip Pearle 1 

Received December 5, 1977 

A classical point electron radiates when it accelerates. However, there are 
classical electron models with extended charge distributions which can accelerate 
and/or deform without radiating. Can a model be contrived that will undergo 
radiationless motion while accelerating (on the average) over a distance large 
compared to its size? The answer is no: we prove that the "center" o f  the 
electron is always closer than the electron "diameter" to a fictitious point 
undergoing eonstant-veloeity motion, i f  the electron's motion is radiationless. 

1. INTRODUCTION 

A point charge must radiate if it accelerates, but the same is not true of an 
extended charge distribution. A uniformly charged spherical shell of radius b 
can move in arb i t rary  periodic motion of period 2b/c  without radiating, a,z) 
and there are other examples as well. ~3~,2 Although the individual pieces 
of charge comprising such models accelerate and emit radiation fields, 
their superposed radiation ~elds cancel in all directions. 

In the known examples of radiationless motion, the "center" of the 
electron model oscillates about constant-velocity motion over a distance 
only of the order of the size of the electron. This leads one to ask whether 
this must always be the case, or whether the charge distribution of an electron 
model can so deform while it moves that the "center" of the electron can 
accelerate over larger distances without the electron as a whole radiating. 
For example, might the classical nuclear atom be stable against radiative 

1 Hamilton College, Clinton, New York. 
Goedecke ~*~ has discussed rigid, nonradiating charge distributions. Examples of nonrigid, 
nonradiating charge distributions can be constructed by superposing Schott's spherical 
shells, each shell of different radius vibrating with its own period. 
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decay when the orbiting electrons are extended, deformable charge 
distributions ? 

Alas, no:  we prove here that  the motion of  the known examples is 
typical of  the general case. For  an electron model composed of  charge of  
one sign, for which j = pv (1 v ]/c < 1), we show that  for radiationless 
motion,  the "center"  of  the electron (suitably defined) strays no further 
than ~/2 × the electron "radius"  (suitably defined) f rom a fictitious point 
undergoing constant-velocity motion. 

In Section 2, beginning briefly with an argument  found elsewhere, (3,~) 
we develop a condit ion for a charge distribution not to radiate in the direction 
of  the unit vector ~. This condition takes the form of  a dynamical equation 
that a world-line lying wholly within the electron's world-tube must  satisfy. 
Then we show in Section 3 (for two space dimensions) and Section 4 (for 
three space dimensions) that if there is to be no radiation in any direction, 
the electron's world-tube in Minkowski space, if enlarged in radius by a 
factor o f  ~/2, is required to contain a s t ra igh t  timelike world-line. 

2. C O N D I T I O N  FOR N O  R A D I A T I O N  

The asymptotic vector potential A " ( x )  in the Lorentz gauge, due to the 
current j"(x), is 

A " ( x )  ---+ r -1 f d4x' j " ( x  ') S(r - -  t - -  2 . x ' )  (1) 
r-~ oz d 

where ~? ~ (1, x /r ) ,  the scalar product  a • b = --aOb ° + a • b, c ~= i, and 
in this section, Greek indices 3 run f rom 0 to 3, Latin indices f rom I to 3. (5~ 
It follows that  asymptotically 

~.,A~(x) --+ r -12 ,L~(x )  (2a) 

F "~ --+ r-~(2"L" - -  2~L ") (2b) 

r , "  --+ (4~r2) -1 ~ " ~ L  - L (2c) 

where F "v is the electromagnetic field tensor, T "~ is the ene rgy -momen tum-  
stress density tensor, and L" is defined as 

L " ( x )  ~ [ ' d 4 x ' j " ( x  ') S ' (r  - -  t - -  2 .  x ' )  (3) 
J 

3 The whole discussion presented here refers to one reference frame: a manifestly Lorentz- 
invariant discussion is more complicated, and introduces no essential advantages. Four- 
vectors in this paper such as x,, Z ,  are not form-invariant under Lorentz transformations. 



When Can a Classical Electron Accelerate Without Radiating ? 881 

If  there is to be no radiation in the ~ direction, it follows from Eq. (2c) 
that L " L = 0. The Lorentz gauge condition c~,A" = 0 implies that 2 • L -- 0, 
according to Eq. (2a). Since ~ • ~ = 0 (by definition), and since two ortho- 
gonal lightlike vectors are either parallel or one of them vanishes, a necessary 
(and easily seen to be sulficient) condition for no radiation in the ~ direction is 

L " ( x )  == ~ " f ( r  - -  t, fO (4) 

where f is an unspecified function of its arguments (which may vanish). 
Up to this point we have followed a previously published argument. (4) 

Upon setting/~ = 0 ir~ (4), we ident i tyfwi th  L °. The nontrivial 3-vector 
part of (4) may be written, using (2b), as 

r F  °~ - - .  L i .... £ciL ° = 0 

In other words, the condition for radiationless motion is that t h e  a s y m p t o t i c  

r a d i a t i o n  e l e c t r i c  f i e l d  v a n i s h e s .  L is the contribution of the vector potential 
to the asymptotic electric field, while f~L ° is the contribution of  the scalar 
potential. 

We shall now show that this condition for radiationless motion can be 
written in a different form, as an equation of motion for a world-line z" 
that lies wholly within the world-tube traced out by the electron's charge 
distribution. For this purpose, it is convenient to introduce the Hertz 
potential (5) ~(x, t) and the polarization vector p(x, t). The polarization 
vector is related to the charge and current density by 

o = - v .  p (6a) 

j = op/tt (6b)  

while the asymptotic Hertz potential is related to the polarization vector by 

r~(x, t) ~ r -1 fd~x' p(x ' )  ~(r  - t - ~ .  x ' )  (7) 

As is well known, the fields are easily expressed in terms of the Hertz 
potential: 

= - v .  ~ (8a) 

n = (~/~t),~ (Sb) 

B = ( ~ / ~ 0 v  X ~,  (8c) 

E = v X (V X ~) (8d) 
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We may express the asymptotic electric field in terms of = using Eq. (8d). 
Alternatively, we can write L using (3) and (6b) as 

8 fd*x' 8 , a~ L - -  at  [--87 7 p(x )] 8 ( r -  t - - : ~ - x ' )  at e rr~ (9) 

the last step following by integration by parts with respect to t ' .  Since 
L ° -- ~ • L, the vanishing of the asymptotic electric field (5) may be written 

3 82 
rF  i° --~ - -  ~ (8 ik -- ~ )  -~-; rTr ~ 0 (10) 

/e=X 

Having expressed the field in terms of the potential, we proceed to 
express the potential in terms of the sources p, j. Using Eqs. (6), the following 
identity is readily proven: 

a 
x ; p ~ ( x  ')  a ( r  - -  t - o~ . x ' )  + ~ - ; -  xi ' f~ • p ( x ' )  a ( r  - t - ~ .  x ' )  

3X i' 

= {p~(x')  - xJ ' [o(x ' )  - ~ " j (x ' ) ]}  ~(r - t - ~ - x 3  (11) 

Upon multiplying Eq. (11) by d~x ' and integrating, using Gauss' law and 
Eq. (7), we find 

= ( d 4 x  ' x'[p(x') -- ~" j(x')] 3@ - -  t - -  2 .  x ' )  (12) r ~  
d 

We want to interpret the integrand of Eq. (12) in a particular way. 
Let us define an ef fect ive  charge  dens i t y  (for fixed R) 

p o ~ ( ~ ,  x ' )  - p ( x ' )  - .~" j ( x ' )  (13) 

In what follows, we shall restrict consideration to models which are composed 
of charge of one sign---for definiteness, let us say p >~ 0. We shall also 
restrict consideration to models for which / j  I-G< p, which includes the 
important case j = pv, so 

perr(~, x') ~ 0 (14) 

There is a charge conservation law associated with pert • To find it most 
conveniently, let us rewrite Eq. (5) as 

rFOi_+ vd[O j ' d ' x '  {~>  - j q  8 ( r -  t -  ~ - x ' )  (15) 

using the definition of L" in (3). This asymptotic electric field is transverse, 
as one might expect: this can be shown by taking the scalar product of the 



When Can a Classical Electron Accelerate Without Radiating ? 883 

alternative expression (10) with :~. Thus the scalar product of (15) with 
yields identically zero: 

• f d~x' p~**(e, x') 8(r - t - ~ • x ' )  = o (16) 

Equation (16) says that the total effective charge, located where the 
plane r --  t + t '  -- .~- x'  intersects the electron's world-tube, is conserved 
as t changes: a Q e r r / &  = 0. This is, to be sure, an unusual charge conservation 
law, since the charge is not evaluated at a constant time, nor is t the time 
coordinate of  any element of the charge: t is simply a parameter which 
determines where the plane (which is the asymptotic approximation to the 
light-cone surface whose apex is at r, t) slices the world-tube. 

Now comes the main point of  this section. We are going to look at 
r rc /Qe f f  as the spatial coordinates of  a world-line (parametrized by t, for 
fixed :~), rather than as the asymptotic (normalized) Hertz potential. We 
define 

z(t - -  r, :~) ~= f d ~ x ' x ' p e , e ( ~ , x ' ) a ( r - - t - - ~  " x ' ) / f d ~ x ' p e f ~ a  (17) 

If  there is no radiation in the :~ direction, z obeys the equation of motion 

8 

Z ( >  ~ '  ~ -  z~ = o (18) 

which follows from Eqs. (10) and (16). To complement Eq. (17) we define 

z ° ( t -  ,',fo=- fd'x" t ''pelf(x, X') 3 ( r  - -  ~ • x ') / fd 'x ' ,o, ,8 (19) 

Using the identity 

r '  

0 J d~x'  (r  - t - 2 . x ' )  peff(~, x ' )  a(r - t - 2 . x ' )  

= Q e ~ f ( r -  t ÷ z ° -  R . z )  (20) 

we establish that 

z ° = : ~ ' z +  t - - r  (21) 

so the motion of z ° (its t dependence) can be found from that of z. 
To summarize: if there is to be no radiation in the ~ direction, the 

"four-vector" z" (see footnote 3) must trace out a world-line in Minkowski 
space which obeys the dynamical equations (18) and (2•). Moreover, 
according to the definition (17), (19) of  z ~, and because peff is nonnegative 
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and Qeff is conserved, z" is the "center o f  charge'" of pelf along the hyperplanes 
r - -  t - -  Y: 'x ' .  

We shall need to be able to discuss the "center" of the electron and its 
"radius." We may assume that in each constant-time (not constant-t) hyper- 
plane there is a sphere which completely encloses the electron's charge and 
current distribution. The world-tube of the electron is hereafter defined as 
the volume in Minkowski space occupied by these spheres. For simplicity, 
we can take all spheres to have the same radius b, and require the center 
of  the spheres to trace out a continuous timelike world-line. 

Now, because of the convex nature of  the electron's world-tube, which 
totally encloses the effective charge density (13), and because z ~' is a "center 
of charge," z"(t --  r, fO traces out a world-line that lies wholly within the 
electron's world-tube, for any fixed ~. This fact, together with the dynamical 
equations (18) and (21), is all we shall need in what follows. 

3. ARGUMENT IN TWO SPACE DIMENSIONS 

If  Eq. (18) was simply 

~z/~t  2 = 0 (22) 

it would follow that 

z(t -- r, ~) =: b(f~)(t -- r) + c(:~) (23) 

which, together with Eq. (21), implies that z '~ is a straight world-line. Since 
z" must lie inside the electron's world-tube, we would have proven that the 
center of the electron's world-tube lies no farther than the radius b from a 
straight world-line, if there is to be no radiation in merely one direction ~. 

Unfortunately, Eq. (18) is more complicated than Eq. (22). Its solution is 

z ( t  - r, ~ )  - -  ~ a ( t  - r, ~ )  + b (~ ) ( t  - -  r) + c ( ~ )  (24)  

where a is an arbitrary function of its arguments, and b and e are arbitrary 
vectors (which can be taken orthogonal to z~ with no loss of generality). 
Then, according to Eq. (21), 

z o = a + ( t  - r) ( 25 )  

Equations (24) and (25) say that all we can be sure of is that the world- 
line z" lies in a 2-surface (plane) obtained by letting the parameters a and 
t -- r take on all possible values. In order to fully draw the consequences 
of this, we shall have to consider various directions ~, and go through a 
fairly intricate geometrical argument. We therefore believe it is appropriate 



When Can a Classical Electron Accelerate Without Radiating ? 885 

to present the argument  in two  space d imens ions  (i.e., in three-dimensional  
space t ime) first, where  it may  be illustrated and more  easily visualized. 

Consider  applicat ion o f  Eq. (24) to  two  different directions -~1 and x2 ,  
in each o f  w h i c h  there is n o  radiation. Suppose  we are able to prove that 
we  can c h o o s e  the t w o  2-planes containing the world-l ines z £  ~ z"(t ~ r, ~ )  
and z2" ~ z " ( t -  r, x2) to be or thogonal  (see Fig. l). Then we can show,  
at any time T, that the intersection of  the two planes (a straight t imelike line) 
is no  farther than v'2  b from the center o f  the electron, by the fo l lowing 
argument.  

Slice the world-tube by a z ° = T = const  plane. This plane cuts the 
two  2-planes in two  perpendicular lines (see Fig. 2). The point  zl  lies some-  

Time 

Zm=T 

l 
I 

/ 

P~anes 
confaining 
t r~ jec t  or ies 

L-Zy w o r l d - l i n e  

-Z~ w o r l d - l i n e  

! I 
..J/1 

. Intersect ion of 
the two plarlOs 

b 

W o r l d - ~ i n e  of ;he 
cen teF  of elec|roTt 

Fig. I. Illustration of the electron's world-tube (radius b), and two 
orthogonaI planes in which the world-lines zlU, z2U lie. We prove that at 
any time T, the intersection of the two planes (a straight, timelike line) is no 
farther than ~/~ b from the center of the electron. 

82M81zx/I2-6 
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Lln~ I 

Z z (Z) 

Line 2 

ZI(T) 

Fig. 2. A z ° = T plane. The intersections of the world-lines zl,  zu with 
this plane lie on lines 1 and 2 respectively, and are a distance d < 2b apart. 
The center of the electron lies somewhere in the region of intersection of the 
two circles. The distance s between the intersection of lines 1 and 2 and the 
farthest possible location of the center of the electron satisfies s < ~/2 b. 

where on line 1, and  the po in t  z2 lies somewhere on line 2, but  the distance d 
between these points  mus t  be less than  2b. This is because bo th  points  lie 
inside the electron world-tube,  which cuts the ~ = T plane in  a circle 
of diameter 2b. Indeed, a circle of rad ius  b surrounding z t or zz must  conta in  
the center of  the electron, so the electron's center lies in the region of inter- 
section of these two circles. 

Denote  the distance from the intersection of lines 1 and  2 to the furthest 
poin t  where the electron's center could lie, by s. It  is a matter  of e lementary 
t r igonometry to show that 

s ~ = b 2 + d [ b  "a - -  (d/2)211/~ sin 20 (26) 
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where 0 is the angle between the line connect ing z I and z2 and either line 1 
or line 2. The  distance s is m a x i m u m  for  0 = rr/4 and d = ~/~ b, f rom 
which we find tha t  

maxis]  - -  ~/2 b (27) 

Thus  the electron's  center can lie no far ther  than  ~v/2 b f rom the inter- 
section o f  lines I and 2. But  this intersection is a point  on the straight t imelike 
line which is the intersection o f  the two or thogonal  planes. We may  regard 
this timelike line as the constant-velocity motion of  a fictitious point, and 
express our  conclusion by saying that  the electron 's  center is always closer 
than  ~/2 b to a poin t  tha t  undergoes constant-velocity motion.  This con- 
cludes the argument .  

Therefore,  in order  to complete the proof ,  it only remains for  us to 
show tha t  directions ~,a and z22 can be chosen so that  the two 2-planes are 
or thogonal .  

We begin by eliminating a f rom Eqs. (24) and (25), and replacing the 
pa ramete r  t - -  r by  ~- to obtain 

z(~, ~) : ~[b(~) - -  ~] + f, Zo + e(~) (28) 

As ~- is permit ted to vary for  fixed z ° = T, Eq. (28) traces out  the 
straight line in the z ° : T plane, somewhere  a long which the actual  world- 
line poin t  z" must  lie. Consider  two such straight lines associated with two 
arb i t ra ry  directions ~1 and ~ : 

zi = Ti(bi - -  ~i) + ~ T  + c i ,  i --=- 1, 2 (29) 

The  intersection o f  these two lines is to be found  by solving z~ ....... z,,,  

(x1 - -  x2) T -}- el - -  e2 = ~'1(x1 - -  b l )  - -  ~'~(x2 - -  b2) (30)  

for  ~-~ and "r 2 , and substituting either value back into Eq. (29). The solution 
is facilitated by defining the project ion opera to r  P (v l ,  v2) on v 1 in the skew 
coordinate  system fo rmed  f rom v~, v2 : 

P (v l ,  v2) ~ iv1 × v2 [-2 (v22v, __ vl • v2v2) (31) 

PI~ ==~ P(v l ,  v2) has the propert ies  

P12" v1 = t, P,2" v~ = 0 (32) 

I f  we set v 1 ~ ~:1 - -  b l ,  v2 =~ ~2 - -  b2, and  operate  on Eq. (30) with P12, 
we obtain 

~~ = P12" [ ( ~  - -  : ~ ) r  @ c~ - -  e2] (33 )  
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which, when inserted into Eq. (29) gives us the intersection point 

Z ~--- [ x l  - -  v l P I ~  ' ( 2 1  - -  -x2)]T + e 1 -- vlP1~ " (el --  c2) (34) 

We see from Eq. (34) that the intersection point Z"  ~ (T, Z(T)) traces' 
out a straight line whose tangent vector is V" ~ {1, V}, where 

V ~ dZ /dT  --  21 --  Vial (35) 

[we have written h I = P I 2 "  (Xl  - -  22)]-  NOW, we can prove that ] V ! < l, 
and V must be independent of  the directions ~1 and 12 that were used to 
derive Eq. (35) t 

For any nonzero angle between the two intersecting lines, the center 
of the electron must remain within a determined (though possibly large) 
distance from the intersection point Z (the argument is similar to that 
already gone through when the angle is 7r/2, as in Fig. 2). Since the center 
of the electron moves on a timelike trajectory, Z"  must be a timelike tra- 
jectory, or else the distance between the two trajectories will get arbitrarily 
large as T--* or. Therefore, V" is a timelike vector, i.e., 

[ V /  < 1 (36) 

Moreover, if the tangent V" calculated with vectors 2, and i2 is different 
from the tangent calculated with vectors ~a and :~ or 11 and 23 , etc., the 
corresponding world-lines of intersection Z"  will separate by an arbitrarily 
large distance as T--~ oe. But this is impossible, as each Z must remain 
within a finite distance of the center of  the electron. Therefore the slope 
(1, V) is independent of all directions. 

We note that ;~ in Eq. (35) cannot vanish, else t V ' = 1, which contra- 
dicts (36). [We also note in passing that h a must be independent of :~ ,  
although we shall not need this result.] 

Finally, we are in a position to prove that the two intersecting lines 
z t ,  z~ can be made perpendicular by appropriate choice of :~1, ~z • We see 
from Eq. (29) that the line z~ is parallel to the vector v~ = bi -- f~ • Accord- 
ingly, the condition z~" z~ ....... 0 is equivalent to [using Eq. (35)] 

0 = V 1 * ¥2 = * ) t l t ) 7 1 ( X I  - -  V ) '  ("~2 - -  V )  ( 3 7 )  

If  ~1, ,~2 can be chosen to satisfy Eq. (37), the intersecting lines can be 
made orthogonal. For simplicity, let us choose 21 parallel to V. (If V vanishes, 
the result (38) still obtains.) Then the condition (37) implies 

:~: [ V I = 2x" x2 (38) 

A direction R2 can always be chosen to satisfy Eq. (38) because of the 
inequality (36), and our proof  is complete. 
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4. A R G U M E N T  I N  T H R E E  S P A C E  D I M E N S I O N S  

In three space dimensions,  the following compl ica t ion is added: a t  
any  t ime T we are still sure that  two trajectories z 1 , z~ must  lie a long two 
straight  lines, but  the two straight lines do not  have to intersect (as they mus t  
in two space dimensions):  they are generally skew. 

Nonetheless,  the a rgument  is similar to  tha t  given in the previous section. 
Suppose:  (1) we can choose the two 2-planes containing the world-lines 
zl" and  z~" so that  the intersection of  the two planes with the z ° = T hyper-  
p lane  are two (generally skew)perpendicu la r  lines (see Fig. 3). Consider  
the point of closest approach Z on, say, line 1 to line 2, and further  suppose:  
(2) tha t  we can show that  Z "  ~ (T, Z(T))  is a straight, t imelike line. Then 
we can show that  Z lies no fur ther  than  ~/2 b f rom the center o f  the electron, 
by the a rgument  given in the next two p a r a g r a p h s ,  and our  result is proved.  

First, suppose that  the two or thogona l  straight lines 1 and 2 do happen  
to intersect. Then  Fig. 2 again illustrates the situation, except tha t  the center 

Line 2 

d 

Plane containing 
~ construction simila r 

to Fig. 2 

Point of clo~esf approach Z 
on Line I 

Fig. 3. A z ° = T hyperplane. The intersections of the world-lines 
zl ,  z2 with this hyperplane lie on lines I and 2, respectively, and are 
a distance d < 2b apart. Lines 1 and 2 are orthogonal skewlines, 
separated by a distance D. 
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of  the electron is known to lie in a spherical volume of  radius b surrounding 
the trajectory point zl(T) [or z~(T)]. Therefore, the center of  the electron 
must lie in the volume that is the intersection of the two spheres surrounding 
zl and z~. However, the point in this volume that is farthest fi'om Z, the 
intersection point of  lines 1 and 2, does in fact lie in the plane of  lines 1 and 2: 
the maximum distance s between these two points has been shown to equal 
~/2 b in the previous section. 

Now suppose that the two orthogonal straight lines 1 and 2 do not 
intersect. As is illustrated in Fig. 3, one can draw a plane containing the 
point of closest approach Z on line 1 to line 2, and the two world-line points 
z~ and z2 • Then the construction of the maximum possible distance s between 
Z and the center of the electron takes place in this plane, and is identical 
to that discussed in the previous paragraph and illustrated in Fig. 2. Therefore 
Z ties within a distance ~/2 b of the center of the electron. This concludes the 
argument. 

Therefore, in order to complete the proof, we must calculate Z - for two 
arbitrary directions i l ,  :~2, show that Z " ( T )  is a straight, timelike line, and 
show that we can choose .~ ,  ,~z so that the straight lines on which the 
respective world-line points z~, z~ lie are perpendicular. 

We begin by finding the points of closest approach on the two straight 
lines (29), by minimizing the square of the distance vector E zi --  22 / ~ with 
respect to the parameters 71, ~2 : 

( ~ / ~ i )  I ( i i  - -  ~z2)T - -  ~-lV~ + ~2v2 + ci --  % 12 = 0, i = 1, 2 (39) 

The resulting equations 

vi • [(21 -- :~) T -~- ei -- c~] ---= rivi z -- %vl • v2 
(4O) 

v2" [(:xi --  P~z) T -}- ci -- e2] -- ~-jJv'i " v~ --  ~-~v~ z 

are readily solved for r 1 , zz if I v~ × v2 1 @ 0 (which we shall assume and 
justify below): 

~'i ----- Pi2" [(ii -- ~ )  T + el -- e~] (41a) 

Note that Eq. (41a) is identical to Eq. (33). Upon substituting (41a) into 
F~. (29), we obtain Eq. (34) for Z: in three dimensions, it is seen to be the 
expression for the point on line 1 closest to line 2. 

From here, the proof  proceeds as in Section 3. We note that Z depends 
linearly on T, so Z ~ ~ (T, Z(T)) is a straight line. The arguments that Z ~ 
is timelike, that its slope (1, V) [with V given by Eq. (35)] is universal, 
that ] V I < 1, and that i i ,  12 can be chosen to satisfy Eq. (38) so that the 



When Can a Classical Electron Accelerate Without Radiating ? 891 

two straight lines are or thogonal ,  all go through as before. As a final point ,  
we note  [by Eq. (37)] tha t  since Vl, vz are the tangents to the or thogonal  
straight lines, then 1Vl × v2 ] :/= 0, which we needed to derive Eqs. (41) 
f rom Eqs. (40). Our  p roo f  is complete.  
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