
Foundations o f  Physics, Vol. 8, Nos. 11/12, 1978 

Quantum Mechanics of Relativistic Spinless Particles 

John R. Fanehi 1 and R. Eugene Collins ~ 

Received September 15, 1977 

A relativistic one-particle, quantum theory for spin-zero particles is constructed 
upon L2(x, ct), resulting in a positive definite spacetime probability density. 
A generalized SchrOdinger equation having a Hermitian Hamiltonian H on 
L~(x, et) for an arbitrary four-vector potential is derived. In this formalism 
the rest mass is an observable and a scalar particle is described by a wave 
packet that i~ ~ a superposition of  mass states. The requirements o f  macroscopic 
causality are shown to be satisfied by the most probable ~ajectory o f  a free 
tardyon and a nontrivial framework for charged and neutral partieles is provided. 
The Klein paradox is resolved and a link to the free particle field operators o f  
quantum field theory is established. A eharged particle interacting with a static 
magnetic field is discussed as an example o f  the formalism. 

2. I N T R O D U C T I O N  

At present a consistent relativistic one-particle quantum theory for 
spin-zero particles has been developed only for free particles ~ and it is 
generally believed that interactions, such as the electromagnetic interaction, 
are properly interpreted only within the context of  many-body theories. ~ 
I t  is shown in this paper, however, that a consistent one-particle theory of  
relativistic spinless particles (R.SP) in the presence of an arbitrary four-vector 
potential can be constructed using a formalism developed from ideas first 
introduced by Fock c3) and Sttickelberg ~4) over thirty years ago. More 
recently these ideas have been discussed by Nambu,  ~5~ Schwinger, ~6~ 
Feynman, ~7) and Cooke. ~s) A logical framework for the ideas presented in 
Refs. 3-8 is developed in this paper. Furthermore, a number of  physical 
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A statement to this effect is made explicitly in Ref. 1. 
This contention is prevalent in, for example, the widely used text by Bjorken and Drell. t2~ 
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and mathematical results that have not been discussed previously are 
presented in detail. 

The theory presented here has a number of  distinguishing features. 
The four most important are the following: a relativistically covariant 
parameter z; a positive-definite probability density based on the Born 
interpretation of the wave function; a scalar product defined in L2(x, ct); 
and generators representing an 11-parameter continuous group. 

In Section 2 the foundation of the theory proposed here--henceforth 
referred to as the four-space formulation (FSF)--will be laid. It parallels 
Collins '(ga°) treatment of NRQM ~ and places probabilistic concepts at the 
basis of relativistic quantum mechanics. Assumptions will be made which 
restrict the subsequent investigation to spinless particles undergoing only 
electromagnetic interactions. These restrictions make it possible to simplify 
the presentation while conveying the essential concepts of the FSF. It will 
be observed that the FSF can be extended to particles of nonzero spin and 
nonelectromagnetic interactions, but the details will not be developed in 
this paper. The primary goal of Section 2 is the derivation of the equation 

ih -~z (x, et, z) = H~b(x, ct, T) (1) 

with ~b(x, ct,-c) an element of LS(x, ct), H a Hermitian operator in this 
space, and ~- an invariant parameter labeling the variation of dynamical 
variables in a manner similar to that described in Refs. 3-8. Note that 
Eq. (1) is postulated by Refs. 3-8 as the quantum mechanical extension 
of relativistic Hamilton-Jacobi mechanics, whereas here Eq. (1) is derived 
from probabilistic considerations. Also, a special case of Eq. (I) is the 
Klein-Gordon equation m-13) as will be shown below. 

The similarity of Eq. (1) to the Schrddinger equation guides the develop- 
ment of the FSF in Section 3. A classical correspondence for the relativistic 
theory is constructed in the Heisenberg representation by identifying H 
as a Hamiltonian and then proceeding as in NRQM. Next, the concept of 
superposition of mass states is introduced, This concept, analogous to the 
nonrelativistic concept of superposition of energy states, is examined further 
in Section 4. 

Unlike Sections 2 and 3, which are concerned primarily with the 
mathematical foundation of the FSF, Sections 4 and 5 focus on the physical 
notions of the FSF. 

The free particle is discussed at length in Section 4. This is so because 
the free particle can be used to vividly illustrate the concepts of macroscopic 

4 The techniques of nonrelativistic quantum mechanics (NRQM) are discussed in many 
well-known texts, e.g., Ref. 14. 
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causality and superposition of  mass states, tn order to appreciate this dis- 
cussion, however, one first obtains, as a natural consequence of  the FSF, 
the Stfickelberg-Feynman ~15,16~ interpretation. It is then learned, as a result 
of  combining the Stfickelberg-Feynman interpretation with the concept of  
charge conjugation, that a particle and its antiparticle 5 propagate in opposite 
spatial and temporal directions for a given potential configuration. This 
interpretation, first suggested by Feshbach and Villars aS~ for charged particles, 
is shown to be valid for both charged and neutral particles. The macroscopic 
causality principle is derived next and, lastly, the free particle example is 
completed. 

The problem of  RSP scattering from a step potential is examined in 
Section 5. I t  is shown that the reflection coefficient never exceeds unity, 
unlike conventional treatments, (19,2°~ which, for potentials of sufficient 
magnitude, yield reflection coefficients that are never less than unity (a result 
generally known as the Klein paradox). The reason for this difference is 
discussed, and it is observed that this example provides a means of  experi- 
mentally testing the validity of  the FSF. 

By the end of  Section 5 the FSF has been developed into a usable 
theory. The way in which the FSF relates to existing relativistic theories 
is examined in Sections 6 and 7 by considering two distinguishing mathe- 
matical features of the FSF: the group properties, and the scalar product. 

It is observed that Eq. (1) lbr a free particle is invariant with respect 
to linear transformations having the form 

x'  --* A x  + a (2a) 

r '  -*  r q- A r (2b) 

where Eq. (2a) represents an inhomogeneous Lorentz transformation 6,7 
and Eq. (2b) corresponds to translations along the r axis. It is shown in 
Section 6 that {a, At, A} are elements of  an 11-parameter continuous group, 
here called the FSF group. Then it is shown that the Poincar6 group ~,25~ 
is a subgroup of  the FSF group corresponding to Ar = 0. Finally, it is 
shown that, in addition to the ten generators of the Poincar6 group, there 
exists a Hermitian operator [H of Eq. (1)] which generates infinitesimal 
translations along the r axis. Thus, all 11 generators of the FSF group are 
determined. 

5 The distinction between particle and antiparticle is clearly stated by Weinberg on p. 1321 
of Ref. 17. 

6 The first in-depth investigation of the infinite-dimensional representations of the Lorentz 
group was made by Majorana. ~1~ Majorana's paper is reviewed by Fredkin/TM 
The irreducible representations of the proper inhomogeneous Lorentz group have 
been determined by Wigner and Bargmann/23~ 
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Expectation values are examined in Section 7. It is observed that the 
expectation value defined within the FSF is a special case of the general 
scalar product defined by Wigner (Ref. 23a). Then it is shown that the 
expectation values defined within the FSF reduce, in the appropriate limit, 
to the expected nonrelativistic values. A link to quantum field theory aT~ 
is then established by requiring that only a single mass state contributes 
to the wave function. Finally, microscopic causality is imposed, with the 
expected consequences that spinless particles must be bosons and have 
antiparticles. 

The fundamentals of the FSF and the relationship of the FSF to existing 
theories is established by the end of Section 7. The physical significance of 
the FSF and its experimental interpretation is illustrated and clarified by 
analyzing a simple physical system in Section 8. In particular, an ensemble 
of charged particles moving in a magnetic field is described using the FSF. 

The notation used below is that of Bjorken and Drell, ~ and the Einstein 
summation convention is imposed unless otherwise specified. 

2. F O U R - S P A C E  F O R M U L A T I O N  

In order to treat space and time symmetrically the probability density p 
should represent a joint distribution in the space and time coordinates, 
though p may be conditioned by some invariant parameters. In particular, 
it is postulated that p is conditioned by an invariant parameter r. Then the 
conditional probability density is written as p(x, c t l r ) ,  and the corre- 
sponding normalization condition is 

yD p(x,  ct ] r) d4x = 1 ; d4x -= dx  ° dx  1 clx 2 dx  a (3) 

The quantity D is the domain of definition on which ? may be nonzero, 
and p(x, ct L r)  dx  ° d~x is the probability that the particle is at the world- 
point (x, ct)  when the parameter has the value r. Since a particle can occupy 
any world-point in spacetime, it follows that D must extend over all of 
space and time. This point and the physical interpretation of r are discussed 
more fully in Ref. 26. 

Preservation of the norm in four-space is assured by requiring that 
p(x, ct~ r) vanishes as Ix" 1-+ oo and obeys the equation 

~ p ( x ,  ct! ~) + ~ [p(x, ct! ~-) v q  = 0 (4) 
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where V ~ is not yet defined. In this equation it is necessary that p and (V"} 
be single-valued and differentiable, and it is also assumed that the only 
nonzero elements of the metric are 

g00 = 1 = --gll  =- --g22 = --g3z (5) 

Rather than simply assuming Eq. (4), one could have required that 
p dax be invariant with respect to a five-dimensional velocity field having 
as components {V"} and V 4 = 1, where a fifth coordinate x 4 is defined 
to be r. The techniques of a procedure such as this are discussed by Kiehn, (zT) 
and it can be shown that Eq. (4) is one of  two conditions for the invariance 
of p d~x with respect to propagation down the trajectories of ({ V"}, V ~ = 1). 
The other condition is either 8V,/8~- is zero for all values of ~ or a~ is zero. 
Either approach, simply assuming Eq. (4) is valid or else requiring p d4x 
to be invariant with respect to ({V"}, V 4 = 1), can be used here. 

The physical meaning of the velocity field {V ~} is determined by 
examining the expectation value of the spacetime position vector of the 
particle, 

(x") =- fD x"O d4x (6) 

Differentiating (x")  with respect to ~-, substituting Eq. (4) for 8p/8~-, and 
applying the divergence theorem with the boundary condition that p vanishes 
as Ix  ~ [ - ~  o% yields 

d<x")/dr = .(• V"p d~x (7) 

In other words, the expectation value of  V" is the derivative, with respect 
to % of  the expectation value of the four-position vector. This fact, along 
with Eq. (4), motivates the characterization of  the quantities ~- and d~x")/d~" 
as statistical analogs of  the classical proper time and proper velocity, 
respectively. This characterization will be furNer justified below. 

A Hilbert space formalism follows from this probabilistic description 
by first observing that, since p must be nonnegative and differentiable, 
all derivatives of p must vanish when p vanishes, otherwise p would be 
somewhere negative. The Born representation is an acceptable mathematical 
form for assuring this constraint; thus write 

p(x,  ct I ~-) = (~*(x, ct, ~) 4,(x, et, .) ~> 0 (8) 

where ~b and (s* are Lorentz-invariant scalars. By assuming that p is positive 
definite, one avoids many of  the difficulties associated with existing one- 
particle theories, s The function O satisfies the requirements of integrability, 

8 A critique of existing one-particle theories has been given by Fanchi. ~s~ 
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continuity, and differentiability if ~b is both Lebesgue square-integrable 
and differentiable. The quantity ~b has the form 

~b(x, ct, r) = p(x, c t l r )  1/2 exp[i~b(x, ct, r)] (9) 

where ~ is a real scalar function as yet undetermined. 
The four-vector { V"} of Eq. (4) can always be written as 

v -  h h exo  (vo exo) (1o) 
where h/~ is an unspecified constant with units such that ~ is dimensionless. 
One can then define 

~A"---- V" h 8~ (11) 
8x.  

in terms of which Eq. (11) becomes 

V " - -  h 8q~ + c A "  (12) 
t~ 8x ,  

Here e is a constant setting the scale and units of A". The quantity A" has 
the same harmonic and rotational parts as does V", although their solenoidal 
parts may differ. Equation (12) expresses V" in terms of two quantities 
which depend on the phase of ~b. A relationship between A", later to be 
identified as the four-vector potential of the electromagnetic field, and q~ 
has been suggested before. (29,a°1 The consequence of Eq. (12) is the following. 

The value of the density p is unchanged by the transformation 

d/ = ~b exp[-- i (e~/h)A] (13) 

where A is a real scalar function of (x, ct, r). This implies that ~ is specified 
only to within a gauge transformation of the first kind, The gauge trans- 
formation in Eq. (12) corresponds to the phase change 

d?' = ~ --  ( , ~ / h ) A  (14) 

and must be accompanied by the gauge transformation of the second kind 

A'" = A" + 8A/ax ,  (15) 

so that Eq. (4) remains invariant with respect to the above transformations. 
The final result is that V" and P are unchanged by these gauge transformations, 
and one concludes that both A" and ~b are specified only to within a gauge 
transformation. 
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The function ~ has a topologicai significance which will not be examined 
here (see Ref. 30 for a brief discussion of  the nonrelativistic analog). 

Using Eqs. (8) and (12) in Eq. (4) yields 

0 e cA") ~b] = 0 (16) 

Also from Eq. (9) there results 

which, when substituted into Eq. (15), yields 

r - i h  ('* + 
?Y (~*~) + ~ t - f g -  t '/' ax--7 - ~ ax. i 

~ 0 (18) 

Now this can be rearranged to read 

~b*F = F*~b = @*F)* (19) 

where the quantity F is 

F : -  ih ~z -k- 2 ~  ~x,~x ~ 2 ~ c  t ~x" + A" ~x" ] (20) 

Thus the product ~b*F must be real  This is assured, for arbitrary ~b, 
if F has the form U~b with U a real scalar. The simplest possible form for U 
which keeps Eq. (20) gauge- and Lorentz-invariant is e~A"A,/2me 2, where e 
is now written as 

= - -e /mc  (21) 

with e and c unspecified constants. Setting F equal to this U~b yields 

8r --  2 ~  7 Ox. c A" ~x" c A .  ~b ...... p . p .  (22) 

with p"p. a scalar operator. 
Equation (22) is a generalized form of the K G  equation irA" is identified 

as the four-vector potential, e as the electric charge of the particle, ~ as a 
constant with mass units, h as Planck's constant divided by 2~r, and c as the 
speed of light. 

Note that a multicomponent wave function could have been used in 
the procedure for deriving Eq. (22). Furthermore, the form chosen for U 
is not unique. These facts suggest points of departure for the generalization 
of  the FSF to include nonelectromagnetic interactions and particles with 
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nonzero spin. The details of a generalization along these lines will be 
developed elsewhere. 

Equation (22) has the form of the Schr6dinger equation except that 
Eq. (22) is defined on a four-space with a Lorentz metric. Since it does have 
the form of the Schr6dinger equation, many of the procedures and results 
of Schr6dinger wave mechanics can be paralleled by the four-space formula- 
tion, although care must be exercised in working with the metric. 

The meaning of the operator p" in the formalism here is made clear 
by observing, in the manner of Collins ~9~ for the nonrelativistic case, that 
if one inserts the above representations for V" and p in terms of ¢ and A" 
into Eq. (7) for d(x")/dr there results 

dr -- ¢* e A . )  0 d~x = (P") (23) 
0 X  u C , 

This defines the expectation value of a relativistic "proper" momentum. 
From this definition of the momentum operator p" follows the familiar 
commutation rules for canonically conjugate coordinates and momenta, 
and from these follow the corresponding uncertainty relationships; however, 
the energy-time relationship is now on the same mathematical basis as the 
momentum-spatial coordinate relationships. 

Direct generalization then yields the definition 

(D) = f O*D~ d4x (24) 

for the expectation value of any observable associated with the particle, 
that is, the expectation value for any function of the x" or any derivative 
of such an expectation value, as p" above. Also note that Eq. (24) is the 
definition of a scalar product on LZ(x, ct), and is a special case of the general 
scalar product--a Stieltjes integral in four-momentum space--defined by 
Wigner in Ref. 23a, pp. 185. Expectation values will be examined further 
in Section 7. 

Recalling that p and {V"} have been assumed single-valued and con- 
tinuous, two particularly familiar boundary conditions are obtained by 
assuming that ¢ and {A"} are also single-valued and continuous. Integrating 
Eq. (4) over a "pillbox" in spacetime, letting its length normal to the boundary 
go to zero, and employing the divergence theorem as in electrostatic theory (3t) 
yields 

--ih ( Ox* at~I aOI~<~ eAi" 

--ih ( aOii a¢~ ] _ eA;r 
- -2m  0" an 0ii aFl ] mC -n~'DII (25) 
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where a/an represents the normal derivative, n, is the unit normal vector, 
and all quantities are evaluated at the boundary between regions I and II. 

Since ~b is single-valued 

~b~ = ~b,~ (26) 

on the boundary. Equations (25) and (26), with the fact that {A ~} is single- 
valued, imply the other boundary condition, namely 

Equations (26) and (27) state that ~ and its normal derivative are continuous 
at the boundary. 

In addition, observe that ~b must vanish at any boundary where the 
four-vector potential has an infinite discontinuity. I f  this were not true, 
then the probability flux {pV"} would be unbounded across the boundary. 

3. GENERALIZED SCHRODINGER EQUATION 

It is straightforward to prove that p" is Hermitian and, consequently, 
that p"p, is also Hermitian. One can use this fact to write Eq. (22) as 

ih a~b/ar == H~b; H ~ (1/2r~)p.p. (28) 

where H is a Hermitian operator. Equation (28) is essentially a generalized 
Schr6dinger equation. Since H is Hermitian, there exists a set of  wave 
functions which constitute a basis of eigenvectors for L~(x, ct) obeying the 
orthonormality condition 

f ~b*~bq d~x = 8q,q (29) 

where ~bq is a solution of the equation 

q~q = p"p,~v (30) 

The form of Eq. (30) suggests that q represents the square of an invariant 
momentum. Therefore let us define the magnitude of the expectation value 
ofp"p,  as mo2c 2. A similar identification of a (mass) 2 operator has been made 
by Feynman et al. (32) and also by Cooke. (s) This definition will be elaborated 
upon shortly. First observe that Eqs. (28)-(30) are valid whether potentials 
are present or not, Such orthonormality relationships cannot be consistently 
defined within conventional theories except for the free particle case. 
Furthermore, H is Hermitian regardless of the strength of the potentials. 
This is a claim that conventional theories, such as the two-component theory 
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of Feshbach and Villars, (18) cannot make because the K G  equation with 
potentials is not, in general, diagonatizabte into separate positive-and 
negative-energy pa r t s )  

Given Eq. (28), a formalism is readily obtained which parallels non- 
relativistic Schr6dinger theory. For  example, there now exists a classical 
correspondence for the relativistic theory (28) because of the Hamiltonian 
form of Eq. (28). However, despite the mathematical similarities, the FSF 
contains concepts which do not exist in the nonrelativistic formalism. One 
such concept is the superposition of  mass states. 

The general solution of Eq. (28) is a superposition of the eigenfunctions, 
i.e., 1° 

~b(x, ct, ~-) : ~ A(q) ~bq(x, ct) exp(iq.c/2~h) (31) 
q 

with A(q) denoting the expansion coetficients. Since both positive and negative 
values of q are admissible, it is possible for the expectation value of p"p, 
to be negative; the FSF thus includes both tardyons and tachyons. For 
tardyons, 

(p"p, )  : mo2e ~ > 0 (32) 

which is the special-relativistic light-cone constraint in energy-momentum 
space. Furthermore, the general solution, Eq. (31), can now be thought of  
as a superposition of mass states, a concept that is mathematically similar 
to the nonrelativistic concept of  superposition of energy states. This inter- 
pretation will be discussed in more detail below for the free particle and also 
in Section 8. 

4. CHARGED AND NEUTRAL PARTICLES:  T H E  FREE PARTICLE 
AND CHARGE C O N J U G A T I O N  

The free particle is defined by setting the four-vector {A"} to zero 
everywhere, or by setting the charge e to zero. Equation (22) becomes, 
with the metric now explicit, 

~b h 2 [ 1 e ~ 
(33) 

9 This is because the Hamiltonian of the two-component formalism, obtained by trans- 
forming the second-order KG equation into two first-order equations aS) and then applying 
the Foldy-Wouthuysen taS~ transformation, will not converge or else will not be Hermitian 
except for weak, slowly varying potentials, t2) 

lo If the eigenvalues are continuous, or part of the eigenvalue range is continuous and the 
rest discrete, then the sum in Eq. (31) is to be replaced by an integral, or an integraI 
and a sum defined over the appropriate range of eigenvalues, respectively. 
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with the general solution 

(2~r)4 exp t 2r~h 

+ i ( w t -  k "x)]t d3k dw (34) 
d~ C 

Here x ° is expressed as ct. The notion of the direction of particle propagation 
in space and time can be thought of as follows. 

Using Eq. (34) in Eq. (7) yields 

d<x~5/d~- = (~/m)(l ,~5 = ( v ~ 5  (35) 

where the invariant interval d~- is taken to be positive. The space components 
of the quantity (V"} correspond to the space components of the phase 
velocity, and V ° corresponds to the temporal component of the phase velocity, 
which is interpreted as follows. If, in fact, a particle is progressing into the 
future when d(ct) is positive, and regressing into the past when d(ct) is 
negative, then Eq. (35) says that a positive-frequency wave propagates 
forward in time and a negative-frequency wave propagates backward in 
time. This result parallels the Feynman-Stfickelberg interpretation. (1~,a6) 
Furthermore, in the nonrelativistic limit when mo2c ~ ~ h2(k • k), one has 

I(V°5I -+e  (36) 

as, indeed, it must. 
The Feynman-Stfickelberg interpretation in this format provides an 

acceptable physical interpretation of positive- and negative-energy solutions 
within the framework of a one-particle theory; thus it is not necessary, 
because of the existence of negative-energy solutions, to reinterpret the 
KG equation or the generalized Schr6dinger equation, Eq. (28), as field 
equations which can be understood only within the framework of many-body 
theories. 

The Feynman-Stfickelberg interpretation can be combined with the 
concept of charge conjugation to obtain a familiar result. The complex 
conjugate of Eq. (30) is 

+ = q o* (37) 

where the quantity ¢~* is the solution of the KG equation with the charge e 
replaced by --e. Thus the probability density remains unchanged with respect 
to charge conjugation. What does change ? 
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If one writes ¢ as Re ~®, then pV" becomes 

h 8q) 
j" ~ pV" = ~ 8x, 

eA"_ ) Re (38) 
vac 

where j r  is the probability flux. Replacing e by - e  and interchanging Cq 
with q~q* will change the sign of V" and (V">. This says that a charged 
particle and its oppositely charged antiparticle propagate in opposite spatial 
and temporal directions for a given potential configuration. Feshbach and 
Villars (is) arrived at this interpretation by defining a "negative probability 
density," but the FSF avoids this difficulty. Furthermore, theses remarks 
are applicable to. the free particle solutions, which, in turn, can be used to 
describe neutral particles. Thus a nontrivial interpretation of ff/c can be 
provided for both charged and neutral particles by the FSF (see Ref. 28 
for details). 

Returning now to the free particle, let us observe that the rest mass of a 
free tardyon is given by Eq. (32), i.e., 

mo2C2 = <pvp .>  ~ h2[@o2>/c 2 __ < k ' k > ]  (39) 

which is obtained by substituting Eq. (34) into Eq. (24) with £2 being pup,. 
Thus one obtains the familiar relationship of relativity theory between 
energy hco, momentum hk, and the observed rest mass in terms of expectation 
values. Equations (35) and (39) can be used to generate another significant 
result. 

Integrating Eq. (35) for a small increment ~- in z, one finds 

3<x> = (h/h~)<k> 8~- and 3(ct> -:: (?z/~)@o/c> 3~ (40) 

where the space and time components have been separated and explicitly 
written. Forming the inner product of  the four-vector {~(x")} yields 

8<x"> `3<x,> = (8(ct>) 2 -- 3<x>. a<x> 

= ( h ~ / ~ 2 ) ( < o ~ / c >  2 -- <k>. <k>) ,3. 3 (41) 

Using Eq. (39) in Eq. (41) gives 

c~m°2~2~e ( A~coc--~-- A2k) h2872~2 (`3<ct>) 2 -- `3<x> • 8(x> = k - (42) 

where A2co is the dispersion, (co S> -- (o3> 3, in co and A2k is similarly defined. 
One thus obtains, in the limit of negligible dispersions, the timelike con- 
straint of special relativity expressed in terms of average spatial and temporal 
displacements. Thus the FSF obeys a "macroscopic causality" principle, (24) 
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i.e., the tardyon's most probable trajectory remains within the light cone. 
Furthermore, this analysis is another example of how the properties of r are 
analogous to those of proper time. 

It appears here that the as yet unspecified constant hi should be identified 
as m0, the expectation value of the mass. If  this is done, then in the non- 
quantum limit of zero dispersions Eq. (42) reduces to the classical definition 
of proper-time interval, but in terms of expectation values. 

Here, then, one sees that the FSF can be used to derive results that 
are familiar from special relativity. Furthermore, Eq. (39) represents the 
fact the rest mass has been elevated in the FSF from simply a specified 
constant to an observable. An examination of Eq. (34) shows that ¢ is a 
superposition of states, each of which corresponds to a particular combination 
of k and ~o. Thus one obtains the reasonable result that measurements of 
the mass of the relativistic particle are not sharply defined, but have a 
distribution that depends on the probabilistic weight of each pure state, 
namely [ A(k, 0))] 2. As an example let us consider the minimum wave packet 
representation of the free particle. 

The expansion coefficients for the minimum wave packet are 

co a 

A(k, w ) - - - f  l[exp(--ik"x.)] H N2~. i d4x (43) 

where {N.} are normalization constants and {qS} represent the initial wave 
components at r = 0 for the minimum wave packet; these are given by 

~ .  ......... [27r(zJx'9~]t/2 exp{--[(x" -- <xo">)2/4(Ax'92] -- i<k.o>X" } (44) 

Here A x .  is the uncertainty in x", and (x0"> and <k0"> represent the average 
position and momentum of the particle at the initial instant r = 0. The 
minimum wave packet is then constructed by substituting Eq. (43) into 
Eq. (34) and evaluating the integral. The result is 

12[ N~ 7r &o(x, 

× exp ti<k.> x" 
ihr 

- ) ~  <ko"><k.o> ( 

( x .  - <xo"> - ~<ko"> ~-/m)~ t (45) 

where g~. is given by 

g 0 0  = 1 = - - g l ,  = - - g z ~  = - - g 3 a  (46) 
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Before proceeding to the physically interesting points regarding ~min, 
let us first emphasize two important mathematical points. First, the repeated 
indices in Eqs. (44) and (45) do not imply summation. Second, the appearance 
of g , ,  in Eq. (45) is necessary in order to ensure that ~min is a solution of 
Eq. (22) for the free particle case. With these remarks out of the way, let us 
now consider four physically interesting points. 

First, the average (x)  and (ct)  are ( X o ) +  ((hk0)/~)T and c( to )+ 
(h(coo)/Nc)~', respectively. These are expected results. 

Second, by taking the absolute square of A(k, co) one obtains the 
probability distribution in the momentum-energy representation. The 
result is a Gaussian distribution, which indicates that the wave packet is 
formed as a superposition of states that separately correspond to a particular 
mass, i.e., a particular combination of k and co. This is also expected. 

Third, the absolute square of ~bmln gives the probability distribution 
--Gaussian--in space and time. From this joint distribution a marginal 
probability of observing the particle somewhere in space during a specified 
interval of time, i.e., p(x, ct[ -~) is integrated over all space to yield ~(ct '~ -r). 
Whenever the marginal probability distribution is zero the particle cannot 
be observed anywhere in space, i.e., the particle effectively does not exist 
when /5 is zero. This capability, not present in conventional theories, is 
necessary for describing unstable particles while simultaneously retaining 
probability conservation. 

Finally it is of interest to note that the wave packet solution @rain is 
not Lorentz-invariant. This is a result of the choice of the minimum wave 

8 
packet as the initial value. Since 1-I,~0 ~ ,  is not Lorentz-invariant, it is 
clear that the form of the initial value changes from one Lorentz frame 
to another. The consequence is that ~bmin has a form that depends on the 
particular Lorentz frame. Although ~bmin is not a relativistically proper 
wave packet, it does illustrate the concept of superposition of mass states. 

5. SCATTERING FROM A STEP POTENTIAL 

It is important to observe that the solutions of the usual KG equation 
have not been changed by going to a four-space formalism although the 
use of those solutions has changed. In addition, the definition of spatial 
probability flux as pVJ (j  --- 1, 2, 3) remains unchanged, t f  one recalls that 
scattering calculations require only the continuity of spatial probability 
flux, and do not require the use of normalized solutions, then it is evident 
that the usual KG theory can be used to compute scattering cross sections 
under certain circumstances. These have been discussed by Cooke. ~8) 

In general one must represent an incident free particle by a spacetime 
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wave packet which is a superposition of mass states, just as in N RQ M an 
incident free particle is represented by a wave packet which is a super- 
position of energy states. The formal development of such a theory has 
promise as a fertile area for future research. For  the purposes of this paper, 
however, it will be sufficient to consider only the simple example of a RSP 
scattering from a step potential. 

An interesting feature of existing theories is the prediction that a RSP 
incident on a step potential of  sufficient strength will be reflected by the 
barrier with a reflection coefficient that exceeds unity. This result is a direct 
consequence of  identifying ej°/c as the charge density. (~9,~°) Even though 
total charge is conserved, the prediction that more particles will be reflected 
than were incident is a surprising consequence which has not been experi- 
mentally justified. This situation does not arise in the FSF. 

The four-vector potential for this problem is 

t0, x < 0 A°(x) 
~, x > 0 (47) 

A(x, c0  = 0 

Here region I refers to values of  x < 0, and region II refers to values of 
x ~> 0. It is assumed throughout this calculation that a spinless tardyon 
is incident from x = --oo with energy o~ and momentum k t ,  where wl 
and k~ are both real and positive. The boundary conditions to be satisfied 
are that the wave function and its first derivative with respect to x must be 
continuous across the boundary at x = 0. 

The solutions of  the equations 

2Nih Oo_~ = q~¢~ ,= _h2 ( 1 82 8 ~ ) 
d ~t ~ ex ~ %~ (48) 

2 m i l l e T -  T = qll¢ii = _~2  ~ x  2 @Ii @ ' ic ~t @ii (49) 

and 

are the wave functions tbr regions I and [I, respectively. 
In region I the solution ~I is 

~ = [al exp(--iklx) + bl exp(iklx)] exp(i%t) exp(--iq~r/2~h) (50) 

where aa and bl are the coefficients of the incident and reflected plane wave 
solutions, respectively. These identifications are established in the appendix. 
The eigenvalue relation in region I is 

q~ ~- m~c 2 = h~[(~o12/c ~) -- k?]  ~> 0 (51) 
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where the inequality is valid for incident tardyons and the real quantity m 
is defined by Eq. (51). Since ~o~ and kl are assumed known, so also is the 
observed rest mass m of the particle. 

A description of the situation in region I I  is a little more involved than 
that given above for region I. The solution of Eq. (49) is 

= [a2 e x p ( - - i k 2 x )  @ b2 exp( i k~x ) ]  exp(iw~t) e x p ( - - i q ' r / 2 ~ h )  (52) 

To assure that the wave function and its first x-derivative are continuous 
at x = 0 for all values of  t and % one must have 

O01 = (D 2 

and 

qI  : qH 

(53) 

(54) 

respectively. The eigenvalue relation for region 11 can now be written as 

hZkz "~ = [(liool/c ) - -  (eo@)] 2 - -  rn2c 2 (55) 

where k 2 may be real or imaginary. The four possible cases, the appropriate 
spatial solutions, and the reflection and transmission coefficients for each 
case, found in the same manner as that of  NRQM,  (14) are listed in Table I. 
The quantities ~,J~, k l ,  k 2 ,  rn2c 2, and ee~ are all taken to be real and positive 
in Table I. The coefficient b~ is zero in cases 1 and 3 because no particles 
are incident on the barrier from x = ÷ or. For  cases 2 and 4 the quantity 
k2 of Eq. (52) is positive imaginary, thus the coefficient of the term exp(i I(21 x) 
must be zero because the wave function must be finite for all values of  x. 
Are the results of  Table I physically realistic? 

In Table I it is evident that the reflection coefficient for each case 
does not exceed unity and that the sum of the reflection and transmission 
coefficients for each case is unity. These are desired results. All of the results 
for cases 1 and 4 are easy to accept since these particular cases correspond 
to the familiar results of NRQM.  The details of cases 2 and 3 deserve further 
attention. 

It  is readily shown that case 2 is physically realistic. First observe that 
ho)~ > m c  2 because of Eq. (51). The eigenvalue condition for case 2 can be 
written as 

I vow, > l~o) 1 - -  ~nC 2 > 0 ( 5 6 )  

Recalling that the kinetic energy of the particle in region [ is ho~t --  mc z, 
it is clear that Eq. (56) asserts that the barrier height exceeds the kinetic 
energy of the incident particle and, hence, that reflection at the barrier is 
expected. Thus the results of  case 2 are realistic. 
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Now consider case 3. The smallest value of] ec~ I for which the conditions 
of case 3 are satisfied is 2mc 2. This is a very large value--on the order of 
280 MeV for a charged pion--and is not yet experimentally accessible; 
consequently one cannot say with certainty whether or not case 3 is physically 
realistic. It is interesting to observe that the particles transmitted into region H 
are propagating backward in time, and the fraction of  reflected particles 
is [ ( k l -  k~)/(kl + k2)] ~. For  this same case existing theories predict that 
antiparticles propagating forward in time are transmitted into region It, 
and that the fraction of reflected particles is [(kl J r -k2) / (k l -  k2)]2! An 
experiment capable of measuring the fraction of particles reflected from an 
appropriate step potential could ascertain which, if either, result is correct. 
Such an experiment could serve as a test of the FSF and of existing theories. 

6. S Y M M E T R Y  C O N S I D E R A T I O N S  

It is straightforward to show that Eq. (28) for a free particle is invariant 
with respect to the linear transformation 

Y,  = A,~x~ + a,  (57a) 

~-' = ~- + AT (57b) 

where the quantities {A,"} represent a homogeneous Lorentz tranforma- 
tion (z3) and the quantities {a, ,  A~-} represent translations along the {x, ,  -r} 
axes, respectively. Equations (57) can be represented as {a, A, A~-} and will 
be referred to as the FSF transformation. 

Let us define a set F containing, as elements, all FSF transformations. 
Clearly the set F contains an identity element, namely the transformation 

Y. = x . ,  7 '  = ~ (58) 

The product of  two FSF transformations {a~, A 1 , ATz} and {a2, A2, A~-2} 
is given by 

(al , A t ,  A~l}{a2 , A2 , A'c2} = {a~ + Ala2 , A~A2 , A7t  + A-c~} (59) 

Using Eq. (59), one can readily show that the elements of F are associative. 
Furthermore, every element of F, every FSF transformation, has an inverse. 
Therefore the set F, together with the binary operation represented by 
Eq. (59), forms a group, which will be referred to below as the FSF group. 
If  one lets A~- --~ 0, then one obtains the Poincar6 group (24.~5) as a subgroup 
of the FSF group. 
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The FSF group has one more continuous parameter (A~-) then the 
Poincar6 group; thus the FSF group is an t 1-parameter continuous group. 
The corresponding 1 t generators are the ten generators of the Poincar6 
group plus one additional generator that generates infinitesimal displacements 
of state vectors along the r axis. This generator is obviously the Hamiltonian 
H of Eq. (28). 

Although all of the mathematical subtleties of the FSF group have 
not yet been discussed, the above remarks do place into perspective the 
relationship between the FSF group and the more familiar Poincar6 group. 

7. EXPECTATION VALUES 

The expectation value defined by Eq. (24), denoted below as ( '")FSF, 
also defines the scalar product of two vectors. According to this point 
of view, (~c2)vs F is the transition probability from the state f2~b into ~b, 
or conversely. The scalar product ( '")FsF is a special case of the general 
scalar product defined by Wigner (~a) that corresponds to replacing Wigner's 
dr(p, ~) by d4k. The physical significance of this replacement is that all 
volume elements of four-momentum space are weighted equally. One can 
obtain the more familiar results of quantum field theory by altering the 
weight distribution of the volume elements of four-momentum space. 
This will be shown below. First, however, let us obtain the nonrelativistic 
limit of ('..)Fsv • 

Observe that the joint probability density p(x, ct i ~') can always be 
written as the product of a maginal, tS(t t ~), and a conditional, p~(x Jct, z), 
probability density: 

O(x, ct f r) -= ~(t ! .)  pc(x l ct, r) (60) 

Now < g)FsF is given by 

where g(x, ct) is, at present, unspecified. Equation (61) reduces to the three- 
space definition of expectation value only for those cases in which the 
function g is independent of t or else/5(t I ~) is a delta function in t. This is a 
mathematical constraint. To completely define the region in which ("')FSF 
should agree with the ncnrelativistic value ( '")NRQ~, one must also impose 
the physical constraint that ha) ~ moc ~, where m o is the rest mass of the 
particle. This same physical requirement must also be imposed on the 
expectation value defined within conventional theories <'")con before it 
can be compared with ('")NRQ~ - 

825/8/II/Iz-5 
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A special case which satisfies all of the above conditions is that in which 
one takes the expectation value of a function of the spatial coordinates f(x) 
and the time dependence of ~bq is [exp(i~ot)]/(2T) 1/2, where - -T  < t < + T 
in the limit as T--+ ~ .  The resulting expectation values arO ~ 

and 

f~_~ ~bq*$q(hco --  eA °) f(x) dSx 
<f)eon = ,[~  ~bq*~ba(hw --  eA °) d~x (62) 

limr.~ f r r  ~_~® f(x) ~bq*~bq dSx d(ct) 
<f)Fsv = limr_,~ Ir__rI~ ~ * ~ q d S x  d(ct) (63) 

where box normalization has been imposed in the time domain and ~b~ is 
defined by Eq. (30). Equation (63) can be written in the equivalent form 

<f)FSF I ~  f(x) q~q*~bq d~x 
= i~ ~q,~bqd3 x (64) 

The important difference between (f>eon and <f>Fsv is due to the eA ° term 
in <f>eon • Clearly for the free particle <f>eon and ( f>vsv agree. Thus it is 
not surprising that relativistic free particles can be consistently described 
using existing theories, m In fact, if either A ° o r f i s  independent of the spatial 
coordinates, then Eqs. (62) and (64) agree; generally they do not. 

It is well known that the KG equation reduces (~4) to the Schr6dinger 
equation in the nonrelativistic limit, although the reduction violates Lorentz 
invariance and the gauge is altered. Nevertheless, under these circumstances 
the KG solutions are just the solutions of the Schr6dinger equation. Thus 
Eq. (64) is then the usual nonrelativistic definition of the expectation value. 
Under the same circumstances, however, (f)eon does not generally reduce 
to <"'>NROU, because of the term of order eA°/h~o. The magnitude of this 
discrepancy is calculated in Ref. 28 for the case in which A ° is an attractive 
Coulomb potential. There it is shown that <r>eon is 20 ~/o larger than <r>FSF 
for the 2P state of a 7r+-~r - system. 

As remarked earlier, the FSF can be linked to conventional quantum 
field theory. First observe that the general solution of the free particle 
equation can be written as 

= fftA(k, exp(i~ot -- i k .  x) ct~ ~') 

× exp [--~-~-- \ - j -  -- k -  k dSk c (65) 

11 This definition is used by Feshbach and Villars ~18~ and also by Bjorken and Drell. (~ 
See Ref. 28 for additional details. 
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where A(k, co) is an arbitrary expansion coefficient. Now, conventional 
quantum field theory assumes that any given elementary particle has a unique 
rest mass, say m0, which can be measured to an arbitrary degree of accuracy'. 
This assumption corresponds, here, to asserting that only a single mass 
state contributed to the wave function; thus 

A(k, co) = b(k, co) 3 (h 2 ~ -  ~°2 -- h2k • k -- rno2C 2) (66) 

where b(k, co) is arbitrary. This delta function can be rewritten as (3a) 

{ 
h a - -  co  mo2c2~ ] = 3(co --  coo) + 3(00 + coo) (67) 

coo 
where 

coo(k) = (c/h)(moZc 2 + h2k 'k)  ~/2 > 0 (68) 

Substituting Eqs. (66) and (67) into Eq. (65) and evaluating the co integral 
yields 

--  iHTo2C2T 
¢(X, ct, "r) = e 2 ~ h  f i b ( k ,  coo) exp(icoot -- ik -  x) 

c dak 
q- b(k, --OJo) exp(--icoot -- i k .  x)] ,2h%o ° (69) 

The corresponding result for the antiparticle is 

~b*(x, ct, z)  im°~c2r f{b*(k, coo) exp[--i(o)ot -- k .  x)] 
= e - - 2 ~ h  

c d~k (70) + b*(k, --coo) exp[i(coot + k -  x)]) ~hx~ 

The ~- dependence of ~b and ~b* is now just a numerical factor which has 
no effect on the probability density (~b*~b) and can therefore be removed 
by a gauge transformation or, equivalently, by setting ~- = 0 in Eqs. (69) 
and (70). If  one now compares ~b(x, ct, 0) and ~b*(x, ct, 0) to the ~b operators 
of  quantum field theory, (1~.35)12 one observes that these functions are precisely 
the same when the coefficients b(k, coo) and b*(k, +O~o) are interpreted as 
particle creation and annihilation operators, respectively, and the coefficients 
b*(k,--coo) and b(k,--coo) are interpreted as antiparticle creation and 
annihilation operators, respectively. Thus the field operators of conventional 
relativistic quantum field theory can be derived from the FSF by assuming 
that only a single mass state contributes to the wave function and then 
replacing coefficients by the conventional manner of the second quantization 
formalism. 

~ Atso see Ref. t, p. 197. 
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I f  it is now required that every  field obeys microscopic causality, C2al 
i.e., any two lield operators either commute or anticommute for a spacelike 
interval, then, as Pauli t36) has shown, two fields having the form of Eq. (69) 
must commute for spacelike intervals. Thus one obtains the expected con- 
clusion that spinless particles are bosons. Furthermore, Weinberg (17~ has 
shown that microscopic causality also requires every particle to have an 
antiparticle. Finally, it should be noted that the usual theory of scattering (17) 
is applicable under the conditions specified above. 

8. APPLICATION OF T H E  FSF TO A S I M P L E  PHYSICAL 
E X P E R I M E N T  

In the preceding sections a theory has been developed which defines a 
mass operator and asserts that the state of  a particle is a superposition of 
mass states. Consequently the particle does not necessarily have a sharply 
defined mass. One may justifiably ask how this feature of the FSF can be 
reconciled with the existence of, for example, beams of particles having 
sharply defined masses. The answer to this question, as well as the related 
question of why mass is quantized, can be demonstrated by using the FSF 
to describe a particle beam interacting with a magnetic field. 

First consider how a particle beam may be obtained from an ensemble 
of charged particles moving in a static magnetic field with magnitude B. 
Without loss of generality a frame of reference can be chosen that has an 
origin about which the particles execute circular motion and the magnetic 
field is oriented parallel to the z axis. This assumes, of  course, that the 
particles of  differing rest mass have the same total energy and execute con- 
centric trajectories, and that the particles are not interacting with one 
another. Then the rest mass m0 of  a particle with charge e and total classical 
energy % is given by 

mo 2 = %~ - -  e2B2a ~ (71) 

where a is the radius of ~,ration. The usual interpretation of Eq. (7t) is 
that the total classical energy is given in terms of the rest mass and the 
momentum; however, the actual measured quantities are e~, e, B, and a, 
from which m0 is calculated. In other words, the energy and momentum 
are the independent observables. (a) Now the particle having rest mass mo 
can be observed by placing a detector at a or, alternatively, a beam of 
particles having rest mass mo can be obtained by putting collectors at all 
radii except a. Thus a beam of  particles having a particular mass mo can be 
obtained by eliminating all particles having a mass other than m0 • Quantum 
mechanically, this is equivalent to p r e p a r i n g  a pure mass state by eliminating 



Quantum Mechanics of Relativistic Spinless Particles 873 

contributions from all other mass states. Once the pure mass state is obtained, 
then the wave function describing the particle beam-magnetic field system 
can be renormalized. Let us quantify these results. 

The equation to be solved is Eq. (22), where the gauge is chosen such 
that 

At == --yB, Ao = A~ = A3 = 0 (72) 

Writing ~b(x, ~) as [exp(--iqr/2~h)] ¢(x) gives 

q¢(x) = p"p, ¢(x) (73) 

The solution to Eq. (73) has been derived by Lain ~)  and, for h = c = 1, 
it is 

¢(x) := exp[i(k~x 4- k~z -- et)] P(y)  (74) 

where 

and 

P(~) == exp(½i~ 2) gj(io~ -- i~:~); j == 1, 2 

s c2 .... i ! eB[ (y  4- kx/l eB f)2 

(75) 

(76) 

= ( m  2 - ~9/iieBi (77) 

The g~ are given in terms of  confluent hypergeometric functions, (~  namely 

gl(b, ~-') = F(k(1 + b), ~, r') (78) 

and 

g2(b, ~'3 = ~'1/2F(1( 1 + b) + ½ , 8 ,  ~") (79) 

The eigenvalue relation is 

rn0 z = q  : e 2 -  (2n-l- l ) ] e [ B ;  n - 0 ,  1,2,... (80) 

where as in the classical case it has been assumed that kz is zero. For a 
given energy E, the mass spectrum represented by Eq. (80) is discrete; 
otherwise it is continuous. This result is due to the field configuration and 
is consistent with the discussion in Ref. 26. The general solution can be 
written as 

¢(x, r) = • f A (p ,  l)[exp(--iqT/2~h)] ¢~,z(x) dE (81) 
/ 

where p and I represent the energy and momentum eigenvatues, respectively. 
As a check of  the quantum mechanical result, let us demonstrate the 

classical correspondence, Employing Eq. (24), one finds 

2 t e l  B<y,  2> = 2n 4- 1 (82) 
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which, when substituted into Eq. (80), yields 

q ~= e ~ - -  2e~'B2(>'n2} (83) 

Noting that the classical time-averaged value of y2, denoted by ();2}t, iS 

(yZ>t = ½-a z (84) 

it is seen that the classical and quantum results agree in the classical limit, 
as they should. 

If a particle beam has been prepared experimentally as described at the 
beginning of this section, then a pure mass state exists and is treated analyti- 
cally by defining 

A ( p ,  t) = B(p ,  l) 3(p  - -  E) ~,~ (85) 

where B ( p ,  t) is a factor fixed by renormalizing the particle beam-magnetic 
field system. Thus a beam of particles having a sharply defined mass mo 
can exist because the system has been prepared such that all mass states 
other than m0 are eliminated. 

The particle beam-magnetic field system illustrates an important 
aspect of the FSF. In particular, the square of the rest mass [q in Eq. (73)] 
is an observable that depends on the four-vector potential. This point of 
view has been suggested by Cooke (s) and more recently by Feynman et al. (a~) 
If  the electromagnetic potential is perturbed, then the observable rest mass 
can be altered. Furthermore, since the operator p"p, is Hermitian on L2(x, ct)  
for an arbitrary four-vector potential, it can be inferred that the eigenvalues 
q are real and that the set of eigenfunctions {¢~,~(x)} of pup, span the space 
U(x, ct). Therefore {¢~.~(x)} can be used as a basis set in terms of which a 
perturbation calculation of the rest mass change can be made. 

As an example, suppose that in addition to the experiment described 
previously an independent experiment is performed which is identical to the 
first except for the magnitude of the magnetic field. It is important to 
emphasize that the location of the experimentalist's tools, e.g., the particle 
detectors or collectors, has also not changed. If the perturbing four-vector 
potential {a,} is 

al = y6b, a0 - as = aa = 0, t ~ t < ~ B! (86) 

then one can ask what rest mass will be observed at the gyration radius a. 
This question can readily be answered. 

Making use of the completeness condition on the wave function, 
it can be shown that the fi.rst-order difference in the squared rest mass is 

mo ~ = f (~),~(x))* Qc~,~,z(x) d4x (87) 
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where 

{ e a " ~  eOa" I Q ~ i ~x. ) ~x ~ + 2e2A"a~ (88) 

The quantities mo and ¢~,~(x) are given by Eqs. (80) and (74), respectively, 
and m 1 is the rest mass correct to first order of the perturbed system. 
Performing the necessary integrations yields 

ml 2 = m02 + (2n + 1) !e!  ~ ,  n ..... 0, 1,... (89) 

Solving Eq. (89) for mo 2 and substituting into Eq, (81) gives 

ml 2 = e 2 -- (2n 4- 1) i el (B -- ~B) (90) 

This result is the same as that obtained by solving Eq. (73) directly for a 
four-vector potential {A, 4- a,}. Perturbation theory has been used here 
primarily because it illustrates the usefulness of the completeness condition 
on the wavefunction, and also because perturbation theory is applicable 
for an arbitrary four-vector potential, including those for which the Klein- 
Gordon equation cannot be solved. 

A P P E N D I X .  DIRECTION OF P A R T I C L E  P R O P A G A T I O N  FOR THE 
CASE OF SCATTERING FROM A STEP POTENTIAL 

and 

Recall that 

--ili i,l,* 8~b ¢s 8~b* ] eA" ~ .~  
pV.-  2m \" ax°- ] -  k T- - 

(Al) 

region I: (A °, A 1) = (0, 0) 
(A2) 

region lI: (A °, A 1) ....... (c~, 0) 

For the t and x components one has 

--ih ~¢ e¢s* ] eA o 
(A3) 

ih ¢ 
PV1 = 2h5 (¢* Tx-x -- ~b ~ - - )  (A4) 

respectively. One can now determine the propagation direction for a given 
plane wave solution in a specified region. These results are tabulated in 
Table II. 
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H , '  

Region 

Table lI. Propagation Direction of Plane Wave Solutions" 
i iiiii i i 

V ° V ~ Propagation direction 

e ~°~ hoJ/~e -- Forward in t 

e - ~ ° ~  --ho~/r~c -- Backward in t 

e ~ -- --hk/t~ Backward in x 

e -~:~ -- h k / ~  Forward in x 

II e i~°~ (hw .- e~)/thc -- Forward in t if hoJ :> e~; 
backward in t if hoJ < ec~; 
stationary in t if ho) = e~ 

e - i ~  (--hoJ -- e~)/rhc -- Backward in t 

e ~k~ -- --hk/fft Backward in x 

e -tk~ -- hk/r~ Forward in x 
llllllll i 

The quantities oJ, k, and e are all real and positive. 
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