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Flow in Porous Media II" The Governing 
Equations for Immiscible, Two-Phase Flow 
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Abstract. The Stokes flow of two immiscible fluids through a rigid porous medium is analyzed using 
the method of volume averaging. The volume-averaged momentum equations, in terms of averaged 
quantities and spatial deviations, are identical in form to that obtained for single phase flow; however, 
the solution of the closure problem gives rise to additional terms not found in the traditional 
treatment of two-phase flow. Qualitative arguments suggest that the nontraditional terms may be 
important when tzt3//z ~ is of order one, and order of magnitude analysis indicates that they may be 
significant in terms of the motion of a fluid at very low volume fractions. The theory contains features 
that could give rise to hysteresis effects, but in the present form it is restricted to static contact line 
phenomena. 
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O. Nomenclature  

R o m a n  Letters (oJ, ~ = / 3 ,  7, o" and  oJ ~ r/) 

~e 

A~ 

AL 
A*e 
g 
H 

1:1 
I 
K 
K~ 

i n t e r fac ia l  a r ea  of  the  w-~? in te r face  c o n t a i n e d  wi thin  the  m a c r o s c o p i c  

sys tem,  m 2 

a r ea  of en t r ances  and  exits for  the  w-phase  c o n t a i n e d  wi thin  the  m a c r o -  

scop ic  sys tem,  m 2 

in te r rac ia l  a r ea  of  the  o~-~/ in te r face  c o n t a i n e d  wi thin  the  a v e r a g i n g  
v o l u m e ,  m 2 

in te r fac ia l  a r ea  of  the  o J -7 / i n t e r f ace  c o n t a i n e d  wi thin  a uni t  cell ,  m 2 

a r ea  of  e n t r a n c e s  and  exits  for  the  o~-phase c o n t a i n e d  wi th in  a uni t  cel l ,  m 2 

g rav i ty  vec to r ,  mZ/s 

m e a n  c u r v a t u r e  of  t h e / 3 - 3 ,  in te r face ,  m -1 

a r ea  a v e r a g e  of the  m e a n  c u r v a t u r e ,  m -1 

H - ( H ) t 3 v ,  d e v i a t i o n  of the  m e a n  cu rva tu r e ,  m -1 

unit  t enso r  

D a r c y ' s  law p e r m e a b i l i t y  tensor ,  m 2 

p e r m e a b i l i t y  t ensor  for  the  oJ-phase,  m 2 

v i scous  d r ag  t enso r  for  t h e / 3 - p h a s e  e q u a t i o n  of m o t i o n  
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K.~ 
L 

no~ 

Pc 

P~ 

r0 
t 
Vo, 

( v , o )  '~ 
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viscous drag tensor for the 7-phase equation of motion 
characteristic length scale for volume averaged quantities, m 
characteristic length scale for the to-phase, m 
unit normal vector pointing from the to-phase toward the q-phase (n~,, = 

--nrlto) 
(pv)~,_ (po)t3, capillary pressure, N/m 2 
pressure in the to-phase, N/m 2 
intrinsic phase average pressure for the to-phase, N/m 2 
po,- (po,) ~ spatial deviation of the pressure in the to-phase, N/m z 
radius of the averaging volume, m 
time, s 
velocity vector for the to-phase, m/s 
phase average velocity vector for the to-phase, m/s 
intrinsic phase average velocity vector for the to-phase, m/s 
v ~ -  (v~) ~', spatial deviation of the velocity vector for the to-phase, m/s 
averaging volume, m 3 
volume of the to-phase contained within the averaging volume, m 3 

Greek 

Eo~ 

P~ 

r 

Letters 

Vo, ffV, volume fraction of the to-phase 
mass density of the to-phase, kg/m 3 
viscosity of the to-phase, Nt/m 2 
surface tension of the/3-3, interface, N/m 
viscous stress tensor for the to-phase, N/m 2 
/z/p, kinematic viscosity, m2/s 

1. Introduction 

The classic examples of two-phase flow in porous media are associated with oil 
recovery processes and groundwater flows. The former may involve oil and gas, 
oil and water, or oil and solutions of polymers or surfactants, while the latter 
deals with air and water. The demands for predictive theories of two-phase flow 
in porous media are enormous, as are the complexities of the systems under 
consideration. The latter typically involve porous structures that are unknown or 
are difficult to characterize, along with large scale heterogeneities and sparse 
experimental data. Laboratory experiments are usually carried out in terms of 
steady, one-dimensional flows while practical problems are often multi-dimen- 
sional and transient. Laboratory studies of transient, multi-dimensional flows are 
hampered by the difficulty of measuring local saturations and volume-averaged 
velocities, and lack of experiments of this type may be the reason why the 
intuitive extension of Darcy's law by Richards (1931) and Muskat et al. (1937) 
has survived without modification. 



FLOW IN POROUS MEDIA II 107 

In this work, the process of two-phase flow in a rigid porous medium is 
analyzed from a rigorous point of view leading to equations of motion of the form 

(vt3) = - K--E~ �9 (V (pt3) t3 - Pt3g) + Kt3~" (vv), (1.1) 
/~t3 

(v+) = - K v. ( V (pv) ~' - ovg) + Kvt3" (vt3) (1.2) 
/xv 

along with the traditional form of the continuity equations 

Oet3 
+ V �9 (vt~) = 0, (1.3) 

Ot 

0% 
+ V �9 (vv) = 0 (1.4) 

Ot 

The details concerning Kt3 v and K ~  are available through the solution of very 
complex, coupled boundary-value problems for tensor quantities; however, from 
an intuitive point of view these two tensors simply represent the influence of the 
viscous drag that exists between the /3-phase and the y-phase. Because of this, 
we expect that these nontraditional terms will be important when/zg//~v is on the 
order of one. Here  /zt3 and/zv represent the viscosities of the/3 and y-phases as 
illustrated in Figure 1. In groundwater flows one often thinks of the air (the 
y-phase in Figure 1) as contributing nothing more than a constant pressure at the 
air-water interface, thus one is inclined to discard the last term in Equation (1.1). 
Since /zt3 >>/~v in this case, this is a reasonable thing to do. On the other hand, if 
thin films of air (g~ ~ ,co) were to exist during an imbibition experiment in which 
(v~) v and (vt3) ~ were oppositely directed, it is possible that the last term in 
Equation (1.1) could be important. Given the wide range of flow configurations 
that can exist for two-phase flow in porous media (Wooding and Morel-Seytoux, 
1976), it would seem worthwhile to consider the last two terms in Equations (1.1) 
and (1.2) carefully before neglecting them. 

While the original intuitive extension of Darcy's law proposed by Richards and 
by Muskat et al. may suffice for many practical cases (Philip, 1972), there is a 
crucial question to be answered concerning the phase permeabilities, Kt3 and Kv, 
that appear in Equations (1.1) and (1.2). For single phase flow in a rigid porous 
medium, we have shown that 

K 
(vz) . . . .  (V (Pt3) t3 - Peg) (1.5) 

tzt3 

in which K should be referred to as the Darcy's law permeability tensor. For 
purely one-dimensional processes, the phase permeability is related to the 
Darcy's law permeability by the relative permeability according to 

K s = k~K.  (1.6) 
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Fig. 1. Two-phase flow in porous media. 

While there have been numerous experimental determinations of K and K s to 
produce relative permeabilities as a function of saturation (Scheidegger, 1974; 

Bear, 1972; Greenkorn,  1984), there appears to be no information available 

concerning the relation between K s and K. It is important to keep in mind that 
even if the single-phase flow process can be treated as isotropic, i.e., 

K = I K ,  isotropic process (1.7) 

there is no reason to believe that the two-phase flow process can be accorded the 
same simplification. Here  one must keep in mind that there are no isotropic porous 
media of interest, while there are numerous isotropic processes of importance. The 

precise relation between K s and K remains unknown at this time; however, many 
would agree that the relation 

K~ = k,~K (1.8) 

would be a reasonable approximation. Although precise values of K s and K are 
available through the solution of the closure equations, the computational prob- 
lem is quite complex and no results are given at this time. 

2. T h e o r y  

The  system under consideration has been illustrated in Figure 1 and the process 
that we wish to investigate is described by 

0 = - V p s  + Psg + ~sV2vs, (2.1) 
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V ' v~ = 0, (2.2) 

B.C.1 vo- -0 ,  at ~ ,  (2.3) 

B.C.2 v o = v  v, at ~ v ,  (2.4) 

B.C.3 - p ~ n ~  + "rt3 �9 n~v = - p ~ n ~  + % �9 n~v + 2o-Hnt3 ~, at ~ v ,  (2.5) 

B.C.4 v v = 0 ,  at J ~ ,  (2.6) 

0 = - V p~ + p~/g +/~,/V2v~,, (2.7) 

V �9 v~, = 0. (2.8) 

Here we have used or to represent the interfacial tension, and H to represent the 
mean curvature of the interface. The total stress tensor has been decomposed 
according to 

T = -p l  + ,r (2.9) 

and on the basis of the analysis presented in Part I (Whitaker, 1986), the 
boundary conditions at entrances and exits of the macroscopic system have not 
been listed since they play no role in the development of the volume-averaged 
equations and the closure problem. It is worthwhile to note that the mean 
curvature is to be determined as part of the solution to the governing equations 
and that the stress condition given by Equation (2.5) is devoid of surfactant 
effects. The effect of surfactants, which are difficult to avoid in any natural 
system, can have a pronounced effect on the displacement process (Stoodt and 
Slattery, 1984); however, it seems wise to begin this type of study with the 
simplest possible problem and add complicating factors when the route to a 
solution has become more clear. In addition, the boundary conditions at the 
fluid-solid interfaces do not account for any colloidal forces and thus can not 
provide an accurate description for flow in clay systems (Mulla et al., 1984). 

To obtain the averaged forms of the governing equations, we need the spatial 
averaging theorem for a three-phase system and this is given by 

I IA l fA (V ~b~) = V (~bt3) +-  ~ n~b~ dA +-~ n~v~b~ dA. (2.10) 
/3~ t3-y 

Here (~b~) represents the phase average defined by 

a i r  
(2.11) 

A similar form of Equation (2.10) exists for the T-phase and the analogous form 
for the o'-phase is not required since we are again dealing with a rigid porous 
medium. 

It is convenient to begin the development of the averaged equations with 
Equation (2.2), and use of the averaging theorem leads to 

( V  "V/3)= V "(v/3) q- 1 ~A 1 IA -~ n ~ . v ~  d A + ~  n ~  �9 vt3 dA = 0. (2.12) 
/3~ t3",/ 
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On the basis of the boundary condition given by Equation (2.3), this result 
simplifies to 

V . (vo)+--~fa~ n ~ . v t ~ d A = 0 .  (2.13) 

The general transport theorem (Truesdell and Toupin, 1960) can be used to 
obtain the geometrical relation 

oe o ifA -- nov" w d A  (2.14) 

in which nt3v.w is the normal component  of the velocity of the fl-~, interface. 
Use of this relation in Equation (2.13) leads to 

0 e 0 ~ - V ' ( v 0 ) + ~ I  A nt~v ' (vt3-w) d A = 0 .  (2.15) 
Ot ~, 

When interfacial mass transfer is important (Whitaker, 1977) the last term in 
Equation (2.15) is nonzero; however,  when the two fluids are immiscible we have 

v 0 �9 nov = w .  nov = v v �9 nov, at ~/o~ (2.16) 

and Equation (2.15) simplifies to 

0et3 Jr V �9 (vo) = O. (2.17) 
Ot 

The volume-averaged form of the continuity equation for the y-phase is 
obviously given by 

Oe--2~ + V �9 (vv) = 0 (2.18) 
at 

and for completeness we list the constraint on the volume fractions as 

e 0 + e v + e~ = 1. (2.19) 

The averaged forms of Equations (2.1) and (2.7) are obtained in precisely the 
same manner as for single-phase flow, and we simply list the results as 

0 = V (p~)~ + Peg + ~ (-no,~/So + P~t3n0,~ " V ~'~) d A  + 
(2.20) 

+ ~ -  (-n~v/5 ~ +/x~n~v �9 V ~ )  d A ,  
v ~  

1 Ia 
0 = - V ( p r ) V  + p v g + ~  (-n~,pv +/zvnv, -  V ~ )  d A +  

(2.21) 

+ 1--~ IA, (--nvt3/Sv +/zvnvt3" V~v) dA. 
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These results are analogous to Equation (2.37) in Part I of this paper (Whitaker, 
1986), and we have again made use of the length scale constraint ~ ~ ro ~ L to 
discard the various Brinkman-like viscous terms that are evident in Equation 
(2.29) of Part I. 

3.  C losure  

The governing equations for the spatial deviations can be extracted directly from 
the development given in Part I, and we list the results here as 

V . % = 0 .  

l l v  ~ - V/5 o +/~oV2~0 = ~ [ -  V i68 +/z0V2r d V, 

V " ~ = 0 ,  

- v/5,  + mv~,~, = ~ [ -  v/5,  + ~vv~%] d v .  
-y 

The boundary conditions for the spatial 
application of the decompositions 

vo = ( v J  + %,  v~ = (v~) ~ + % 

deviations 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

are obtained by direct 

along with the analogous forms for the pressure. Use of these decompositions in 
Equations (2.3) through (2.6) leads to 

B.C.1 ~o=- (Vo)  ~ at M0~, (3.6) 

B.C.2 ~e 0 = v v -  ((v0) 0-(vv)~),  at .ff0~/, (3.7) 

B.C.3 -/50n0r = -/Svnov + ((po) 0 - (pv)V)no~ - 

- [ m ( v %  + v ~ )  �9 n ~ -  ~ ( v %  + v ~ )  �9 n 0 d +  

+2~rHno./, at 69o.~, (3.8) 

B.C.4 ~ v = - ( v v )  v, at~/~,=. (3.9) 

Here we have made use of inequalities of the form 

/z~(V (v,)" + V (v,~) ~ )  r m ( V ~  + V ~ )  (3.10) 

in which a represents both/3 and 7. Equation (3.10) is based on the same type of 
estimates that lead us from Equations (2.29) to (2.37) in Part I of this paper, and 
this type of simplification has already been imposed in order to obtain Equations 
(2.20) and (2.21). It is based on the estimates 

V ~  = O((v~)~/e~), V(v~)  ~ = O((v~)'~/L) (3.11) 

along with the length scale constraint, (,, ~ L. 

(3.5) 
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Clearly there are four nonhomogeneous terms ((vt3) t~ , (vv) v, (pt3) t3 -(pv)V, 
2crH) in the boundary conditions for the closure problem, and these need to 
be considered in the representations for the spatial deviations. However, before 
moving on to that problem, we will find it worthwhile to consider the area 
average of the normal component of Equations (3.8). This can be expressed as 

- - 

= 2 o'(H)t3v + (p~ -/Sv)t3~ - (3.12) 

-(/xt3nt3 v �9 (V~t3 + V ~ ) "  n ~ - / ~ n ~ v  �9 ( V ~ v +  V ~ )  �9 nt3~)t3 v at ~/t3v 

in which the area averages are defined according to 

(H)t~/= ~-~v IAo H dA. (3.13) 

In treating (po)t3_ (pv)v as a constant with respect to integration over At3v, we 
are making use of Equations (2.18) and (2.19) in Part I of this paper (Whitaker, 
1986). If we make use of the second estimate given by Equation (3.11) along with 
the estimate for the pressure deviation given in Appendix A of Part I, we can 
write Equation (3.12) as 

+ ((pt3) ~ - (pv) v) = 2o-(H)t3. ~ \ ~ - - 1  �9 (3.14) 

Here we have used a to represent the largest contribution from either the/3-phase 
or the 7-phase to the last two terms on Equation (3.12). If we impose the 
following restriction 

~ 1  (3.15) 
o'(H)t~-~e, 

we can express Equation (3.14) in the form 

Pc = -((P0) ~ - (P~,)'/) = 2o'(H)t3v (3.16) 

where Pc is the capillary pressure. If we follow the usual custom, we must think of 
the /3-phase as the phase which wets the solid so that the capillary pressure is a 
positive quantity. Restricting the analysis by Equation (3.15) is comparable to 
requiring that the capillary number be small compared to one, and this is a 
situation widely encountered in practical problems of two-phase flow in porous 
media. It is important to note that Equation (3.14) overestimates the effect of the 
pressure and velocity deviations in Equation (3.12) since the area-average of 
these quantities is likely to be significantly smaller than the order of magnitude 
estimates. 

Use of Equation (3.16) in (3.8) allows us to express that boundary condition as 
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B.C.3 -/5t3nr = -~vnt3./-  

- [ t ~ ( v %  + v ~ )  �9 n , ~ -  

- / z v ( V  r ~ + V~v~) �9 n~./] + 2 o-/S/nt~v, at ~/~v. (3.17) 

Here it is important to keep in mind that the curvature deviation is defined in 
terms of an area average 

/~ = H - (H)~v (3.18) 

and t h a t / ]  (like H in Equation (2.5)) is to be determined as part of the solution 
of the problem. At this point we are faced with a linear problem containing two 
nonhomogeneous terms, (vt]) t} and (vv) ~, and an appropriate representation for 
/ ]  is given by 

/-t = hx" (vt3) t3 +h2 "(vv) ~, at ~/t}r. (3.19) 

This result is consistent with the problem statement and with the idea that H can 
be treated as constant within the averaging volume for the static case. In their 
review of two-phase flow phenomena, Wooding and Morel-Seytoux (1976) 
conclude that the interface shape should be independent of velocity provided the 
capillary number is less than one, and in another review Philip (1972) reaches the 
same conclusion. If this is true, the solution to the closure problem will indicate 
tha t / - t  ~ (H)~.~ ; however, this does not necessarily mean that the contribution to 
Equation (3.17) will be negligible. With this in mind we express B.C.3 as 

B.C.3 -/5r r 

= - p~,nt3 ~, - [ /x~(V~ + Vi'~') �9 n~ - 

- m , ( v %  + v~,,~) �9 n~,~,] + (3.20) 

+ 2o'nti-/[hl �9 (vt3) t3 + h2" (vv)~/], at Mr3 ~, 

and propose the following representations for the spatial deviations of the 
pressure and velocity: 

~ = A~-  (v~) ~ + A2 ~  (v?) r + , ' ,  (3"21) 

i6t3 =/xt3 [a ~ . (vt3)t~ +a2 ~ . iv./)v + ~t}], (3.22) 

~v = A~.  (v~) t~ +A~"  (v~) ~ +d~ ~/, (3.23) 

V i6v = p~[a~ �9 (v~) t] + a2- (vv) ~ + ~v], (3.24) 

Here one should think of t~" and ~" (where ot represents both /3 and y) as 
completely arbitrary functions so that we are free to specify the coefficients in 
Equations (3.21) through (3.24) in any manner that we wish. On the basis of the 
analysis given in Part I, we choose to specify these  functions in terms of the 
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following governing differential equations and boundary conditions* 

l r  
-Via~+V2A~'=-g~7/ |  [ -Va~'+V2A~']dV, i = 1 , 2 ,  (3.25) 

v , ~ , s  v~ 

V . A T = 0 ,  i = 1 , 2 ,  (3.26) 

B.C.1 A~':=-I, A2~ at sgo~, (3.27) 

B.C.2 A ~ = A ~ ' - I ,  Az~=A~'+I, at air3 r (3.28) 

B.C.3 ~,(-.,~,af+ v A ~ . n ~ r + n ~ r -  VAf) 
= gv(-n~a~V + VA~" nt3r +nt3 r �9 VA~) + 2trn~rh~, (3.29) 

a t t a r ,  i = 1 , 2  

B.C.4 A~= 0, A ~ = - I ,  at ~r~, (3.30) 

(a7') ~ = 0, (A~) ~ = 0, i = 1, 2. (3.31) 

One must keep in mind that no approximations have been made in this part of the 
closure scheme; however, we are now confronted with the problem of demon- 
strating that m" and ~ make negligible contributions to the velocity and pressure 
deviations. In developing the boundary value problem for m - and ~ we follow 
the analysis presented in Part I of this paper (Whitaker, 1986), but in this case we 
retain only the most important nonhomogeneous terms and represent the results 
a s  

B.C.1 

B.C.2 

B.C.3 

B.C.4 

-v U +v,~ =~-~ I~ [-vr +V~,~]dV+ 

+ O [ V ( v ~ )  ~ . a ~ ,  V(a~>~ : V A T ] .  

v �9 m ~ : o [ v ( v ~ >  ~ : A~'], 

m ~ = 0, on ~1t3,~, 

m s = m r, o n  ~r 

/ ~ ( - n ~ r ~  + V m 8 �9 n m, + n~r" V m ~) 

= / ~ ( - n ~ , ~  r + Vm r" nt3 ~ +n~/ �9  Vm ~) + 

+O[/x~V(v~) ~ "AT], at ~t3~ 

mr=O,  on~r 

( U )  ~ = o,  (m~) ~ = o. 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 

Here we have used a to represent both/3 and T when it is possible to do so. 

* For compactness  we have  used a to represent  bo t h / 3  and T, and for neatness  the t ranspose of A?  
has  been indicated by A~'. 
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In Appendix A it is shown that the solution of the homogeneous problem for ~ 
and #~ in a spatially periodic system is the null solution, thus we feel comfortable 
in estimating the magnitude of ~ and t~ ~ on the basis of the nonhomogeneous 
terms in Equations (3.32), (3.33) and (3.36). The estimates are of the same form 
as those given in Part I of this paper and we express them as 

~'~ --- O{a7 ~ ~ A~. (v,~)'~/L}. (3.40) 

From this point one can follow the same line of reasoning presented in Part I to 
conclude that ~b ~ and ~ make negligible contributions to the pressure and 
velocity deviations and Equations (3.21) through (3.24) can be simplified to 

v0 = A~. (vt3) ~ +A2 ~. (vv) v, (3.41) 

/5t3 =/z~ (a~ �9 (vt3)t3 + a2~ �9 (vv)V), (3.42) 

~ ,  = A~'. (vt3) ~ +A~' �9 (vv) ' ,  (3.43) 

/5~=/zv(a~' '  (vt3) t~ +a~' �9 (vv)"). (3.44) 

These expressions are to be used in Equations (2.20) and (2.21) to provide us 
with the correct form of the volume-averaged momentum equations for two- 
phase flow. In doing this, we make repeated use of the approximations indicated 
by Equations (2.18), (3.33) and (3.34) in Part I of this paper in order to obtain 

0 = - V (pt3) ~ + Pt3g - /x~Ma ~ (vt3) ~ - /x~M~ �9 (vv) ~, (3.45) 

v �9 (vv)V - /xvM~' '  (vt3) ~. (3.46) 0 = - V (pv) v + pvg - /x~M 1 

Here  the M ~ are defined by 

l { f  A [-n,~o-a~+n,~o-VA~]dV+ M~= V~ o~ 

-~IA [ - n ~ n a ~ + n a n - V A ~ ] d V }  (3.47) 
a T 

Once again we have used i = 1, 2 and a =/3, T, and in this case we have also 
used ~ =/3,  T with the restriction that ~ 5k a. At  this point we need only assume 
that the inverses of M f  and M~ exist in order to obtain* 

(vt3) = - Kt3- [V (p~)t3 _ Pt3g] + Kt~v" (v~) (3.48) 
/xt3 

* Similar forms have been postulated by Raats and Klute (1968) and more recently by Baveye and 
Sposito (1984). 
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(v~) = -- K-z- [V (pv) v - pvg] + Kv9" (v~) (3.49) 

Here we have represented Equations (3.48) and (3.49) in terms of the phase 
average velocities, and the four tensors in this result are defined by 

Kt3 = et3(M~) -1, Kt~ ~ = - (Mr)  -~. Mr(co/e~) (3.50) 

K~, = e~,(M~') -1, K,o =-(M~') -~. M~'(e~,/e~) (3.51) 

It is clear that the nontraditional terms in Equations (3.48) and (3.49) represent 
the viscous drag of one fluid upon the other, and the importance of these terms 
depends on their magnitude relative to the viscous drag exerted by the solid and 
relative to the surface tension forces. From an intuitive point of view, one would 
expect that the term, Kt3-~'(v~), in Equation (3.48) could be neglected when 
/~v >>/~t3. Under these circumstances the 2/-phase acts as a 'solid' relative to the 
/3-phase, and the motion of the /3-phase should be governed by the traditional 
modification of Darcy's law. Under these same conditions, one could argue that 
the/3-phase would exert a negligible viscous stress on the y-phase, thus allowing 
us to discard the last term in Equation (3.49). This line of reasoning would lead 
one to conclude that the traditional form proposed by Richards (1931) and 
Muskat et al. (1937) is satisfactory except when the ratio/xv//~ ~ is on the order of 
one. Philip (1972) takes a more definitive position based on several case studies 
and concludes that the matter of momentum exchange between fluids is, for most 
practical purposes, a nonproblem. This point of view is supported by the fact that 
surfactants are always present in real systems, thus the /3-2/interface is highly 
resistant to shear. Clearly some detailed calculations that would produce values 
for the tensors in Equations (3.48) and (3.49) would be of value in assessing the 
importance of fluid-fluid momentum exchange. 

4. Experiments 

A theoretical determination of the importance of the nontraditional terms in 
Equations (3.48) and (3.49) would require the solution of Equations (3.25) 
through (3.31). This represents an extremely difficult computational problem, and 
before engaging in such an effort one is inclined to ask the question: If the 
nontraditional terms in Equations (3.48) and (3.49) are important, why has this 
not been discovered experimentally? Clearly such a question deserves an answer. 

The traditional scheme for determining relative permeabilities makes use of a 
steady, uniform flow in the absence of gravitational effects. If the gravitational 
terms in Equations (3.48) and (3.49) are neglected and Equation (3.16) is used, 
these equations can be expressed as 

(vfl) =-K~" V(pv) ~ +K~v" (vv)+Kfl" Vpc, (4.1) 
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(v~) = - K_~v. V (pv) v + K~t3" (v~) (4.2) 

Elimination of (v~) from Equation (4.1) and (vo) from Equation (4.2) leads to 

(K~/~ K~z-K~) 
(v~ )= - ( I -K t3  v'Kv~) -1" - - ~  "V(pv)v+ 

(K,~, K,e:.8 K~), v (p~), + iv,) = - ( I - K , ~ "  Kc3v) - l "  -~_-~ 

(4.4) 
+/I-K~. K.~)~-(L~: K~ / v pc. 

\ p,~ / 

In the traditional experiment used to measure relative permeabilities (Bear, 
1972), great care is taken to insure that conditions are uniform. This means that 
e~ (and ev) are constant along with the capillary pressure, and Equations (4.3) 
and (4.4) reduce to 

K~v �9 Kv] 
( v ~ ) = - ( I - K t 3 v ' K v ~ ) - I ' ( K ~ q ; ;  / ' V ( p , )  v, (4.5) 

(%) = - ( I -  K,~. K~v) -1. ( K , +  K,~_: Ks] �9 V(p,)L (4.6) 
\/x v /x~ / 

Here we see that the general form of the equations for uniform flow is identical to 
that obtained from Equations (3.48) and (3.49) with K0v = Kv~ = 0; however, the 
exact form including the coefficients of viscosity would only be the same if 

K m, ~/x~z, Kv~ ~ / ~  (4.7) 
/x~ /x v 

That this is actually the case will be demonstrated in the following paragraphs. 

4.1. ORDER OF MAGNITUDE ANALYSIS 

In order to develop some idea about the functional dependence of Kt~, Kv, Kt3 v 
and Kvt3 , we need to consider Equation (3.47) and the closure problem in some 
detail. To begin with, we can use Equation (3.47) to express M~ as 

1 l n- [VA~ - l a f ]  dA (4.8) 

in which n represents the outwardly directed unit normal vector for the fl-phase. 
From the first of Equations (3.27) we put forth the estimate 

Af  -- O(1) (4.9) 
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with the idea that the no-slip boundary condition at the 13-~r interface dominates 
this field. In estimating al ~ we ignore the boundary condition given by Equation 
(3.29) and use the governing differential equation given by Equation (3.25) to 
obtain 

a~ = 0(•;1). (4.10) 

Use of these two estimates in Equation (4.8) yields 

Mf = O(t~;2). (4.11) 

Here we have used the idea that the characteristic length for the/3-phase is given 
by 

(;1 = O[ (A~ + Aov)/V~]. (4.12) 

For M~ we center our attention on Equations (3.30) and (3.25) to conclude that 

M~ = O(~e~ 2) (4.13) 

and from the definition of Kt3 and K~ given by Equations (3.50) and (3.51) we 
find 

K s = O(at3,e~), K~ = O(E~te~). (4.14) 

If we now let ~e represent the characteristic length for the void space, we can 
estimate t~t3 and G by 

g~ -- @e, G -- evg. (4.15) 

Use of these relations in Equations (4.14) leads to 

Kt3 = O(e~g2), K, = O(e3e2). (4.16) 

These estimates are in reasonably good agreement with experimental values of 
the Darcy's law permeability and the relative permeabilities for the two phases. 
To estimate Kov we need M2 ~ from Equation (3.47) and this is given by 

1 Ia 
n .  [ V A f  - la~]  dA. (4.17) 

If we ignore the surface tension term in Equation (3.29), we can use that result to 
form the estimate 

n~. [V A2 ~-  ,a2~]  : O{ ( ~ ) n . , -  IV A~- ,a~']}, at d0,. (4.18) 

The estimates for A~ and a~ are comparable to those given by Equations (4.9) 
and (4.10) and we list them here as 

A2 ~ = O(1), a~ = O(f~l). (4.19) 
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Use of these relations in Equation (4.18) leads to 

n t3v ' [VAz~- la~]=O/( txv] (71} ,  at ~r (4.20) 
t\/xt3/ 

and if we use this result as an estimate in Equation (4.17) we obtain 

M~ = O[(~) (go(~,)-l]. (4.21) 

From the second of Equation (3.50) and from Equations (4.11) and (4.21) we 
obtain the estimate for Kt3 v given by 

,422, t ',/*~/ ev.J" 

A similar line of reasoning for Kvt3 yields 

and we can use Equation (4.15) to obtain our final estimates 

/z~ e. v 2 
Kt3v = O[t\/xt~/(/*vt (~ )2 ] ,  Kvt3 = O [ ( ~ ) ( - ~ )  ]. (4.24) 

Although these results are only estimates, they support the suggestion indicated 
by Equations (4.7). This means that the coefficient of V (p~)V in Equation (4.5) is 
essentially inversely proportional to /xo and the coefficient of V (pv) v in Equation 
(4.6) is essentially inversely proportional to /~v. Under these circumstances, it 
would seem to be virtually impossible to detect the form of Equations (3.48) and 
(3.49) using steady-state, uniform flow conditions such as are traditionally used in 
the determination of relative permeabitities. Keeping in mind that we have only 
estimates of Kt~ , Kv, Kt3./and Krt3, it is of some interest to use Equations (4.16) 
and (4.24) in Equations (4.5) to obtain 

(4.25) 

This would suggest that the last term in Equation (3.48), which gives rise to the 
term %e~, may be of considerable importance as % ~ 0. In recent studies of the 
liquid phase motion during the drying of granular media (Whitaker, 1984), it was 
found that nonzero values of the relative permeability existed below the so-called 
critical saturation. This phenomenon may, in fact, be a manifestation of the 
additional flow caused by the last two terms in Equations (3.48) and (3.49); 
however, the nonuniformities that exist for transient, two-phase flows (Jacquin 
and Adler, 1985) in conjunction with the concepts suggested by Baveye and 
Sposito (1984) are a more likely explanation. It seems clear that an experimental 
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exploration would benefit from both uniform flow experiments and imbibition 
experiments; however, the latter are difficult to carry out in a manner that gives 
rise to a one-dimensional flow (Lefebvre du Prey, 1978). 

5. S o l u t i o n  of  the  C losure  P r o b l e m  

In the formulation of the closure problem presented in Section 3, no mention was 
made of the boundary conditions at the entrances and exits of the macroscopic 
system, a/t3e and ~/ue in the notation of Part I of this paper. Since the closure 
problem is a local problem to be solved in a representative region, the boundary 
conditions at entrances and exits are to be replaced with periodic conditions and 
the closure problem takes the form 

- VaT' + V2AT' =-~ Iv, [-Va~ + V2A~']dV, 

V . A T = 0 ,  i = 1 , 2 ,  

B.C.1 

B.C.2 

B.C.3 

B.C.4 

B.C.5 

i = 1, 2, (5.1) 

A f = - I ,  A2~=0,  a t A ; ~  

A~= "Y --- A z - I ,  A2 ~ A~+I,  a t A ~ ,  

=/,~(-nfl~a~ + VA~.  nfl~ +ntis.  VA~') + 2o-nfluh~, 

atA~v,  i = 1 , 2 ,  

A ~ = 0 ,  A~ = - I ,  at A*~, 

a~(r + ~)  = a~(r), A ~ ( r +  ~ ) =  A~(r), i=1,2, 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

j=  1,2,3, 
(5.7) 

(5.8) (a~') ~ = 0, (A~') ~ = 0, i = 1, 2. 

Here A ~ ,  A ~  and A*~ represent the interfacial areas contained within the unit 
cell illustrated in Figure 2. There the fl-phase is shown as the fluid that wets the 
solid phase, and one would begin the solution procedure by a search for an 
acceptable solution of the static problem. This would require the specification of 
the curvature, H = ( H ) ~ ,  and a contact angle. Solution of the static problem 
would yield the volume fractions, e~ and %, and thus a point on the capillary 
pressure-saturation curve. The velocities (v~) ~ and (vv) ~, would then be specified 
so that the curvature deviation could be computed in an iterative manner in 
conjunction with the solution of Equations (5.1) through (5.8). Any strong 
coupling between the velocity and the curvature would surely lead to numerical 
difficulties and to the prediction of significant hysteresis effects. However, when 
the restriction given by Equation (3.15) is in effect, the coupling should be weak 
if not non-existent. This would allow for the solution of Equations (3.25) through 
(3.31) in a straightforward manner once the position of the f l -y  interface is 
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Fig. 2. Two-phase flow in a spatially periodic porous medium. 

located. With calculated values for the a~ and A~ fields, the four tensors in 
Equations (3.38) and (3.39) could be determined for the particular saturation in 
question. Repeated calculations for different values of the curvature would yield 
values of Kt3, Kv, Kt3 v and K~t3 for the entire range of saturations. One could 
easily argue that the system shown in Figure 2 will not be capable of capturing 
the essential features of two-phase flow phenomena; however, more complex 
structures, such as that shown in Figure 3 of Part I of this paper, can be used if 
sufficient computer power is available. On the other hand, imaginative models 
(Legait and Jacquin, 1984) offer an attractive alternative to extensive numerical 
computation. 

While this computational procedure seems appropriate (but very difficult) for a 
steady flow, the question of moving contact lines (Huh and Scriven, 1971; 
Dussan, 1979) presents another problem. Certainly the closure problem asso- 
ciated with moving-front or imbibition processes must be a local problem; 
however, a moving contact line is incompatible with the spatially periodic 
conditions given by Equation (5.7) and with the form of the governing differen- 
tial equations given by Equations (2.1) and (2.7). In single-phase flow, one argues 
that local phenomena are quasi-steady since the time constraint given by 

ut 
~5 >> 1 (5.9) 

is so easily satisfied. In two-phase flow this constraint is still valid on the average; 
however, it is not at all clear how moving contact line phenomena can be 
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incorporated into the framework of the current analysis without considering 
transient effects in the closure problem. Studies of this type have been carried out 
by Giordana and Slattery (1980). 

6. Conclusions 

The method of volume averaging has been extended to immiscible flow of two 
fluids in a rigid porous medium. The analysis yields a pair of momentum 
equations that contain additional terms over and above the obvious intuitive 
extension of Darcy's law, along with a scheme for computing the coefficients that 
appear in these equations when the flow is steady. The theory contains the 
possibility of predicting hysteresis phenomena, but only detailed calculations will 
indicate whether this phenomena can be captured without including moving 
contact line phenomena. 

Appendix: Uniqueness of the Closure Scheme 

The purpose of this appendix is to prove that the solution of the homogeneous 
problem for ~ and ~ in a spatially periodic system is 

~ = ~ = 0 (A.1) 

The proof is nothing more than a modest extension of the development given in 
Appendix B of Part I of this paper. The system under consideration is illustrated 
in Figure 2 and the boundary value problem for 0~ and ~ is 

1 
I [ -  V ~ + V20 ~] d V, a =/3, T, (1.2) 

v o  

V " ~ : 0 ,  a =/3, 3,, (A.3) 

B.C.1 , t 3 = 0 ,  on A ~ ,  (A.4) 

B.C.2 q~t3=,v, on A~v , (A.5) 

B.C.3 /zt3(-nt3,~t~+ V #  t3 .n~v+n~v.  V ~  t3) 

=/xv(-nt~v~ v + V ~v .  n~ v + no v . V t~v), on A~,~, (A.6) 

B.C.4 , v = 0 ,  on A*~, (A.7) 

B.C.5 ~ ( r + g i ) = ~ ( r ) , ~ ( r + g i ) = ~ k ~ ( r ) ,  i = 1 , 2 , 3 ,  (A.8) 

(~)~ = 0, ( ~ ) ~  = 0. (A.9) 

Following the arguments given in the analysis for single-phase flow, we form the 
scalar product of Equation (A.2) (with a =/3) and 0t3 and integrate over the 
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/3-phase contained in a unit cell to obtain 

123 

-Ivo v. "(O~ V2(Ot3"O~ V 0 0 " ( V * 0 ) T d V  

(A.10) 

The divergence theorem and Equation (A.4) allow us to express this result as 

(A.11) 
+ f,a*o,(nov" V*~176 dA= fv Vt~~176 dV 

while the spatial periodicity of ~o and ~ allow us to simplify Equation (A.11) to 
obtain 

- f *  n~v'*~ J a ; , ( n ~ 1 7 6 1 7 6 1 7 6  

(A.12) 

The result for s and ~v is given by 

- f .  nv~'0V~VdA+ I (nvo- V , o ) - , v  dA = f VOv : (V*~')T d V  

(A.13) 

in which nv~ = -nov. At this point we turn our attention to Equations (A.5) and 
(A.6) and note that they can be used to obtain the relation 

/xo[-nov. 0 ~  ~ + t~ 0- Vq~ o -n~v + (nov- VO~ �9 ~ ]  

=/x~[_no v. qjv~v+q~v. Vt~v. n~ v+(nov. V~v). qjv], at A~v. (A.14) 

If we multiply Equation (A.12) by/x~ and Equation (A.13) by/xv, we can add the 
results and make use of the integral of Equation (A.14) over A~v to obtain 

f .  '(/xv*v" V 'V"  n/3v -/,~o*/3" V *  ~ "nov ) dA 
A/3- r 

(A.15) f f [ v,o:  (v,o)T d V + . v / ,  v,v: (V,v)T dr. 
JVo ,r Vv 

Since q~o and qjv are solenoidal, we can prove that 

(A.16) 

I *  , v .  V O V . n w d A + f  Or. V~bV.nvodA=f V , v : V O v d V .  

(A.17) 
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These results, along with Equations (A.4) and (A.7), can be used to reduce 
Equation (A.15) to the form 

[ + T] d v +  f .  + T] d V = 0. 
% J v~ 

(A.18) 

A little thought will indicate that this result can be expressed as 

[_.. I V 0  fl + (V 0t3) T] : [V013 + (V 0t3) r ]  d V +  /x0 

(A.19) / ,  

+/~r  Jr* [ V O r  + (V0Y)T]  : [ V O r  + ( r 0 Y ) r ]  d V - -  0 

because the irreducible parts of a second order tensor are orthogonal. Since both 
integrands consist of a sum of squared terms, they must both be identically zero 
in order that Equation (A.19) be satisfied. Under these circumstances one can 
deduce that V Or3 and %r 0 r  must be skew-symmetric. This means that 

Vlll/3 ~--- - -  ( V  111/3) T ,  VI~I 3' = - - ( V  1113~) T (A.20) 

and the motion described by ~t3 and ~ '  is rigid body motion. Under these 
circumstances, the existence of a no-slip condition is sufficient to conclude that 

,t3 = , v  = 0. (A.21) 

The proof that ~ and ~v are also zero follows the development in Appendix B of 
Part I of this paper (Whitaker, 1986). 
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