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Flow in Porous Media III: Deformable Media 

S T E P H E N  W H I T A K E R  
Department of Chemical Engineering, University of California, Davis, CA 95616, U.S.A. 

(Received: 12 July 1985; revised: 10 March 1986) 

Abstract. Stokes flow in a deformable medium is considered in terms of an isotropic, linearly elastic 
solid matrix. The analysis is restricted to steady forms of the momentum equations and small 
deformation of the solid phase. Darcy's law can be used to determine the motion of the fluid phase; 
however, the determination of the Darcy's law permeability tensor represents part of the closure 
problem in which the position of the fluid-solid interface must be determined. 

Key words. Darcy's law, elastic media, boundary conditions, closure. 

O. Nomenc la ture  

Roman Letters 

A ~  

M~e 

ei 
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n/3~ 

P~ 

ro 
r 

t 

T,o 

interfacial area of the 13-o- interface contained within the macroscopic 
system, m 2 

interfacial area of the /3-0- interface contained within the averaging 
volume, m 2 

area of entrances and exits for the o--phase contained within the macro- 
scopic system, m 2 

interracial area of the /3-0 ,  interface contained within a unit cell, m 2 
area of entrances and exits for the 0.-phase contained within a unit cell, m 2 

Young's modulus for the o--phase, N/m 2 
unit base vectors (i = 1, 2, 3) 
gravity vector,  m2/s 

height of elastic, porous bed, m 
unit base vector  ( =  e3) 
characteristic length scale for the to-phase, m 
characteristic length scale for volume-averaged quantities, m 
unit normal vector  pointing from the /3-phase toward the o--phase (nt3~ = 

pressure in the /3-phase, N/m 2 

P~ - PEg" r, N/m 2 
radius of the averaging volume, m 
position vector,  m 
time, s 
total stress tensor in the to-phase, N/m 2 
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T ~ hydrostatic stress tensor for the o--phase, N/m 2 
u~ displacement vector for the o--phase, m 
~V averaging volume, m 3 
V,, volume of the to-phase contained within the averaging volume, m 3 
v~o velocity vector for the to-phase, m/s 

Greek Letters 

e,o V,o/T', volume fraction of the o)-phase 
p,o mass density of the w-phase, kg/m 3 
/xo shear coefficient of viscosity for the/3-phase, Nt/m e 
/z~ first Lam6 coefficient for the ~r-phase, N/m 2 
,k~ second Lain6 coefficient for the g-phase, N/m e 
K~ bulk coefficient of viscosity for the/3-phase, Nt/m e 
"r~ T ~ -  T ~ a deviatoric stress tensor for the o--phase, N/m 2 

1. Introduction 

Deformable porous media are of interest to the seismologist (Bourbie, 1984) who 
is concerned with wave propagation phenomena, and the engineer who seeks a 
fundamental understanding of the processes that take place during the drying of 
cellular material (Crapiste et al., 1984). Soil scientists are concerned with the 
rapid motion that takes place during earthquakes and the quasi-steady motion 
that occurs during subsidence (Narasimhan and Witherspoon, 1977), while 
chemical engineers must deal with the compaction that takes place during 
filtration processes (Tiller and Horng, 1983). All of these systems have in 
common a structure that can be loosely identified as a mixture of solid and fluid, 
and they have in common the characteristic that they are deformable. For 
granular porous media this deformation most likely takes place in terms of a 
re-orientation of the solid particles, while the solid phase of cellular materials is 
more likely to undergo an actual swelling or shrinking depending on the moisture 
content. Processes of interest to seismologists are likely to consist of both of these 
types of deformation. 

In terms of practical problems, there would appear to be none in which the 
solid matrix could be adequately described in terms of an isotropic, linear elastic 
material. However, one can easily construct a porous medium of elastic spheres, 
thus the possibility exists for comparing theory and experiment in the absence of 
adjustable parameters. For example, the system shown in Figure 1 is easy to 
construct, and both the pressure profile and the deformation at the top of the bed 
can be easily measured as a function of flow rate. This is precisely the type of 
experiment that is done with compressible filter cakes (Tiller and Horng, 1983), 
and from those studies it is clear that eliminating the effect of the side walls is not 
a trivial problem. 
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While the isotropic, linear elastic solid matrix might not be a predominate 
feature of practical problems, it does contain the essential feature of all deform- 
able porous media, i.e., the location of the phase interface is a crucial part of the 
problem. It is this aspect of the problem that has been ignored in all prior work 
and it is only considered here in terms of small deformation theory. In the first 
study of deformable porous media, Biot (1941) avoided the closure problem 
entirely by means of an intuitive homogenization of the governing equations, 
while later studies have been based on mixture theory and constitutive assump- 
tions (Crochet and Naghdi, 1966). In this work, the closure problem is attacked 
directly in the manner described in Parts I and II of this paper (Whitaker, 
1986a,b), and this allows for a comparison between theory and experiment in 
terms of parameters describing the geometry. This type of analysis can be 
extended to nonlinear phenomena, large deformations, and the case in which 
particle-particle interaction plays a crucial role in the deformation process. 
However, it is always best to begin a new development with the simplest case, for 
this provides both a connection with prior work and a well-understood special 
case with which future studies can be compared. 

2. Theory 

The general system under consideration is illustrated in Figure 2, and the general 
problem that we would like to solve can be stated as 
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008 ~_ V �9 (p~vs) = 0, (2.1) 
Ot 

0v~ = _ 
P8 at V p s + P 8 g + / ~ 8 V ' ( V v 8 + V v ~ ) +  

(2.2) 
+(Ks - ~ m ) v ( v  "vs) 

B.C.1 v t3=v~,  at sCfl~ (2.3) 

B.C.2 n8~.'[ '8 = n o ~ ' T ~ ,  at s r  (2.4) 

Op,, 
- - +  V �9 ( p ~ v ~ )  = 0 ,  ( 2 . 5 )  
Ot 

0u 
P~ ~ = o,~g + V �9 To. (2.6) 

Here we have neglected convective inertial effects with the idea that they will be 
negligible for most problems of interest. In addition, we have neglected any 
mechanical effects associated with the particle-particle contact area. These 
effects, which are primarily electrostatic in nature, are especially important in 
soils and fine powders and must be taken into account in an extension of the 
current theory. 

Fig. 2. Two-phase system. 
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A solution of the problem given by Equations (2.1) through (2.6) would 
provide information about the propagation of acoustic waves in a saturated, 
deformable porous media. However, that problem will be part of a subsequent 
study, and at this point we wish to identify the constraints that must be satisfied in 
order that the boundary value problem be steady and the flow incompressible. 
We begin this delineation with the continuity equation for the fluid phase, and 
express Equation (2.1) as 

v . , ,  = - { ~ ( ~ ) + ~ ( % .  v o~,)} 

0 1 

(2.7) 

In proposing these order of magnitude estimates, we have assumed that 
significant changes in the density occur during the time t and over the distance 
L. For the wave-propagation problem t would be the inverse of the frequency 
and L would be the wavelength. The left-hand side of Equation (2.7) consists of 
three terms of order vo/g 0 when there is a pressure-driven flow in the porous 
medium, and for that case Equation (2.7) reduces to 

V �9 v ~  = 0 ( 2 . 8 )  

when the following two constraints are satisfied 

Pt3vt3t~>l, ( ~ ) ( O ~ )  ~> 1. (2.9) 

For practical applications one would want to relate Apt3 to the pressure field in 
order to determine when these constraints are satisfied; however, the form given 
by Equations (2.9) is sufficient for our purposes. 

The fact that the continuity equation takes on the incompressible form when 
the constraints indicated by Equations (2.9) are imposed does not automatically 
mean that the compressibility effects in the momentum equation can be dis- 
carded. In order that these effects be small in Equation (2.2) we require that 

/x~ V 2v~ >>/x~ V (V �9 v~) (2.10) 

since /x~ and *:8 are the same order of magnitude. If we use the estimates 

V2% = O(%/~) ,  

V ( V "  v t 3 ) = - V { I ( ~ - ~ )  + l ( v t 3  �9 VOfl)} (2.11) 

[Po \ Lt }' pl3L 2 J 



132 STEPHEN WHITAKER 

we see that Equation (2.10) leads to 

O~v~t tL~>l  ' (L~2(  08 
Apt3g, \g~/ \ ~ !  \~---O~] >> 1. (2.12) 

These constraints are more easily satisfied than those given by Equations (2.9) 
and they allow us to simplify Equation (2.2) to 

0vt3 
Pt30t = -  VP0 +Peg+/'Z/3~72V/3" (2.13) 

In order that the local acceleration terms in Equations (2.2) and (2.6) be 
negligible, we require 

p,~t E,~t 2 
OrS2 ~ ~> 1, p~r2 >> 1 (2.14) 

in which E~ represents Young's modulus for the solid phase. To obtain the first of 
these we have again assumed that the fluid velocity undergoes significant changes 
over the small length scale ~0, and we have required that the local acceleration 
be small compared to the viscous forces. The second of the restrictions given by 
Equation (2.14) results from the requirement that the local acceleration for the 
solid phase be small compared to the elastic forces. In estimating the elastic 
forces we have assumed that significant variations in the displacement vector field 
occur over the macroscopic length scale, L. It is important to note that the 
no-slip condition for the fluid velocity, vt3, gives rise to a characteristic length 
scale of g~ for the fluid velocity when we are dealing with a process of flow 
through a porous media. For the displacement vector u~, there is boundary 
condition comparable to the no-slip condition, and a little thought will indicate 
that u~ undergoes significant variations over the macroscopic length scale. This 
difference in the characteristic length scales for v~ and u~ gives rise to a 
significant difference in the structure of the closure scheme for the solid 
mechanics problem. 

When the constraints given by Equations (2.14) are satisfied (along with those 
given by Equations (2.9) and (2.12)) the problem under consideration simplifies 
to 

4 V �9 vt3 = 0, (2.15) 

0 = - V Pt3 + Pt3g +/x~V2vt3, (2.16) 

B.C.1 vt~=v~, at si/t3~, (2.17) 

B.C.2 n~-Tt3  = n ~ -  T~, at s~=, (2.18) 

0 = p,~g + V �9 T,~. (2.19) 

At this point the problem has been reduced to a quasi-steady problem, i.e., no 
time derivatives appear in the governing differential equations, but the boundary 
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condition given by Equation (2.17) gives rise to a time dependency. We will 
comment further on this point in subsequent paragraphs; however, at this point 
we impose the constraint that the intrinsic phase average velocity is large 
compared to the velocity of the solid phase. The latter can be estimated as u~/t, 
and this leads to yet another constraint on the characteristic process time given 
by 

(vt3)t3t >> 1. (2.20) 
U~ 

If this constraint is not imposed, the problem is quasi-steady and the volume- 
averaged equations (which contain the effect of Equation (2.17)) become tran- 
sient equations. In this analysis, the constraint given by Equation (2.20) will be 
imposed and the final form of our boundary value problem is given by 

V �9 vt~ = 0 ,  ( 2 . 2 1 )  

0 ~-- --  ~ p/3 "q- P/3g -~- /-L/3~72V/3, (2.22) 

B.C.1 v ~ = 0 ,  on ~/t~, (2.23) 

B.C.2 nt3~ �9 T~ = n ~ .  T~, at ~/t3~, (2.24) 

0 = p~g + V �9 "1"~. (2.25) 

In this particular problem it is convenient to remove the effect of gravity by use 
of the definitions 

T~ = T~ Pt3=p~-pt~g "r (2.26) 

in which r is the position vector and T ~ is the solution for the hydrostatic problem 
given by 

B.C.2 -nt3~pt3g- r = n ~ .  T ~ at ~/t3~, (2.27) 

0 = p~g + V �9 1 "~ (2.28) 

When the fluid phase stress tensor is represented by 

T~ =-Ip~+txt3(Vvt3+ Vv~), at ~r (2.29) 

the problem represented by Equations (2.21) through (2.25) can be expressed as 

V �9 v~ = 0, (2.30) 

0 = - VP~ + ~V2v~,  (2.31) 

B.C.1 v ~ = 0 ,  on M ~ ,  (2.32) 

B . C . 2 - n m r P ~ + / ~ ( n ~ ' V v ~ + V v ~ - n ~ ) = n ~ ' ~ - ~ ,  a t ~ ,  (2.33) 

0 = V .'r~, (2.34) 

"r~=/z~,(Vu~ + Vur )  + A,~IV "u~, (2.35) 
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Here tz~ and h~ represent the Lame coefficients, both of which are the same 
order of magnitude as Young's modulus, E~. 

It should be clear that, in the steady form, one can solve the flow problem 
independently, and in order to connect Equations (2.31) and (2.32) with the 
development given in Part I of this paper (Whitaker, 1986a) a bit of analysis is 
required. We begin by forming the intrinsic phase average of the second of 
Equations (2.26) to obtain 

(P~)~=(p~)~-p~g-(r) e. (2.36) 

The position vector can be expressed as 

r = ro + ~q (2.37) 

in which ro locates the centroid of the averaging-volume and ~1 locates points in 
the /3-phase contained within the averaging-volume. Use of Equation (2.37) in 
Equation (2.36) yields 

(po)t~ = (pt3)t~ _ Pt3g" to - Peg" (,q)t~ (2.38) 

and from the work of Carbonell and Whitaker ((1984), Section 2) we have the 
estimate 

(~!) ~ = O(~ ' rZ~r  E~) (2.39) 

in which ro is the radius of the averaging-volume. Use of this result in Equation 
(2.38) leads to 

(Pt~) ~ = (Pt~) ~ - rag"  ro + O[o~gro(ro/L)] (2.40) 

where one should keep in mind that, in this case, the length L tends to infinity for 
a homogeneous system. In systems of practical importance, a pressure change on 
the order of pt3gro will be unimportant and the factor of (ro/L) in Equation (2.40) 
allows us to use 

(Pt3) t3 = (pt~) t3 - p~g. r, (2.41) 

Here we have dropped the subscript on the position vector locating the centroid 
of the averaging volume, since both (P~)~ and (pa)t3 are evaluated at the centroid 
and no confusion should result from replacing r0 with r in Equation (2.41). 

In addition to a relation connecting (Pt~) t3 and (p~)t3, we need to r e l a t e / 5  to/5t3 
so that the solution of the closure problem in Part I can be used in this problem. 
From the second of Equations (2.26), and the decompositions 

we can use Equation (2.40) to obtain 

(2.42) 

Pt3 = Pt3 + O[pt~g ro( ro/ L ) ] (2.43) 
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In Part I of this paper, the estimate of i0t3 was given by 

10t3 = O(/x~(v~)~/(t3) (2.44) 

and we can use this to express Equation (2.43) as 

P~ =/5t3 (2.45) 

whenever  the following constraint is satisfied 

""<'">"IrLl >> (2.46) 
p o g r o ~  Jl_ro] 

On the basis of Equations (2.41) and (2.45), we can use the development  of Part I 
to express the solution to Equations (2.30) through (2.32) as 

V �9 (v~) = 0, (2.47) 

K 
(vt3) . . . .  V (Pt3) ~ , (2.48) 

r162 = e~ 1B " (vt3), (2.49) 

I5~ = , ~  lxt~b " (v t~ >. (2.50) 

Here b and B depend only on the geometry of the system and can be determined 
by the boundary value problem outlined in Part I, provided the position of the 
]3-o- interface is known for some unit-cell representation of the porous medium. 
In this respect, the fluid motion is coupled to the solid deformation since the 
Darcy's law permeability tensor will depend on the deformation of the solid 
phase. 

It is of some interest to note that if the constraint indicated by Equation (2.20) 
is not imposed, the problem is quasi-steady and a few lines of analysis will 
indicate that the volume-averaged form of the continuity equation is given by 

4- V �9 (vt3) = 0. (2.51) 
Ot 

This is the form used by Biot ((1941), Equation 4.3) and it is quite correct for the 
quasi-steady problem. In a later paper, Biot ((1955), Equation 2.11) also in- 
corporated the boundary condition given by Equation (2.17) into Darcy's law to 
obtain a result resembling 

<v~> z = EflK.:  v<e~>~ +<v~>% (2.52) 

This form of Darcy's law is derivable using the method outlined in Part I of this 
paper, provided the following constraint is satisfied 

~ < (v~) ~. (2.53) 
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Under these circumstances Equation (3.3) of Part I is replaced by 

B.C.1 ~ = (v~) ~ -  (v~) t3, on s/t3~ (2.54) 

and the analysis can be repeated to obtain 

C-1 
(v~) t~ . . . .  [ V (p~)~ - p~g] + (v~) ~ (2.55) 

/~t3 

instead of Equation (3.36) in Part I. Some justification for the restriction given by 
Equation (2.53) is provided in Section 4. In this development we will impose the 
constraints given by Equations (2.9), (2.12), (2.14) and (2.20) so that the analysis 
is restricted to steady, incompressible flow in the presence of time-independent 
deformation. 

3. Volume-Averaging tor the Solid Phase 

Having dispensed with the analysis of the fluid phase in terms of the analysis 
given in Part I of this paper, we turn our attention to the solid phase. The 
equations under consideration are given by 

V �9 -r~ = 0, (3.1) 

"r~ = ~ ( V u ~  + Vu~r)+ ~ I V  "u~ (3.2) 

and we would like to develop the volume-averaged form of these equations, in 
addition to the displacement equation which is given by 

/x,~V2u~ + (/x~ + )t~) V (V �9 u~) = 0. (3.3) 

Here we have assumed that the Lain6 coefficients can be treated as constants. 
The averaging procedure for Equation (3.3) follows that given in Section 2 of 
Part I, and we simply note here that the phase average form of Equation (3.3) is 
given by 

I.Z,,lV "[V(U,~}+~IA~ n,~13u,,dAI+l fA~ li~" Vu~dA}+ 

+ (/~ + A~){V I V .  (u~} + ~  Ia~ ~ n ~  �9 u~ d A ] +  (3.4) 

+ - -  n ~ V  . u ~ d A  --0. 

While it is convenient to work with the phase average of the fluid velocity, we 
require the intrinsic phase average of the displacement vector field. Thus we 
make use of 

(u~)  = e~(u~) ~, u~  = (u~)  ~ + ~ (3 .5)  

and follow the development in Section 2 of Part I in order to express Equation 
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(3.4) as 

/2,.{ V "[E,~V(U,D'~+lfa~n,njfl,~dA]+-~IA~n,n3 �9 Vuo-dA}+ 

{[ ] +(p,o.+ho-) V e,~V-(uo-)'~+-~ = no-o'~,~dA + 

} +-~ = n,n3V "uo-dA =0. 

(3.6) 

Here we have used the approximation 

1 1 
- -  n~#(u ,~>  ~ d A  - n~  d A  ( u ~ )  ~ ( 3 . 7 )  

on the basis of the length scale constraint given by Equation (2.19) in Part I. We 
continue this line of analysis to obtain 

'L n ~ o  �9 V u ~  d A  = ~ n ~ #  �9 V fi~ dA - V e~" V ( u ~ )  ~ (3.8) 

so that Equation (3.6) can be simplified to 

/&,{eo.V2(uo.)~ V- [---~IA~o n,n3fi~ dA] + l f ~  n,n3. Va,~ dA} + 

{ [1 fA . f i~dA]+  +(m+,L)  E~VV-<u~>~+V ~ n~ ~t3 

+lfA } ~ n,~#V "/i,~dA --0. 

(3.9) 

This completes the spatial smoothing of Equation (3.3); however, we also need 
similar forms for Equations (3.1) and (3.2). The averaging procedure for Equa- 
tion (3.2) is identical to that presented above and leads to 

c~rlIA dA}+ <~>~=/x~{V(u~>~+(V(u~>~)r+ T (n~a~ + ~ n ~ )  

(3.10) 

The averaging procedure for Equation (3.1) begins with the phase average form 
given by 

i L n,~# �9 -r~ d A  = 0 v �9 <.~> + ~ ~ (3.1i) 
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and one makes use of 

to obtain 
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'r,~ = ('r,,) '~ +§ (3.12) 

�9 -1 L 
V �9 ("r,~) '~ + ~ ~ n,n3 �9 rr,, dA  = 0. (3.13) 

Here we have used Equation (2.20) of Part I. From Equations (3.2) and (3.10) we 
find that the spatial deviation of % is given by 

§ =/x~(~r fi~ + Igft r)  + A~l17 �9 6~ - (3.14) 

/ e : '  d A } -  ' � 9  dA}. 

When this result is used in Equation (3.13) we treat the area integrals and �9 as 
constants with respect to integration over A~, a in order to obtain 

- ' t  (n~. ,.~.n~)dA} 
[ �9 [ dA~ j+ 

(3.15) 
+/x~eT~2V�9 �9 -~ (n~06~+f~n~t3)dA + 

q- A~rE~r2V �9 V n~t3 " fi~ dA = 0. 

In order to use Equations (3.9), (3.10) and (3.15) to determine the volume- 
averaged stress and displacement, we need a representation for fi~ in terms of the 
dependent variables. This will be provided by the closure scheme which must, in 
addition, provide a means for locating the /3-o- interface so that the Darcy's law 
permeability tensor can be calculated using the closure scheme for the /3-phase 
momentum transfer problem. 

4. Closure 
The governing differential equation for fl= is obtained using the approach 
outlined by Crapiste et al. (1985) and illustrated in Section 3 of Part I of this 
paper. The result is given by 

'L 
o 

(4.1) 

and we need only develop the boundary condition at the /3-0- interface to 
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complete the formulation of the closure scheme. Use of Equation (2.35) in 
Equation (2.33) along with the obvious decompositions for P~, v~ and u~ leads 
to 

+ + + 

+/~t3 (nt3,~ �9 V ~'t3+ V Vt3" nr 

=/*~ (nt3~ �9 V (u,~) ~ + V (u~) ~" nt~ ) + (4.2) 

+ ~ n ~ V  �9 ~ ,  at s ~ .  

The no-slip condition given by Equation (2.32), along with the length scales 
associated with ~ and (v~) ~, allow for the simplification 

V{~ >> V (vt3) t3 (4.3) 

and Equation (4.2) takes the form 

- n~P~ + t~ (nt3~ �9 V ~,, + V ~r n ~ )  

+ .~n~,, V �9 (u~,) ~ + ~ n ~  V �9 ii~, at s ~ ,  

It is important to note that a similar simplification with respect to the displace- 
ment vector field does not exist since there is no constraint for u~ that is similar to 
that given for the velocity by Equation (2.32). However, there are some com- 
ments that we can make concerning the relative magnitudes of (u~) ~ and ~ ,  and 
this is as good a place as any to make them. 

If we think of a porous system made up of solid spheres and air undergoing the 
compression process illustrated in Figure 3, one can argue that the stress at the 
/3-o- interface is negligible, i.e., 

nt3o-- Tt3 = 0, at Mt3~. (4.5) 

Under these circumstances, the boundary condition given by Equation (4.2) can 
be expressed as 

/~,~(n~ �9 V ~ +  V/ l~ .  n ~ ) +  ) ~ n ~  V . ~  
\ / 

(4.6) 

= - [~ ,~ (n t~  �9 V (u,~)~ + V(u,~) '~- nt3,,) + a ,  nt3,, V .  (u~,)"], agt3~. 

This leads to the order of magnitude estimate given by 



140 

1 
STEPHEN WHITAKER 
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Fig. 3. Compression for an elastic porous medium. 

V6~ = O(V (u~) ~) (4.7) 

and we conclude that the spatial deviation of the displacement vector is related to 

the intrinsic phase average value by 

. ] 

This result is analogous to the situation that occurs during diffusion in porous 
media (Ryan e t  a l . ,  1981), for in that case there is no boundary condition 
comparable to the no-slip condition and one arrives at a condition for the 
concentration field that is comparable to Equation (4.8). As one might expect, a 
similar situation is encountered in the analysis of heat conduction in multiphase 

systems (Nozad e t  a l . ,  1985). 
Since Equation (4.8) requires that 

~ ~ (u,,) ~ (4.9) 

there will be certain simplifications available to us; however, Equation (4.9) does 
not mean that terms involving $~ can be discarded carelessly. In writing an 
inequality such as that given by Equation (4.9) for a vector quantity, the intent is 
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that the largest component of (u~) ~ is much, much greater than any component of 

~ .  For the case of pure extension this means that 

a~z ~ ( U~ ) ~ , ao~ ~ ( u~ ) ~ (4.10) 

but it does not mean that fio~ is small compared to (u,~)7 since the latter is zero. It 
is of some interest to note that if the time scales for fi,~ and (n~) ~ are similar, 
Equation (4.9) immediately translates into Equation (2.53) thus supporting the 
modified form of Darcy's law given by Equation (2.55). 

We now return to the boundary condition given by Equation (4.4) and follow a 
line of analysis that parallels our study of the stress condition for two-phase flow 
in a rigid porous medium. Following Equation (3.12) of Part II (Whitaker, 
1986b), we take the area-average of the normal component of Equation (4.4) 
and consider the volume-averaged quantities to be constant with respect to 
integration over At3~. This leads to 

-(Pt3) ~ +(-/5t3 + 2 p ~ n ~  �9 V~et3 - nt3~ ) 

= 2/~r V(ur162 -(u,~) r + (4.11) 

+ ( 2 ~ n t ~  �9 Vfi~ �9 nt~)t3~ + ( ~ V  �9 h~)t3~. 

Here the symmetric tensor G depends only on the geometry of the/3-o- interface 

and is given explicitly by 

= n r  d A .  (4 .12)  

At this point we put forth a plausible approximation represented by the following 

inequality 

(V~,~)t3~ ~ V(u~)% (4.13) 

The thought here is that the area-average of a deviation will be much, much less 
than the order of magnitude of the deviation, i.e., 

( V~)t3,~ ~ V~,~ (4.14) 

and when this result is used with Equation (4.7) we obtain Equation (4.13). This 
allows us to express Equation (4.11) as 

-(Pt~) t~ = 2/x,~G : V (u,~) '~ + a,, V �9 (u,~) '~ + 

+ (Pt3 - 2P~t3nt3~ " V ~  �9 n ~ ) ~ .  (4.15) 

Use of this result in Equation (4.4) allows us to eliminate the volume-averaged 
pressure from the inteffacial stress condition, and Equation (4.4) takes the form 

=/.~,~(nt3o. �9 V(u~)~+ V(u,~)~. nt3~)-2~,~G: V(u,~)~nt~,~ + (4.16) 

+/~o*(nt~o- �9 V fi,~ + V fi,~ �9 ntis) + A,~nt3~ V �9 fi,~ 
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The point of view illustrated by Equation (4.13) can again be used to extract the 
obvious simplification from Equation (4.16) which is given by 

-n~, , /5~ + ~ (nt3o �9 V i't3 + V ~'~ �9 n~,,) + 2/~o-G : V (uo)~ - 

- / , ~ ( n ~  �9 V {u~) ~ + r (u~) ~ .  n ~ )  (4 .17)  

= / , ~ ( n ~  �9 V fi~ + V fi~. n ~ )  + )t~no~ V �9 ~ ,  at ~/~.  

The pressure and velocity deviations can now be expressed in terms of the phase 
average velocity by means of Equations (2.43) and (2.44), and this leads to 

~ ( n ~  �9 V ,~  + V ,~  �9 n ~ )  + A~n~V �9 ,~  

= tt~Hl3 �9 (vt3) + 2/xo~G: V(u,,)'~n~,, 

/x,,(nt~r �9 V (ur r + V(ur r n~r at d~, .  (4.18) 

Here the tensor Ht3 is associated with the hydrodynamic effects and is defined by 

H~ = e a l ( - n , ~ b  + n ~  �9 VB + VB r .n0,, ). (4.19) 

It should be kept in mind that H~ is available from the solution to the closure 
problem described by Equations (3.13) through (3.17) in Part I. 

At this point we note that the governing differential equation for fi~ (given by 
Equation (4.1)) is homogeneous, while the nonhomogeneities in the boundary 
condition given by Equation (4.18) can be represented in terms of (v~) and 
V (u~)% Without going into the details that were covered in Parts I and II, we 
simply note that R~ can be expressed as 

~ = C- (v~) + ~ : V (u~) ~ (4.20) 

in which C is a second-order tensor relating R~ to the phase average velocity and 
is a third-order tensor relating i~ to the gradient of the intrinsic phase average 

displacement vector field. 
Since the closure problem will be solved in terms of a unit cell, the boundary 

value problem for the second-order tensor C is given by 

t*~ v2c + (t*~ + x~) V ( v  �9 C) 

_ 1 

C)] dV, (4.21) 
V~ 

B.C.1 /x~(n~.  V C + V C r . n ~ ) + A ~ n ~ V ' C = / x o H o ,  at A~,~, (4.22) 

B.C.2 C(r+ e,) = C(r), i = 1, 2, 3, (4.23) 

(C) ~ = 0. (4.24) 

The governing equation for the third-order tensor ~ is identical in form to 
Equation (4.21) and is given by 
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i f [  ] t '~v2~+(t'~+~)v(v ~)=-V~_ ~v~v ~ v 2 ~ + ( ~ + ~ ) v ( v  "~) dV 

(4.25) 

however, the boundary condition at the /3-o- interface can not be conveniently 
expressed in dyadic notation. For clarity, we use Cartesian tensor index notation 
to obtain 

\--~--xj ! 1 \ Oxi l 
(4.26) 

= - p,,~(nkSse + 6skne) + 21~nsGek, at At~. 

Here we have used the representations 

3 
V = ei ~x~' nt3~ = e i n l ,  ~ = eieiekDqk 

I = e~es6 u, G = eiesG u (4.27) 

in which the summation convention has been used throughout. The vector ei 
represents the rectangular, Cartesian base vectors, and in terms of the traditional 
nomenclature we express ei as 

el  = i, e2 : j, e3 = k. 

The periodicity condition provides the remaining boundary condition 

B.C.2 ~ ( r+s  i = 1 , 2 , 3  (4.28) 

and we again require that the average be zero. 

(@)~ : 0. (4.29) 

While the closure problem for deformable media might seem to be excessively 
complex, the typical one-dimensional problem would require the determination 
of only three components of C and three components of @ in addition to the 
solution of the hydrodynamic closure problem. 

If shear deformation of the solid phase can be neglected at the volume- 
averaged level, Equation (4.18) simplifies to 

/~(nt3~ �9 V . ~ +  V fi~.  ntis) + A ~ n ~  
# 

=/~sH~ �9 (vt3) +2g~nt3~(V �9 (u,~}~)(G : I -  1) (4.30) 

and the third-order tensor ~ is reduced to 

= ft. (4.31) 

Under these circumstances, Equation (4.20) simplifies to 

fi~ = C-ivt3} + f(17" (u~}~), negligible macroscopic shear (4.32) 

and the boundary value problem for f is given by 
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1 f [ /~ r  ' (4.33) + + �9 f)  

B.C.1 ~,~(n~- V t +  V "  n~,~) +)t~n~,~(V-i) 

= ~ l x ~ n ~ ( 6 : l -  1), at A ~ ,  (4.34) 

B.C.2 f(r + e,) = f(r), i = 1, 2, 3, (4.35) 

(~)" = O. (4.36) 

Closure problems of this type have been solved by Ryan et al. (1981) in a study 
of diffusion and reaction in porous media, by Eidsath et al. (1983) in an analysis 
of dispersion in porous media, and most recently by Nozad et al. (1985) in an 
investigation of heat conduction in multiphase systems. 

It is of some interest to note that if the solid phase is composed of isotropic 
particles, the symmetric tensor G takes the form 

G = �89 I, for isotropic particles (4.37) 

and the boundary condition given by Equation (4.34) is replaced with 

/x~(nt3,~. Vf+ Vf.n~,~]+/A~n~,~(V-[)=0, at Am,. B.C.1' (4.38) 

At this point one can follow the type of development given in Appendix B of Part 
I or the Appendix of Part II (Whitaker, 1986a, b) in order to prove that [ is zero. 
Under these circumstances the deviation displacement vector fl~ is independent 
of the deformation V �9 (u,,) ~, and this indicates that the geometry of the /3-o- 
interface plays a crucial role in the closure problem. It is easy to show that 
Equation (4.37) is true for spheres and cubes, and a little throught will suggest 
that it is true for any regular polyhedron in 3-space. 

We now return to the general problem, as illustrated by Equation (4.20), and 
make use of that result in Equation (3.9). In doing so, we repeatedly make use of 
approximations of the type 

Vfi~ = VC �9 (v , )+  V ~ :  V(u,~) '~ (4.39) 

and the basis of the length scale constraints discussed in Part I of this paper. The 
closed form of Equation (3.9) is given by 

/x,~{e,~V2(u~)'~ + IV- (H~)-  (vt3)) + IV. (M~): V(u,~)'~) + 

+ H ~  )- (vt3) + M~): V (u~)~/ + J (4.40) 

+ + v } = 0. 
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Here we have used a superscript in parenthesis to indicate the order of the 
various tensor coefficients that are defined by 

l fA I ~A H ~  ) = ~ no-t3" V C d A ,  H ~  ) = ~ no-t3 V �9 C dA, 
o-13 ~13 (4.41) IIA IIA H ~  ) = ~ n,~t3G d A ,  H ~  ) = ~ n,,  0 �9 C dA, 
o-/3 ~t3 

I I A  M(B 3) I I A  -- �9 -- n ~ V  �9 ~ d A ,  M(A 3) -~ - ~ n ~  V ~ O A ,  -~ ~ 

(4.42) 

M~ ~ = ~1 ~o n ~  dA, M~ ) = ~ ~,n~ �9 N dA. 

If we require the tensor coefficients in Equation (4.40) to be isotropic and constant, 
we obtain 

~ . ( ~  + m2)V2(u~F + 

+ [/~,~(ml+ m2)+ (/-t,, + A,~)(e,~ + MD)] V ( V -  (u,~)'~) + (4.43) 

+ [ /t~HA + (I~ + A,~)HB](Vt3) = O 

in which ml and m2 are the two distinct components of M~ ), MD is the single 
distinct component of M~ ), and HA and HB are the distinct components of H ~  ) 
and H ~  ), respectively. If the velocity is expressed in terms of Darcy's law, one 
recovers the precise form of Biot's ((1941), Equation 4.1) original work which 
has recently been examined with great care by Coussy and Bourbie (1984). The 
coefficients in this work are different than those given by Blot, because he began 
his analysis with homogenized forms of Equations (3.1) and (3.2) with the idea 
that the material coefficients would be determined by macroscopic experiments. 

The result given by Equation (4.40) represents the closed form of the volume- 
averaged version of Equation (3.3), and for most problems we will also require 
the comparable form for the constitutive equation given by Equation (3.2). This 
is obtained by the use of Equation (4.20) in Equation (3.10) to obtain 

-~ ~rl(ju~o.m(u4)-~/~o.M(F4'): ~(111o.) cr -~- (4.44) 

Here we have used the nomenclature indicated by Equations (4.41) and (4.42) 
and the tensor coefficients in Equation (4.44) are expressed in Cartesian tensor 
notation by 
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1 

H~) = -~ f A~ niCik(eiejek + eieiek) dA, 

1 fA In,~ �9 C dA, 

M~ ) = -~ niDjke(eie,;ekee + ejeiekee) dA, 

M P  ) = Inr d a .  

Here we have used the representations 
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(4.45a) 

(4.45b) 

(4.46a) 

(4.46b) 

n ~  = eini, C = eiekC/k, ~ = ejekeeDjke (4.47) 

and one must be careful to remember that n~t3 : - n ~  so that sign errors are not 
generated in Equations (4.26), (4.45a) and (4.46a). 

If one considers an isotropic system and makes use of Equation (4.15) in 
Equation (4.44), the general form of Biot's ((1941), Equation 2.11) original 
expression for the stress in terms of the strain and the fluid pressure is recovered. 

5. Solution of the Closure Problem 

In order to determine the coefficients in the displacement vector equation given 
by Equation (4.40), or in the stress-strain relation given by Equation (3.10), one 
need only solve the local boundary value problems given by Equations (4.21) 
through (4.29) in addition to the closure problem given in Part I of this paper. 
Examples of the numerical methods that can be used for problems of this type are 
given by Ryan et al. (1981), Eidsath et al. (1983), and Nozad et al. (1985). 
Solution of the closure problem removes the coefficients in the volume-averaged 
equations from the list of adjustable parameters; however, the "adjustment" still 
takes place in terms of the geometry of the unit cell to be used in conjunction 
with Equations (4.37) and (4.38), it is clear that the solution to the closure 
problem will be sensitive to the geometry of the /3-o- interface within the unit 

cell. 
For the systems of spheres illustrated in Figures 1 and 3, one could choose a 

unit cell such as that shown in Figure 4. Within the constraints of small 
deformation theory, V u~ ~ 1, one can solve the closure problem with the 
geometry specified by the unit cell. This will provide the coefficients in Equation 
(4.40) in addition to the Darcy's law permeability tensor in Equation (2.48), thus 
the pressure field can be determined when the flow rate is specified. To determine 
the volume-averaged deformation, one would make use of Equation (4.40) and 
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Fig. 4. 

121 
Unit cell of an elastic porous medium. 
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- phase 

the boundary condition; 

B . C . 1  (u~)  ~ .  k = 0, z = 0. (5 .1)  

however, a boundary condition at the top of the bed illustrated in Figure 1 would 
also be required. On a purely intuitive basis, one would balance the normal stress 
from Equation (4.44) against the hydrostatic pressure and write 

B.C.2 -(Pt~) t3 = k-  (~'~)~ �9 k 

= 2p.,~kk : V (u,~)  '~ + A ~ V  �9 (u ,~)  '~ + 

[ ~ ,f(4) Jr- + E~-lkk : k/.L,~lvl E Ao-M~)) : V(uo . )  r + 
(5.2) 

+ eT~kk : ( . ,~H~' + a,~H~)) �9 (vt3), z = H .  

This is the type of boundary condition proposed by Biot ((1941), Equation 5.3), 
and the origin of this result rests with Equation (2.33). A derivation is offered in 
Appendix A. The pressure can be eliminated from Equation (5.2) by means of 
Equation (4.15), and this leads to a boundary condition of the form 

[ 2 , ~ ( G - k k ) -  e~lkk : ( / ~ M ~ ) +  )t~Mr " V (u,~) '~ 

T T(3) 
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Fig. 5. Deformation of a unit cell. 

Here we expect that the very last term, being an average of a deviation, would be 
negligible; however, it can be estimated as calculated using the unit cell illus- 
trated in Figure 4. After having solved the closure problem to determine the 
coefficients in Equation (4.40) and the coefficients in the boundary condition 
given by Equation (5.3), one can solve for (u~) ~ using Equation (4.40) and for 6~ 
using Equation (4.20). This means that the point displacement vector field is 
available to us through 

u~ = (n~F + f~  = ( u y  + ~"  V ( u y  + C-  (v~) (5.4) 

and the original unit cell would be deformed as illustrated in Figure 5 in an 
exaggerated manner. A prudent procedure at this point would be to resolve the 
closure problem with the deformed unit cell and recompute the displacement 
vector field to be certain that a converged solution has been obtained. If the 
velocity, (v~), is sufficiently small, a single iteration will suffice and a complete 
closure to the small deformation problem will have been obtained. There are 
many processes, especially in the area of filtration, in which large deformations 
are encountered and for those processes the solid mechanics problem must be 
reformulated in terms of large deformation theory. This aspect of the problem 
has been discussed by Kubik (1982), but no method of closure is available. 

6. Conclusions 

The method of volume-averaging has been applied to the process of steady, 
incompressible flow through an elastic porous medium. For small deformations, a 
closure scheme is available that provides theoretical values for the Darcy's law 
permeability tensor in addition to the tensor coefficients that appear in the 
volume-averaged displacement vector equation. 

Appendix: The Volume-Averaged Boundary Condition 

In Section 5 we made use of a plausible boundary condition at the interface 
between a deformable porous medium and the surrounding fluid, and in this 
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appendix we would like to provide a derivation of that boundary condition. We 
begin with the point condition given earlier by Equation (2.33) 

- n~P~ +/x~ ( n ~ -  V v~ + V v~.  n ~ )  = n ~ .  7~, at s ~  (A.1) 

and focus our attention on the region illustrated in Figure 6. There we have 
placed a dividing surface (shown as a solid straight line) in the porous medium 
near the 'interface'. It is at the dividing surface that we would like to impose a 
boundary condition such as that given by Equation (5.2). In order to be definite 
about the location of the dividing surface, one might require that the area 
fraction of the solid phase be within 1% of the local volume fraction of the solid 
phase. If the porous medium is homogeneous, this represents an unambiguous 
definition; however, if significangaients in the local volume exist the definition 
becomes imprecise. Clearly there are different methods of locating a dividing 
surface, and at this point we will simply assume that some suitable method exists. 

While the plane surface located at z = H is suitable from the point of view of 
solving a boundary value problem, Equation (A. 1) does not apply at the surface, 
but instead it can only be applied at the/3-o- interface illustrated by the dashed 
line in Figure 6. This surface is represented by J ~  and is the interracial area 
located above the plane given by z = H. At a point on this surface we have 
illustrated an averaging volume of radius ro, and it should be understood that the 
length-scale constraints e~ < r0 and e~ ~ r0 are still in effect. However, the local 
volume fraction and the intrinsic phase average velocity will undergo significant 

z : 

Fig. 6. interface between a fluid and a deformable porous medium. 
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variations over distances on the order of ro in the direction perpendicular to the 
dividing surface, thus we are faced with a situation in which r0 - L. 

The key idea in the development of boundary conditions between a porous 
medium and a surrounding fluid is the replacement of conditions that apply at a 
point on M ~  with average conditions that apply at z = H. We begin the search 
for an averaged condition by integrating Equation (A.1) over A ~  to obtain 

f [ - n ~ P ~  +/xt3(nt3~ �9 Vvt3 + Vv~ .  nt3~)] d a  = f nt3~. "r~ dA. (A.2) 
JA 

Here A~,, is a portion of M ~  bounded by a cylinder of radius ro which is parallel 
to the z-axis. We can use the divergence theorem and Equation (3.1) to alter the 
right-hand side of this result to obtain 

. . . .  k. 'r .  dA. (A.3) /A;= [ -  nt3~Pt3 +/zr (nt3'~ Vvt3 + Vv~ nt3~)] dA fA*~e 

Here one should refer to Figure 7 and note that ~/*e represents the area of 
entrances and exits for the o--phase associated with the area A ~ .  Since we seek a 
boundary condition for the displacement vector equation, it is convenient to use 
Equation (3.2) to obtain 

IA~ [ - n t ~ P ~  + / x ~ ( n ~ .  Vvt3+ Vv~-  n ~ ) ]  dA 
(A.4) 

= IA,e [/x~(k" V u ~ +  Vu~" k) + A~kV �9 u~] dA. 

Here we must consider the fact that the left-hand side of Equation (A.4) is 
evaluated at a position z > H while the right-hand side is evaluated at the desired 
position, z = H. If it were possible, we would make use of a Taylor series 
expansion of the form 

Pt3 l,=kH+~ = Pt3 I,=kH + I1" V Pt~ + " "  (A.5) 

z--H 

Fig. 7. 

l 

Interracial region. 
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in order to develop a boundary condition with all terms evaluated at z = H.  This 
is the type of analysis that is successfully used with linear stability analysis 
(Taylor, 1950); however, in that case -q is arbitrarily small and only the first term 
in the series is required. In this case, one expects to find significant variations in 
v~ over the distance "q and it would appear that we are forced to proceed with 
Equation (A.4) in its present form. 

At this point we introduce the decompositions 

Pt~ = (et3) a + Pt3, vt3 : (vt3) t3 + ~e~, u~ = (u~) ~ + h,~ (A.6) 

in which (Pa) t3 and (v~) t3 are defined in terms of an averaging-volume located on 
M ~  while (u~) ~ is defined in terms of an averaging-volume located on M~.  We 
use Equations (A.6) to express Equation (A.4) as 

= IA. [ tx~(k " V (u~)" + V (u~)~ " k) + A,~k V " (u~)'~] dA - 
~ e  

(A.7) 

Here we have used 

V(v~) ~ < V% (A.8) 

on the basis of the constraint (~ r ro - L. As in earlier parts of our analysis, we 
would like to remove volume-averaged quantifies from within the area integrals; 
however, that step was based on the constraint, r0~ L, which is no longer in 
force. For an averaged quantity, such as (P~)a, we can write 

IA; nt~[(Pt~)t~ +~q. V(Pt3)r + -. " I d A  
(A.9) 

={IA~nt3o-'dA}(Po)t3+{IA~nt3,~dA } �9 V(P~) 9 + ' ' "  

Here we have used (P~)~ and V (P~)e 
and we have in mind the idea that 
quantifies in the x-y plane. 

At  this point we must be careful to note that A ~  is not the interracial area 
contained within an averaging-volume, thus we cannot draw upon the analysis of 
Section 2 in Part I (see especially Equations (2.26) and (2.27)) to estimate the 
magnitude of the area integrals on the right-hand side of Equation (A.9). The 
divergence theorem can be used to evaluate the first integral as 

I,~ nt3~ dA = - kA~e (A.10) 

to indicate quantities evaluated at z = H 
there are negligible variations in these 



152 STEPHEN WHITAKER 

,B- phase 

Fig. 8. Model  of an interracial region. 

while the second integral can be determined using the model shown in Figure 8. 
A little analysis leads to 

;~ n ~ l  dA = -~-~ IA~e (A.11) 

and this allows us to express the first term in Equation (A.7) as 

From Equation (2.48) we have the two estimates 

v I z = .  - -1" (A.13) 

(p~)0 Iz=n = O{/xt3 H K - I "  (v0>}. (1.14) 

Here it becomes apparent that we can drop the last term in Equation (1.12) 
whenever ~ < H.  Under most circumstances this contraint is satisfied and we 
proceed to write Equation (1.7) in the form 

If one assumes that there are negligible variations of k �9 V (u~) ~ �9 k over the x-y 
plane, we can form the scalar product of Equation (A.15) with k and express the 
result as 

-(Pt3} t3 = 2/xo.kk : V (u~)~ + ~t~V �9 (u~) ~ -  

1 Ia  ( 2 / x , ~ k k : V f l ~ + ) t ~ V - f i ~ ) d A +  (A.16) 
A o - e  ~ e  

~ e  
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Up to this point, the analysis is exact provided that the length scale constraints 
have been properly observed. However, we now encounter the problem that 
representations for ~t3 and ~ are needed, and the representations that we 
currently have available are restricted in a very important manner. As we have 
pointed out in Section 3 of Part I of this paper and in Section 4 of this part, the 
representations for the spatial deviations are controlled by the nonhomogeneous 
terms in the boundary conditions at the /3-o- interface, provided the boundary 
conditions at the entrances and exits of the macroscopic system can be ignored 
(see Equations (3.3) and (3.4) or Part I). The question at this point is: What is the 
representation for vt3 at ~ and what is the representation for fl~ at ~ e ?  
Certainly a plausible set of representations is 

158 =/x~b' �9 (vo), ~ = B"  (vt3), 
fi~ = C' "(vt3) + ~,.: V(u~) ~. (A.17) 

Here we expect that b', B', C' and N' will have the same general structure as b, B, 
C and ~ ,  but they will not be equal to these tensor functions for which we have a 
method of determination. 

If we make use of the plausible representations given by Equations (A.17) in 
Equation (A.16), we obtain 

-(Pt3) ~ = 2/x, kk : V(u,)~ +)t~V �9 (u~)~ + 

+A~----~I f ja~o, (2 /x~kk:V~,+A~V.~, )  d A : v ( u ~ ) ~ +  

(A.18) 

+ - -  2 / x ~ k k : V C ' + I ~ V . C '  d A . ( v ~ ) +  
A 

o e  ~ e  

+ k .  r E ' .  d A .  

Here we have been able to derive the same general form as was given earlier by 
Equation (5.2); however, we have no proof of the representations given by 
Equations (A.17) nor do we have a means of calculating the coefficients in those 
representations. Clearly the boundary conditions between a porous medium and a 
surrounding fluid deserves further study. 
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