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Abstract. Studying the algebraic structure of the double ~Y(g) of the Yangian Y(g), we present the triangular 
decomposition of c~Y(9) and a factorization for the canomcal pamng of the Yangian with its dual reside 
yo(g). As a consequence, we describe a structure of the umversal R-matrix R for ~Y(9) which is complete for 
~Y(sl 2) We demonstrate how this formula works in evaluation representations of Y(sl 2). We interpret the 
one-dimensional factor arising in concrete representauons of R as a bfllnear form on highest-weight 
polynomials of irreducible representations of Y(.q) and express this form m terms of F-functions. 
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1. Introduction 

The Yangian Y(g) of a simple Lie algebra g was introduced by Drinfeld [5] as a 
deformation of the universal enveloping algebra U(g It]) of a current algebra g It]. The 
Yangians Y(g) and quantum affine algebras Uq(0) play the role of dynamical symme- 
tries in quantum field theories [1, 24]. Tensor products of finite-dimensional represen- 
tations of the Yangians produce rational solutions of the Yang-Baxter equation; tensor 
products of finite-dimensional representations of quantum affine algebras produce 
trigonometric solutions of the Yang-Baxter equation. One can find out other deep 
parallels in representation theories of Yangians and of quantum affine algebras. 
Nevertheless, both of them have their own original features. The Yangian Y(g) is much 
more closer to classical Lie algebras, at least it contains the universal enveloping 
algebra U(g) as a subalgebra; moreover the Yangian Y(gl,) could be defined entirely in 
terms of classical representation theory [21]. The structure of quantum affine algebra 
Uq(0) is more complicated. On the other hand, Uq(0) inhabit main properties of the 
contragradient algebras. For example, Chevalley generators and q-deformed Serre 
relations are permanent participants of the games with the quantum affine algebras. 

The theory of the Cartan-Weyl basis (See [16, 17]) allows us to describe explicitly 
the universal R-matrix, one of the main objects in physical applications. We have 
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nothing of this for the Yangians, although suitable modifications of classical methods 
of representation theory work for Y(g) and Uq(~) as well (see [4, 5, 13,20], for 
instance). We want to make this gap smaller. 

It is more reasonable to work with quantum double ~Y(g) of the Yangian, if we 
keep in mind physical applications. We present here an algebraic description of 
~Y(g) in terms of the 'second' Drinfeld realization of Y(g). Unfortunately, we can 
give rigorous proof of this presentation only for g = sl, (see Theorem 5.1 and 
Section 6.2). For the general case, we have a number of indirect arguments; the 
arguments of Section 6.2 can be also generalized for arbitrary simple g, but 
technically it looks too cumbersome. 

Finite-dimensional representations of ~Y(g) do not differ much from the repre- 
sentations of the Yangian Y(g): the extension of a representation of Y(g) to a 
representation of ~Y(g) can be achieved just by re-expansion of the currents from 
Y(g) in other points of the projective line. We present here a study of some 
algebraic properties of ~Y(g), with the accent to the canonical pairing in the 
double. 

We prove that ~Y(g) itself and a Hopf pairing of Y(g) with its dual inside ~Y(g) 
admit a triangular decomposition analogous to a Gauss decomposition of ordinary 
matrices. This property gives the possibility to describe the pairing quite explicitly. 
As a consequence, we obtain an explicit factorized expression for the universal 
R-matrix of ~Y(g) (completely proved for ~Y(sI2) and partially in the general 
case). To make the formulas more transparent, we present detailed calculations for 
~Y(sl2), including the action of the universal R-matrix on evaluation representa- 
tions. 

The most interesting factor Ro of the universal R-matrix is concerned with a 
(zero-charge) Heisenberg subalgebra of ~Y(g) which is a deformation of the 
currents to the Cartan subalgebra h of g. Analogously to the case of Uq(0) [14, 16], 
the structure of R0 is governed by the q-analog of the invariant scalar product in 
h; whenever Ro acts on representations of ~Y(g), a variable q becomes a shift 
operator T: T f ( x )  = f ( x  - 1) (for quantum affine algebras, the parameter q goes 
to multiplicative shift T q f ( X )  = f ( q x )  in an analogous situation). After substitution 
of the universal R-matrix into the tensor product of concrete representations of 
~Y(g), we obtain a more than usual rational R-matrix; some additional informa- 
tion is concentrated in a scalar-phase factor (scalar S-matrix) which we interpret as 
a bilinear multiplicative form on highest-weight polynomials of finite-dimensional 
representations V of Y(g)(or, equivalently, on Ko(RepY(g)). This form is a 
deformation of skewsymmetric form ( , ) / (a  - b) on irreducible evaluation represen- 
tations of g[ t ] ,  where ( , )  is an invariant scalar product in h* and a and b are the 
points where the evaluation representations are living. We present an explicit 
expression of this form as some ratio of F-functions defined by the structure of the 
q-analog of the invariant scalar product in h. 
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2. Yangian Y(g) and its Quantum Double 

The Yangian Y(9) as a quantum deformat ion of the universal enveloping algebra 

U g [ t ] ,  where g[ t ]  is the polynomial  currents over a simple Lie algebra g, was 
introduced by Drinfeld [5] firstly in terms of generators which actually are not 
associated to the choice of a concrete basis in g. Later  in [6-8] ,  Drinfeld gave 
another  realization of the Yangians in terms of generators connected with the 
Car tan-Weyl  basis in g. In this Letter, we use this second Drinfeld realization. Let us 
recall the definition of this realization. 

Let g be a simple Lie algebra with a s tandard Car tan matrix A = (a~j),~.j=o, a 

system of simple roots  11 ..= {c~1 . . . . .  ~z } and a system of positive roots A + (g). Let 

ei:=e~, ,  h , :=h=, ,  f , : = f = ,  .'=e_=, (i = 1 . . . . .  r), 

be Chevalley generators and {e~ , f~} ,  (~ ~ A), be a basis Car tan Weyl in g, nor- 
malized so that (e=, f , )  = 1. 

D E F I N I T I O N  2.1. The Yangian Y.'= Y(g) associated to g is the Hopf  algebra over 
C generated (as an associative algebra) by the elements 

h,k:=h~,k,  f i k : = f ~ , k  ( i =  1, . . . , r ;  k = 0 , 1 , 2  . . . .  ), eih :---- e~ , k ,  

with the relations: 

[hik, hjl] = O, [eik, f.il] = 60 hi.k+t, (2.1) 

[h,o, e jr] = (el, c~j)ejl, [hio, f ~z] = -(~x,, c~j) f jl, (2.2) 

[h,.k + ,,  ejl] -- [hik, e i, t+ l ] = �89 ~ j) {h,k, ejl}, (2.3) 

[ h , . k + l , f j l ]  __ [hik, f j . t + l ]  = __�89 aj) f "t ~h,k, fjl~, (2.4) 

[el.k+ 1, ej, ] -- [ei,, e j.,+l ] = �89 :~ ~) {ei,, ejt }, (2.5) 

[ f i . t + l ,  fat]  -- [ f ig ,  f a.,+, ] = --�89 % ) { f , k ,  f ,,}, (2.6) 

S y m : k  I [ei,k, [ei, k2 "'" [ei.k,,,, ej,] .-. ]]  = 0, 
(2.7) 

Sym,~kl [f , .k ,  [f i .k2"'" [ f i ,  k,,,, f j , ] " "  ] ]  = 0, for i :~j, 

where [a, b} .'= ab + ba, nij == 1 - A~j, the symbol 'Sym'Ik I denotes a symmetrizat ion 
on k l, k2 . . . . .  k~a. The comultiplication map of Y is given for basic generators e~k, h,k, 

f ,g ,  (k = 0, 1), by 

A ( x ) = x |  + l |  x e g ,  

A(e,x) = eil @ l + l | en + h,o | e,o - f~, @ [e~,,. e~ ], 
7EA+(q) 

(2.8) 

(2.9) 

A ( f , l )  = f i l  | 1 + 1 | f , ,  + f ,o  | h,o + ~, [f~,,, f; .]  | e~., (2.10) 
7EA+(g) 
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A ( h i , ) = h i l |  + l |  + h i o |  ~ (cti, 7 ) f r |  (2.11) 
~'eA+(g) 

Remarks.  (i) The universal enveloping algebra U(g) is embeded in Y(g): 
U(g) c~ Y(g). 

(ii) One can show that Y(g) is generated only by the elements eio, f io ,  f i l  
(i = 1, ..., r) and, therefore, we can obtain the comultiplication map for all generators 
eik, f ik, hik, f ik (i = 1 . . . . .  r; k e 7/). 

(iii) If we replace the right parts of (2.3)-(2.6) by zeros, then we obtain the algebra 
isomorphic to U(g[t]).  

In this Letter, we study a quantum double ~Y(g) of Y(g) (see [7] for definitions). 
In the following, we describe that algebraic structure of ~Y(g). 

Let C(g) be an algebra generated by the elements elk, f ik, hik, (i = 1 . . . . .  r, k �9 7/), 
with relations (2.1)-(2.7). Algebra C(g) admits 7/-filtration 

�9 .. c C _ ,  c ... ~ C-1  c Co ~ CI ... ~ C , . . .  ~ C(g) (2.12) 

defined by the condition 

deg eik= deg f lk  = deg hik = k; deg C,, = m. 

Let (7(g) be the corresponding formal completion of C(g). The generators eik, f lk ,  hlk 

(i = 1 .. . . .  r, k ~> 0) define an inclusion Y(g) c~ C(g). We denote sometimes its image 
by Y+(g) or shortly by Y+ when we need short notation. In the next sections, we 
prove that dual to Y(g) Hopf algebra with opposite comultiplication Y~ is 
isomorphic to the subalgebra Y - , = Y - ( g )  which is generated by formal series 
~m<oa,,,  deg am = m. 

An algebra C(g) was introduced by Drinfeld [6, 7] as a quantum double of a Hopf 
algebra quantizing the currents to a Borel subalgebra with rational r-matrix. In the 
trigonometric situation, he proved that an algebra analogous to C(g) is isomorphic to 
the double of Uq(b§ modulo Cartan elements (i.e., to Uq(0)). This proof does not fit for 
the rational case, since Y_ (g) is not finitely generated and ~Y(g) has no alternative 
description in terms of Chevalley generators. We assume, nevertheless, that algebras 
~Y(g) and C(g) are isomorphic and give a sketch of the proof of this for Y(sl,). 

For a description of ~Y(g), it is more convenient to use the generating functions 
('fields') e+(u), h+(u) and f+ (u )  of Y+(g): 

ei+(u) ".= ~ e l k u - * - ' ,  / / ( u ) . ' =  ~ f , k u  - k - l ,  
k>~O k>~O 

h,+@..= 1 + h, u 
k>~O 

e i - (u) - '=-  ~ eik u-k-l ,  
k < 0  

h[(u). '= 1 -- ~ hik R-k-1. 
k < O  

f T ( u ) " = -  Y', f ,kU - k - ' ,  
k < O  

(2.13) 

(2.14) 
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In the case of  Y• we omi t  for simplici ty everywhere  an index of  a simple root ,  

e.g. for the fields we use the no t a t i ons  e_+(u), h-+(u) and  f,+(u). Moreove r ,  we put  

(c~, c0 = 2. In  this case, we can p rove  the fol lowing propos i t ion .  

P R O P O S I T I O N  2.1. (i) The defining relations (2.1) (2.7) of the algebra C(sl2) are 
equivalent to the following relations for the fields (2.13) and (2.14): 

[h-+(u), tl'+(/))] = 0, [h +(u), h - ( t ' ) ]  = 0, (2.15) 

[e -~ (u), f -+ (v) ] = - 

[e• f ~-(v)] = - 

h,+(u) -- h•  ,) 

U - -  / )  

h ~ (u) -- h ,+ (/)) 

U - -  /) 

(2.16) 

h • (u), (e • (u) - e +- (v))} 
[h +(u), e-+(/))] = - , (2.17) 

U - -  [; 

h-+(u), (e• - e ~(/)))} 
[h-+(u), e~(v) ]  = - , (2.18) 

U - - l )  

[h+(u)  ' f +(/))_] = {h• f '+ (u ) -  f+-(v))} 
b/ - -  /) 

(2.19) 

[h -+ (u), f z (v) ] = {h • (u), ( f  -+ (u) - f T (v))}, (2.20) 
U - -  /) 

[e -~(u), e• = - 
(e +(u) -- e • 2 

U - -  / )  

[e+(u) ,  e - ( v ) ]  = - 
(e + (u) - e (/))) 2 

U m U 

(2.21) 

[f-+(u),  f-+(/))] = 

I f  + (u), f -  (/)) ] = 

( f  -+ (u) - f -+ (/))) 2 

U - - U  

( f  + (u) - f -  (/)))2 
U - -  U 

(2.22) 

(ii) An algebra generated by e + (u), h + (u), f + (u) with the relations (2.15)-(2.22) and 
comultiplication map (2.23)-(2.25) is a Hopf algebra isomorphic to (~Y(sl2). (The 
co-multiplication map for the positive fields e + (u), f + (u) and  h + (u) were communicated 
to us by Molev [19].) The comuhiplication in ~Y(sl2)  looks as follows: 

A ( e • 1 7 7  + ~ ( - -1 )k ( f  "+(U + 1))kh'+(U)| k+l 
k = 0  

= e • 1 7 4  + ~ ( - -1)kh•  l))k|177 k+l, 
k = O  

(2.23) 
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A(f-+(u))= l |  ~ (--1)k(f+(u))k+l| h+-(u)(e+(u+ 1)) k 
k=O 

= 1 |  ~, (--1)k(f+(U)) k+l |  1)kh+-(U)), 
k=O 

(2.24) 

A(h -+ (u)) = 
k=O 

k=O 

( -  1)k(k + 1)(f-+(u + 1))kh+-(u)| + 1)) k 

(--1)k(k + 1)h+-(u)(f+-(u - 1)) k |  1)) kh+-(u). 

(2.25) 

Proof. Part (i) and compatibility of comultiplication with (2.15)-(2.22)is derived 
by direct calculations; an isomorphism with ~Y(slz) follows from the existence of the 
universal R-matrix (see Remark to Theorem 5.1). 

For arbitrary g, we have the following analog of Proposition 2.1: 

PROPOSITION 2.2. The defining relations (2.1)-(2.7) of the algebra C(g) are 
equivalent to the following relations for the fields (2.t3) and (2.14): 

[ h i ( u ) ,  h f ( v ) ]  = O, 

[e+(u), f f ( v ) ]  = -5i, i  

[h/+(u), hf(i))] = O, 

h/-+ (u) - hf  (v) 
U - -  I) 

[e f (u), f f  (i))] = - 61,~ 
h~ (u) -- h + (i)) 

U - - I )  

(2.26) 

(2.27) 

[h[  (u), e f  (i))] = - �89 ~ )  
{ h,-+ (u), (e f (u) - e f (i)))} 

U - - I )  
(2.28) 

[h~ (u), e~ (v)] = -�89 at) 
{h~(u), ( e l (u ) -  e?(v))} 

U - - I )  
(2.29) 

[h, • (u), f +  (v)] = �89 ct~) {h[(u), f f ( u ) -  ff(v)} 
U - - I )  

(2.30) 

[h/-+ (u), f ~  (v)] = �89 i, ai) 
{h/~(u), ( f f ( u ) -  f~(v))} 

U - - l )  
(2.31) 

[el(u), e i (v)]  + [el(u), e~(v)] 

= - �89 aj.) { (e~ (u) - e~  (v)), ( e l  (u) - e f  (v))},  
U - - I )  

(2.32) 

[ei+(u), e l (v)]  + [e+(u), ei-(v)] 

{(e, + (u) - e7 (v)), (e l  (u) - e 7 (v))} 
= - �89 ~/) , (2.33) 

U - - V  
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+ u 
[f+(u),  f f ( v ) ]  + [ f f ( ) ,  f~ (v ) ]  

= �89 ai ) { ( f [ (u )  - f [ (v ) ) ,  ( f ? ( u )  - f?(v))} 
U - - V  

(2.34) 

[f,+(u), f f (v) ] + [ f  f (u), f i - (v) ]  

= �89 ~i)  
{(f?(u)  - fT(v)) ,  ( f f ( u )  -- f f ( v ) ) }  

U r n / )  
(2.35) 

~ k  n Sym/k } [e~ ~' (uk,)[e~2(Uk2) "'" [ei 'J(uk,., e~~ ' ' '  ]] = O, 

Sym/k / [ f ~ '  (Uk,) [f~z(Uk~)"" [ f  ~%~(Uk,,j, f~~ " - ] ]  = O, 

where e m = +. 

for i # j, 
(2.36) 

CONJECTURE.  Yangian double ~Y(g) is isomorphic to the algebra described in 
Proposition 2.2. 

In the next section we describe certain decompositions in the Yangians Y(g) and 
its quantum double @Y(g). 

3. Triangular Decomposit ion of  ~ Y ( g )  

Let Y~_, Y~ and Y'_ be a nonunital (without unit element) subalgebras of Y(g), 
generated by the elements elk (i = 1 . . . . .  r , ;k  >~ 0); hik (i = 1, . . . ,r ,  k >~ 0); f ik,  
i = 1 . . . . .  r, k >~ 0) correspondingly. We denote also by Y+, Yo, and Y_ the algebras 
Y~_, Y~, and Y" with an added unit element. Following [2], one can deduce from 
(2.1)-(2.7) the following decomposition of Y(g): 

P R O P O S I T I O N  3.1. A multiplication in Y(g) induces an isomorphism of vector spaces 

Y+ | Yo| Y- "-~ Y(g). (3.1) 

We are going to extend this decomposition to the double ~Y(g) and factorize the 
natural pairing of Y(g) and yO(g) with respect to this decomposition. First, we 
summarize properties of the comultiplication in Y .'= Y(g), which easily generalizes 
by induction of formulas (2.8)-(2.11) (see also [2]). 

LEMMA 3.1. The following relations hold: 

A(e) = e | 1 (mod Y | Y~_), (3.2) 

for any e ~ Y~," 

A ( f ) = l Q f  (mod Y ' _ Q Y ) ,  (3.3) 

for any f ~ YL. 

In particular, we conclude that Y+ is a right coideal (A(Y+) c Y | Y+ ) and Y_ is a 
right coideal (A(Y_) = Y_ O Y) of Y(g). 
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Also let Y~_ be a nonunital subalgebra of Y(g) generated by the elements elk and h~ 
(i, j = 1 . . . . .  r ,k , l  >1 0); Y_' be a nonunital subalgebra of Y(g) generated by the 
elements f lk and h jr (i, j = 1 . . . . .  r, k, l >~ 0). 

LEMMA 3.2. The following properties take place: 

A(e) e |  (mod Y |  = Y+), (3.4) 

- - t  , 

for any e �9 Y+ 

A ( f ) =  l |  (mod Y_' |  (3.5) 

for any f �9 Y"__ ; 

A(h) = h |  1 (mod Y | Y~_) 

= 1 | h (mod Y'_ @ Y), (3.6) 

for any h �9 Y ~. 

Let <, > denote the canonical Hopf pairing of Y ..= Y(g) and its dual Y o ..= y o (g). The 
Hopf property of <,> in this case can be read as 

(ab, c*d*> = <A(ab),c* |  = <b |  A(c*d*)> 

for any a, b �9 Y, and for any c*, d* �9 Y o. Here, (a  | b, c* @ d* > = (a, c* > ( b, d* >. 
Let - ' * ( Y Y + ) I  be an annulator of YY'_, i.e. 

(YY'_)* = {e*�9  y o: ( y f ,  e*> = 0, Vy �9 Y, Vf �9 ~"_ }. (3.7) 

Analogously, we define (~'~_ Y)* ,  ( Y Y ' ) * ,  and (Y~ Y)*. We shall also use the 
following short notations 

y *  ,= (y~ ' : )* ,  y*  := (?+ Y)*, 

- *  '= (YY'-L*, F* Y+ - :=(Y;  y ) , ,  (3.8) 

and 

* (3.9) Y~:= Y'+ n ~'*_. 

PROPOSITION 3.2. The dual subsets Y *  Y_ }" * ~'* , , +, _ are subalgebras of  yo(g). 

The validity of the proposition follows directly from Lemmas (3.1), (3.2), and the 
following simple lemma. 

LEMMA 3.3. Let A and A* be two Hopf  algebras with a Hopf  pairing <,>: 
A | A * ~ C. Let a subset X ~ A satisfy the condition A(X) ~ X | A + A | X.  Then 

both (AX)* and (XA)* are subalgebras of  A*. 

The main result of this section is the following theorem. 
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THEOREM 3.1. (i) For any e e Y +, h ~ Yo, f e Y- ,  e* ~ Y * ,  h* ~ Y} ,  f *  ~ Y* the 
canonical pairin9 is factorized as 

(eh f ,  e* h* f * )  = ( e , e * ) ( h , h * ) ( f , f * ) .  (3.10) 

(ii) A multiplication in Y~ induces the isomorphism of the vector spaces: 

* | Y} @ Y*_ "~,Y~ (3.11) Y+ 

Proof. (i) First using Lemmas 3.1 and 3.2, we easily check that for any e e Y+, 
e* e Y*,  f e Y ,  f *  e ~ * ,  we have 

(e f ,  e ' f * )  = (A(e)A(f),  e* | f * )  

= ( ( e |  1 + ~ y,  | e,)(1 |  + ~ f , ,  | y,,), (e* |  

= ( e , e * ) ( f , f * ) ,  (3.12) 

where e,~ Y),  f i e  Y'_ by virtue of (3.2)-(3.5). Furthermore, we can prove ana- 
logously that 

(eh, e*h*)  = ( e , e * ) ( h , h * )  (3.13) 

for any e ~ Y+, h ~ ~ ' ,  e* e Y*, h* ~ H*. Thus, we have (3.10). 
(ii) Let us choose a basis in Y(9) in accordance with the decomposition (3.1), 

i.e. each basic vector has the form ehf, where e ~ Y+, h ~ ~ ,  f ~ Y_. Then vectors 
biorthogonal to these basic vectors make up a basis in yo(9) and, in accordance 
with (3.11), they have the form e ' h *  f* ,  where e*~ Y*, h*~ ovg* f * ~  y* .  This 
means (3.11). 

Now we proceed with a more detailed study of the pairing in the Yangian double. 
In the next section, we compute explicitly the pairing between the generators of Y(9) 
and Yo(g)- 

4. Basic Pairing for ~Y(9)  

The aim of this section is to compute explicitly the pairing between generators 
elk, hik, and f~k of Y+(g) and of Y-(9) -~ yO(9). The answer will be written in 
terms of generating functions ('fields') (2.22) and (2.23). Explicit calculations will be 
done for the case of Y(sl2) where, for simplicity, we omit everywhere the index of a 
simple root, e.g. for generating functions we use the notations e+(u), h+(u), and 

f+(u). 
Let 

{e*-k_l} ,= {e_ 1, e_z . . . .  }, { f * - k - 1 } ' = { f - , , f - 2  . . . .  } 

and {h*_k_l}' .={h_l,h_z . . . .  } 
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be some sets of elements from Y*, Y*,  and Y*,  correspondingly. Let us construct 
the generating functions (the fields) of these sets: 

*u -k-x,  f*(u)- '=  ~ f * u  - k - l ,  e*(u).'= Y' e k 
k < 0  k < 0  (4.1) 

h*(u) . '=l  + E h~ u -k - l '  
k<O 

We are interested in the pairings of these fields with the fields e § (u), f § (u), and h § (u), 
i.e. (e+(u),e*(v)), ( f+(u) ,  f * ( v ) )  and (h+(u), h*(v)), where lul >>1>> lul. The 
following proposi t ion is valid. 

P R O P O S I T I O N  4.1. I f  the fields e*(u), f *  (u) and h* (u) are such that 

(e+(ul) "" e+(u.), e*(v) ) = ( f + (ul) . . .  f + (u,), f*(v)  ) = O, (4.2) 

for any n > 1 and 

(h + (ul)"'" e+(u.), h*(v) ) 

= (h + (ul), h*(v)). . .  (h  + (u2), h*(v)) (4.3) 

for n > 1. Then the conditions 

(e+(u), e*(v) ) - 
O~ 

U - - / )  
( f  +(u), f * ( v ) )  - 

O~ - 1  

U m V  
(4.4) 

for some cr �9 C, 

(h  + (u),h*(v) ) - 
u - v + l  

u - v - l '  
(4.5) 

are realized if and only if the relations 

[h*(u), h*(v)]  = 0, [e*(u), f * ( v ) ]  = 
h*(u)  - h*(v)  

U - - O  
(4.6) 

[h*(u), e*(v)] = - 
{h * (u), (e* (u) - e* (v))} 

(4.7) 

[h* (u), f *  (v) ] = 
{h*(u), ( f*(u) - f*(v))} 

U - - V  
(4.8) 

[e*(u), e*(v)] = - 
(e*(u) -- e*(v) 2 

U D V  

[ f*(u) ,  f * ( v ) ]  = 
( f*(u) -- f* (v)  2 

U r n / )  

(4.9) 

are satisfied. 



YANGIAN DOUBLE 383 

Proof. Using the expressions (2.23)-(2.25) and the commutation relations (2.157 
(2.22) for the fields e+(u), f +(u), h + (u), we have 

A(e+(u)) = e+(u) | 1 + h+(u)@e+(u) (mod YY_ @ Y~_), (4.10) 

A(f+(u))=  l | 1 7 4  (mod Y ' |  Y), (4.11) 

A(h+(u)) = h+(u) @ h+(u) (rood YY'_ | Y+ Y), (4.12) 

A(e+(u)e+(v)) 

=e+(u)e+(v)| 1 + 1 | + 

u - v + l  
+ -- .e+(v) @ e+(u) -- 

u - - v  1 

2 
e+(u-- 1)@e+(u) (mod YY_ @ Y~_), (4.13) 

u - v - 1  

A ( f  +(u)f+(v)) 

= f + (u) f + (v) @ l + l | f + (u) f + (v} + 

u - v - 1  
+ f +(v) | f +(u) - 

u - v + l  

2 
f+(v)@ f+(v  - 1) (mod Y" @ Y~ Y), (4.14) 

u - - v + l  

A (h + (u) f + (v)) 

=h+(u) @ h + (u) f + (v) + 

+ h+(u)f+(v)|  +(v) (mod YY'_ | Y~_ Y), (4.15) 

A(e + (u)h + (v)) 

= e+(u)h+(v)| h+(v) + 

+h+(u)h+(v)| (mod YY" | Y+ Y).  (4.16) 

Let now 

(e+(u),e*(v)} = E(u,v), { f  +(u), f*(v)} = F(u,v) and 

(h+(u), h*(v)) = H(u, v). 

The computation of the pairing of the relations (4.6)-(4.9) with the r.h.s, of 
(4.13)-(4.16) gives the functional equations on the functions E, F, H which determine 
them to be equal to the r.h.s, of (4.4)-(4.5). The arguments can be reversed if we use 
conditions (4.2)-(4.3). 

The main result of this section for ~Y(sl2) may be formulated in the following 
theorem: 
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T H E O R E M  4.1. (i) Subalgebras Y* ,  ~'~* and Y* (see (3.7)-(3.9))  of Y-(slz) are 
generated by the fields e-(u), h-(u), and f - (u ) ,  correspondingly; 

(ii) The pairing of the generators of Y_+ (s12) is given by the relations (I v l << 1 << l ul) 

1 
(e + (u), f - (v)) = ( f  + (u), e- (v) ~ - 

U--V' 

u - - v + l  
( h + (u), h- (v) ) - 

u - v - 1  

or, in terms of the generators, 

(4.17) 

<ek, f - , - l>  = <ft ,  e - t - l>  = --6tt, 

2k! (4.18) 
(hk, h _ t _ l )  = 

l~ (k  - t)~ 

for k, l >_. O. 
Proof. Proposition 4.1 shows that the relations (4.17) are satisfied modulo some 

constant ~: 
-1  

- ~ ( f + ( u ) , e - ( v ) ) -  c~ (e+(u)' f - l ( v ) )  u - v'  u -  v' 

( h + (u), h-  (v) ) - 
u - v + l  

u - v - l "  

We can find this constant from the Yangian R-matrix R = 1 + (P/a - b) acting in 
the tensor product V(a)|  V(b) of two-dimensional representations of ~Y(sl2). The 

action of the generators of @Y(sl2) in V(c) with a basis Vl, v2 can be described by the 
formulas 

ei(vl) = 0, e,(vz) = civl ,  f i(v2) - - - -  0, f i(Vl) = CiV2,  

hi(v1) = civl,  hi(v2) = - c ' v2 .  

According to Theorem 3.1 (see also Proposition 5.1, the reformulation of the theorem 
in terms of the universal R-matrix), we take the Gauss decomposition of the Yangian 
R-matrix: R = R~ Rn Rr  and find that 

1 
RE= 1 + e o |  1-- ~ e i |  f - i - a ,  

a - b  i~o 

which gives (ei ,  f - i - 1 ) =  - 1 ,  i ~  O, ~ = 1. 
In the general case, we have the following analogous theorem. 

T H E O R E M  4.2. (i) Subalgebras Y*,  9~* and Y* (see (3.7)-(3.9))  of Y_(g) are 
generated by the felds e i-(u), h ~ (u), and f 7  (u) ( i = 1 ..... r ), correspondingly; 

(ii) The pairing of the generators of Y• is given by the relations (Ix[ << 1 << [u[): 

6,j (4.19) (e+(u), f j- (v) ) = ( f  + (u),eT (v)) - u -  v' 
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< h + (u), h 7 (v)> = u - v + �89 ~j) (4.20) 
u - v - �89 %) '  

The proof is analogous to the case of slz with the use of the relations from 
Proposition 2.2. 

Remarks. (i) Actually, a variant of pairing (4.17), (4.18) was computed by Drin- 
feld [9]. It appeared as one of the basic points of his quantization of 9[t]. 

(ii) The pairing (4.17), (4.18) may be considered as a deformation of the classical 
pairing in 9 [ [ t - l , t ]  given by the rational r-matrix r = ~/u, where ~ is a split 
Casimir operator. Formulas (4.17), (4.18) show that this pairing remains unchanged 
for the currents to nilpotent subalgebras and changes by shifts _+�89 in 
(de)nominators of the pairing functions of the current to Cartan subalgebras. 

5. The Universal R-Matrix for ~Y(g) 

Let us recall that the universal R-matrix [7] for a quasitriangular Hopf algebra A is 
an invertible element R of some extension of A | A satisfying the conditions 

A ' (x )=  RA(x)R  -1 gxeza/ ,  (5.1) 

( A |  z3, ( i d |  t2, (5.2) 

where A' = aA, (a(x | y) = y | x is an opposite comultiplication in A. If A is a 
quantum double of a Hopf algebra A +, A ~ A + | A- ,  A- .'= A ~ being dual to A + 
with an opposite comultiplication, then A admits a canonical realization of the 
universal R-matrix: R = Y,,~(,~ | ~("~, where ~,) and ~"~ are dual bases in A + and 

A- .  In our case A + = Y(9) and the canonical element R is the universal R-matrix in 
c~y(g). 

Let Y +, Yo and Y-+_ be subalgebras of ~Y(g) generated by the fields eS(u ), h + (u), 
and + f/~ (u), (i = 1 . . . . .  r), correspondingly. As a consequance of Theorems 3.1 and 4.2, 
we obtain the following proposition. 

P R O P O S I T I O N  5.1. The universal R-matrix R of the Yangian double ~Y(9) can be 
realized in the factorable form 

R = R +  R o R  _, 

where 

R+ e Y+|  Y2 ,  R o e  Yg | Yo ,  

(5.3) 

R _ e Y + _ |  

In the case of ~Y(sl2) we easily find by induction the general formulas for the 
pairing Y+ with Y=, and Y + with Y+ (cf. [23]): 

no n, nk fro11 ( %  el f"-~2 mk+l . . . . . .  ek , - f - k - , )  

= ( - 1 )  "~ +"ha . . . . .  . . .6 ,k ,mk+,no!nl! , . .nk! ,  (5.4) 
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< f ~ k . . . . ,  .o .,k+, ,.5 m, f ,  f o , e - k - ,  > �9 . . e _ 2 e _  1 

= (  1 ) " ~  "..,5.~ ,.~_ no!n1 ~ nk!, (5.5) - -  ' n O , t i l l  , - - 1  " " ' "  

The following h, mm~ is an immediate corollary of these relations. 

L E M M A  5.1. Tl~elements R + and R _ in (5 .3) for  the universal R-matrix of~Y(sl2) 
can be presented a~ 

R+ = ~., exp(--ek|  f - k - 1 ) : = e x p ( - - e o |  f - 1 ) e x p ( - - e l  | f - z ) . . . ,  (5.6) 
k~>O 

R_ = ~ e x p ( - - f k |  . . . . .  e x p ( - - f l Q e - z ) e x p ( - - f o |  (5.7) 
k~>0 

(See formulas (530}~, ((5.31) at the end of this section for the general case of this 
Lemma.) 

The middle tram/r i~n (~5,3), has a more complicated structure. One can find it 
directly by cumbersome a~ka~ttions but we prefer here to use another argument 
for the connection between ~ realizations of ~Y(g). The general scheme is as 
follows. 

Let ~Y(9) be a Hopf algebra isomorphic to ~Y(9) (as an associative algebra) with 
the following comultiplication [7] (it naturally appears in a quantization of the 
current algebra g [t]): 

,~(h~ (u)) = h~ (u) | h~ (u), (5.8) 

?t(ei(u)) = ei(u) | 1 § h/-(u) | ei(u), 

A(fi(u)) = 1 | fi(u) + f i (u ) |  h~" (u), (5.9) 

where 

e i ( u ) : = e ? ( u ) - e F ( u )  = ~., ei,kU -k - l ,  
k ~ Z  

f i(u),= f ~" (u) - f ? (u) = ~ f i, k u -k-1. 
k e Z  

The arguments of [18] show that just as for a case of quantum affine algebras 
Uq(~), the coalgebraic sector of ~Y(g) is connected with a coalgebraic sector of 
~Y(g) via twisting by a limit translation automorphism (as an action of an 
analog of a 'virtual' longest element of an affine Weyl group). The elements of Y~ are 
stable under this action and therefore the pairing (h~ + (u), h~-(v)> is the same in 
~Y(g)  and in ~'Y(g). Formulas (5.8) show that the components of In h+(u) are 
primitive elements of ~Y(9). This allows us to obtain immediately the pairing 
for the whole subalgebras Y~ and Yo. The calculation reduces to a diagonaliz- 
ation of the form <ln h+(u), ln hj-(v)>. An explicit diagonalization will be done 
later, and now we want to formulate a general statement about the structure 
of Ro. 
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P R O P O S I T I O N  5.2. Let 

(~?(U) :m= ~ (Pi, k u - k - I  = lnh/+(u), 
k~>O 

q~/-(u):= ~ qgi,kU -k-1 = lnh+(u) 
k~< -1  

and let �9 + and r be linear spaces with the bases {r o, tpi,1 . . . .  } and {~oi -a, 
~oi,- 2 . . . .  } ,  correspondingly. The element R o in (5.3) has the form 

R o =  e x p ( ~  Ck | (Ok), (5.10) 

where Za (Ok | (Ok is a canonical tensor in �9 + | O0- with respect to the pairing 

(~p~+ (u), q)f (v)) -- In u - v + �89 a j) (5.11) 
u - v - � 8 9  ~ j ) "  

Here u and v satisfy the constraint Iv[<< 1 << [u[. 
Proof. It should be noted that there is no action of the affine Weyl group on 

~Y(g) (natural analogs of simple reflections map ~Y(g) into another algebra). 
Nevertheless, the affine shifts in ~Y(g) are well defined. Let, for instance, [ be the 
following 'translation' automorphism of ~Y(g): 

t(ei,k) = e i ,  k + l ,  i(fi, k) = fl .k-1, /'O'(/~i.k) = &i.k" (5.12) 

for all k �9 Z. The arguments of [18-] applied to ~Y(g) give the following lemma. 

LEMMA 5.2. The comultiplication maps of the Hopf algebras ~Y(g) and ~Y(g) 
(which are isomorphic as algebras) are connected via twisting by the limit translation 

automorphism: t| = lim,_~ o~ [", i.e. 

A(x) = A"~)(x).'= lim (t '"|  t'")A(t'-"(x)), (5.13) 

for any x �9 ~Y(g) ( ~ Y ( g ) )  in a suitable topology of ~Y(g)  | ~Y(g) (see [18]). 

The Hopf algebra ~"Y(g) is by definition a double of the subalgebra (~'Y(g)) § 
generated by the elements ei, k, k �9 7/, and h~,k, k >10. Let (~Y(g))- be a subalgebra 
generated by fl.k, k �9 7/, and hi, k, k < 0. Then (~Y(g))- is isomorphic to a dual of 
(~Y(g)) + with an opposite comultiplication. Lemma 5.2 allows us to compute the 
pairing (~Y(g)) § | (~Y(g))- ~ C. Before computing this pairing, let us first say 
some general words about Hopf pairing and automorphisms. 

Let A~ and A2 be two Hopf algebras with a Hopf pairing ( , ) :  A~ | A2 ~ C and let 
Wl A1 ~, A'~ and WE: A2 ~ A~ be some isomorphisms of algebras. Then the algebras 
A'x and A ~ can be canonically equipped with a structure of Hopf  algebras if we define 
comultiplication maps A~) :  A'I ~ A'I | A'~ and A~) :  A~ ~ A~ | A~ by the rules 

AW*(a) = (wl | Wl)A(w;l(a)),  A~(b) = (w2 | w2)A(w; l(b)) (5.14) 

for any a e A'I and any b �9 A ~. 
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L E M M A  5.3. The pairing ( , ) :  A'I | A~ ~ C defined by 

( a , b )  = (w~X(a) ,w~l (b) ) ,  VaEA'I ,  Vb~A'z  (5.15) 

is a Hopf  pairing. 

Taking At = Y+, A2 = Y - ,  wt = WE = ?n, we obtain a Hopf  pairing between 
(Y+)tn) and (Y-)t"),  where (Y+)~n).'= ~-n(Y+), (y-) t"h=~-n(y-) .  One can easily see 

from (4.19), (4.20) that  this pairing stabilizes when n -o oo and defines a Hopf  pairing 
between ( ~ ( 9 ) )  § and (~'Y(g))- (which should actually coincide with that from a 
double structure of ~Y(g)).  This pairing looks like 

( ei, k, f j, - t -  t ) = --6i~ 6kt (5.16) 

and 

<hi+ (u), h~(v) )  = u - v + �89 ~j) (5.17) 
u - v - 

for Ixl << 1 << [ul. The  pairing (5.16) coincides with (4.19), since the elements hl, k 
remain stable under  the action of au tomorphism f. F rom (5.10) we see that  

| 1 + 1 | + = q~ Y (u), (5.18) 

( ~0/+ (u), ~of (v)) = In u - v + �89 " j )  u - v - �89 ~j) (5.19) 

for Iv[ << 1 << l u I. The relation (5.18) means that the coefficients of q~{ (u) are primitive 
elements with respect to ,~. Now we have the condit ion of the following simple 
general statement. 

Let A1 and A2 be two dual Hopf  algebras isomorphic  (as algebras) to free 
commutat ive  algebras At -~  C[@+],  A2 '~ C I - O - ] ,  where W+ and @- are vector 
spaces of generators,  such that all ~b + m W § (or all ~b - m @ - ) are primitive elements. 
Let {~bk} and {~b k } be dual bases of @+ and @- with respect to a (nondegenerated) 
restriction of the pairing to �9 + | �9 -.  Then, once we choose some order  of basic 
vectors, we have 

( ( ( [ ) t )  . . . . .  (~k)nk ,  (r ,) . . . . .  ( ~ ) k ) m k )  = ~ . . . .  "'" ~ . . . .  n ,  !... nk! 

or, in other  words, the canonical  tensor R a '  | = Z ak | b k of the pairing of A1 and 
Az is an exponential  of the canonical tensor ~ = Z Ck | ck of the pairing of r and 
r  

R aleA2 = exp f~ (5.20) 

which proves Proposi t ion 5.2. 

We further describe the canonical tensor f~ = E ffk | q~k from Proposi t ion 5.2 
more  explicitly, in other  words we present concrete diagonalizat ion of the bilinear 
form (5.11). For  illustration, we first do this for ~Y(sl2). 
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If 

Let ( q~ +(u))' .'= (d/du) q~ + (u). F r o m  (5.16) we have 

1 1 
((~o+(u)) ', ~o-(v)) u - v + 1 u - v -  1'  (5.21) 

4) +(u)= E 4) ku - k - l '  4)-(~)= Z 4)ku-k-1 
i>~O k<~ - 1 

are arb i t ra ry  fields f rom ~ +  and @-,  then the diagonal  pairing (0k, 4)-l-1)dlag = 
3i~, in terms of generat ing functions, looks like 

1 
(4)  + (u), 4 ) -  (v) ) alag - 

U--U 

for Ixl << 1 << rul. Let I" be a linear opera to r  in the space ~ - .  If we use the nota t ion  

(O+(u),  7"4)-(v))ai,, as a pair ing of 4)+(u) and 7"4)-(v) under  the condit ion that  the 
pair ing of 4)+(u) and 4)-(v) is known to be diagonal,  then (5.21) can be read as 

((q~+(u))', q)-(v)} = ((q)+(u))', ( W -  T-1)(p-(V))diag, (5.22) 

where T: T f ( v )  = f ( v  - 1) is a shift operator .  F r o m  (5.22), we have 

1 
((q)+(u))',  ( r -  T - l )  -1 q0-(v)) = ((~0+(u)) ', ( ~ - ( U ) ) d l a g -  

U - -  t~ '  

N o w  we can formally invert an opera to r  ( T -  T 1) as 

( T -  T - l )  -1 = T -1 + T -3 + T -5 + ... (5.23) 

which gives the diagonal izat ion of the bilinear form (5.11): 

1 
((~o+(u)) ', q)-(v + 1 + 2n) )  - . (5.24) 

n~>0 U - -  U 

R e m a r k .  The inverse (5.23) to a difference derivative T -  T -  1 is only a right- 
inverse ope ra to r  ( jus t  as usual integral). We can define it in a different manne r  like, 

e.g., 

( T -  T - l )  -1 = - T -  T 3 - T 5 . . . .  (5.25) 

and obta in  the diagonal izat ion form 

1 
}-" (--(~o+(u)) ', (p-(v - 1 - 2n) )  - . (5.26) 

n~>O U - -  /) 

Both formulas  work  for p roper  regions of f inite-dimensional representat ions of 
~Y(g) .  

Using the nota t ions  (O(U))k = Ok for ~ ( u )  = Y~ ~k  U - k - x  and 

Res ,=v O(u)(| = ~ 0k | 4 ) - k - , ,  
k 
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we interpret  (5.24) as the following expression of the factor R o of the universal 
R-matr ix  for ~Y(sl2): 

R~ I-I exp(~k 

= I-I exp Resu=v(~o+(u)) ' | ~o-(v + 2n + 1) (5.27) 
n~>0 

or, if we use (5.26), 

R~ 1-I exp( - ~ k>~O 

= l-I exp Resu=o(-(q~+(u)) '  | ~o-(v - 2n - 1) (5.28) 
n~>0 

We can summarize the calculations of the universal R-matr ix  for ~ Y ( s l 2 )  in the 
following theorem. 

T H E O R E M  5.1. The universal R-matrix for ~Y(sl2) can be presented in the fac- 
torized form 

R = R + R o R _, (5.29) 

where 

R+ = II  exp(--ek| f-k-1),  R_ = H exp( - fk |  (5.30) 
k>~O k>~O 

g o  = 1-[ exp Resu=v(~p+(u))'| + 2n + 1). (5.31) 
n~>0 

Here tp -+ (u) = In h • (u). 

Remark. Actually, we simultaneously prove statement (ii) of Proposi t ion 2.1, since 
we have checked the properties (5.2) of the element R and (5.1) for the fundamental  
representat ion of ~ Y ( s I 2 )  , which is sufficient. 

Now we return to the general case. Just as for Y(sl2)-case, we have the following 
description of the pairing (5.11) in terms of the derivative of cp+(u): 

1 1 
( ( q ~ + ( U ) ) t '  ~ S ( V ) >  - -  U - -  l) -~- � 8 9  - -  U - -  V - -  � 8 9  t ~ j ) "  (5.32) 

It is more  convenient  to collect fields ~o ~ (u) to vector-valued generating functions 

I r 1 7 7  ,p~(u) , 

/ 
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where r = rank g. In terms of vector-valued fields 4~+(u) and 4~-(v), the diagonal 

pairing < ~)i,k, ~) j , - ra-1  > = 6ij(~km looks like 

1 
< I ~ ( U ) ,  ~ ( / ) ) > d i a g  - -  I, 

U - - / )  

where I is an r x r identity matrix. 
Let B = (bq)[ j= o be a symmetrized Car tan matrix of 9 with matrix elements being 

integers without  a c o m m o n  divisor, b~j = (e,, ~j), and B(q) be a q-analog of B: 

Bij(q) = [(~i, ~j)]q = - 1  q - q  (5.33) 

Here we use the s tandard nota t ion 

qa -- q--a 

[a]q - - 1 "  q - - q  

Let D(q) be an inverse matrix to B(q). One can see that D(q) can be presented in the 
form 

1 
D ( q ) - - -  C(q), (5.34) 

[l(g)]q 

where C(q) is a matrix with matr ix coefficients cij(q) being polynomials  of q and of 
q-1  with positive integer coefficients and l(g) being a positive integer. Actually, the 
calculation of det B(q) shows that  l(g) is propor t ional  to a dual Coxeter  number  h~of 
g (see also Table (7.6) below: 

l(g)= hV(O) for g = An, E6, Ev,E8; 

l(g) = 2h'(0) for g = B, ,  D . , F r  (5.35) 

l(9) = 3h'(0) for y = G2; l(#) = 4h~(0) for g = C,.  

In these notations,  the pairing (5.32) can be written as 

((q~+(u))', q~-(/))) = ((q~+(u))', ((q - q-1)B(q))]q=f-./2 ql-(/))>diag, (5.36) 

where a shift opera tor  T: Tf(v) = f(/) - 1) is substituted inside the r.h.s, of (5.36) 
instead of q2. Next,  we deduce that 

<(q~+(u))', (~-,g~/2 _ i"-t,tg}/2~)-1 C(T  -~l/2~)~o-(v)) = ~ I. (5.37) 
/ 2 - - / )  

Returning to the original notations,  we get the following diagonalization of the 
pairing (5.11): 

y~ <(~0,*(u)) ' ,  y~ c~j(~ - ,m)~or (v + (n + � 89  - 6,~ . 
n~>O I U - -  /) 

(5 .38)  
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Let us note once more that (just as in Y(sl2) case (5.28) it is possible to write down 
another diagonalization of the pairing (5.16) for any Y(0). We can summarize the 
calculations in the following theorem. 

THEOREM 5.2. The element Ro in (5.3)for the universal R-matrix of  ~ Y ( g  ) can be 
presented as 

Ro = l-I exp ~ ~ (~o+(u));, | (cj~(7" -(~/z))qgf(v + (n + �89 
n>~O i , j = l ,  ,r k>~O 

= I~ exp ~ Res.=~(q~+(u))' | es~(T -"/2))~oi(v + (n + �89 
n~>0 i,j= 1, ,r 

(5.39) 

In order to complete the description of the universal R-matrix for ~Y(9), we 
should extend the description of their factors R + and R_ from the s12 case to the case 
of arbitrary simple Lie algebra g. Let us first change the notations for generators of 
~Y(9). Instead of ei, k, we use e,.+k~ and instead of f i ,  k, we use e,.§ We denote 
also by A~ the set of all real roots of corresponding affine nontwisted Lie algebra. 
Let Y~ be a subset of A~r Recall that a total linear ordering < of E is called normal (or 
convex) [27] if, for any three roots, ~, fl, ~, ~ Z, 7 = ~ +/3, we have ~-< y-</3 or 

Let E+ and E_ be the following subsets of A~": 

Y~§ = {~ + kS l~eA+(o ) ,  k >1 0}, 
E_ = { - y  + k517 ~ A+(0), k ~ 0}. 

(5.40) 

Here 6 is a minimal imaginary root of 0. Let us equip Z + and E_ with two arbitrary 
normal orderings -< + and ~(_ satisfying the additional constraint 

y + k 6 . < + ? + 1 6  and - 7 + 1 6 ~ ( _ - 7 + 1 6  i f n > m ,  (5.41) 

for any ~ e A+(9 ). We can define the 'root vectors' e+_a, fl ~ E+ u E_ by induction 
following the instruction [17] 

et~ ~ = [ep,,et~], e-p3 = [-e_p2, e_t~,] (5.42) 

if fll < f13 < / 3 2  and (ill, f12) is a minimal segment in a sense of chosen orderings 
containing/33, and ea,, ep~ are already being constructed. Analogously to the case 
Uq(0), [17, 18] one can prove that the procedure (5.42) is correctly defined and the 
monomials 

e~'~e~i" 'e~,,  / 3 1 < + / 3 Z ' < + " ' ' ( + / 3 k ,  /3,~E+ 

form a basis of the subalgebra Y+ c Y(g) and the monomials 

e~'~e}~...e~, / 3 1 < - / 3 z - < - ' "  •-/3k, /3i~Ze 

form a basis of subalgebra Y_ c Y(g). 
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Various arguments [14, 15] show that the factors R§ and R_ of the universal R- 
matrix for ~Y(9) should have the following form which we state here as a conjecture, 
since we did not check the rigorous proof. 

CONJECTURE. The factors R+ and R_ of the universal R-matrix for ~Y(9) have 
the following form 

R+ = FI exp( - -a( f l )e~ |  R_ = n exp( -a([3)e~Qe_~) ,  (5.43) 

where the products are taken in the given normal orderings < + and < _  satisfying 
(5.41). Normalizing constants a(/~) are taken from the relations 

[e t~ , e_a]=(a (~ ) ) - l h~  i f / / = ~ , + n 6 E Z + ,  ~'eA+(9), 

[e-a, e p ] = ( a ( f l ) ) - l  hr if f l =  - 7  + n b ~ Z - ,  7~A+(g). 

6. An Example  of  Y(s l / )  

6.1. R-MATRIX FOR TENSOR PRODUCTS OF EVALUATION REPRESENTATIONS OF Y{sl2) 

Here we demonstrate how the general formulas (5.29)-(5.32) for the universal 
R-matrix work in evaluation representations of the Yangian Y(sl2). Analogous 
calculations for Uq(sl2) are presented in [14]. 

One can easily check that the assignment 

h - 1  h - 1  
|  ~ e, ho ~ h, fo  ~ f ,  el ~ e, f l  ~ f - - ,  (6.1) 

2 2 

extends to an epimorphism of algebras Y(sl2)~ U(sl2). In terms of generating 
functions, morphism (9 can be written as 

|  = (u - �89 - 1)) -1 e, O f  +(u) = f ( u -  �89 - 1)) -1, 

|  1 + ( u - � 8 9  1)) l e f _  ( u - � 8 9  1)) - l f e ,  lul>> 1. 
(6.2) 

Morphism q5 is also properly defined for ~Y(sl2), since one can interpret the r.h.s, of 
(6.2) as an expansion near zero: 

Oe-(u)  = (u - �89 - 1))-' e, O f  - (u) = f (u - �89 - 1)) -1 , 
(6.3) 

|  1 + ( u - � 8 9  1)) - l e f - ( u - � 8 9  1)) - x f e ,  [u[<< 1. 

Let Vx and Vu be two representations of Lie algebra sl 2 with highest weights 2 and p 
(Verma modules or their finite-dimensional quotions, for instance), let Vx(a) and 
V~,(b) be corresponding evaluation representations. In a concrete example, when V, is 
finite-dimensional representation (dim V, = n + 1) with highest-weight vector Vo and 
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a basis Vo, vt . . . . .  v,, we have for V,(a) by (6.2): 

e i v  k = k (a  + i 
. 

n - 2 k + l  ' 
2 Ok-l '  f iVk = (n - k)(a + 

( (n_2k_m), 
hiVk= (k+ 1 ) ( n - k )  a +  2 

n - 2k  - 1 ~ i  
2 ) Vk+l 

( n - 2 k +  1 ) ' )  
- k ( n - k + l )  a +  2 Vk. (6.4) 

For the calculation of R-matrix in Va(a)| Vu(b) it is sufficient to compute 

(r | r | Tb)R as a function o f a  - b with values in U(sl2) | U(sl2). Here Td is a 

shift operator in ~Y(sl2), 

Tae+_(u) = e• - d), Tah• = h• - d), Taf• = f• - d). 

We do this first for the factors R + and R_.  Let 

h | 1 7 4  
y = a - b + (6.5) 

2 

We think of y as of diagonal matrix acting in Va(a)| V~,(b). Substitution of (6.2) 
into (5.6) gives the following answer: 

(0  | O)(Ta | Tb)R+ 

1 1 
= 1-t-e|174 1 ) ( y +  2) 

+ ... + 

1 
+ e" | f "  + ... (6.6) 

n!(y + 1) . . . ( y  + n) 

One can consider r.h.s, of (6.6) as a difference analog of the ordered exponential: 

(O|174 | Tb)(R+) = :expe| f ( y  + 1 ) - l : r - ,  

where T: Tf(x) = f ( x  - 1) is again a shift operator and 

:expf(y):r- t  = 1 + f ( y ) +  � 8 9  + 1)+  ... + 

1 
+ ~ f ( y ) f ( y +  1 ) . . . f ( y + ( n -  1 ) )+ . . -  

Analogously, 

(o | O)(To | TO(R- ) 
= :exp( y + 1) -1  f | e : T - t  

1 
= 1 +  f |  

y + l  

1 
2 ( y +  1)(y + 2) f 2 |  + + 
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1 
+ f "  | e" + ... (6.7) 

n ! ( y +  1) . . . (y  + n) 

Note that, for any weight vector of V~ | V u, the series (6.6) and (6.7) is finite and 
has a form of operator from U(sl2)|  U(sl2) with rational coefficients. 

The calculation of (| @ O)(T, @ Tb)(Ro) is more complicated. We perform this 
calculation directly in Va @ V, for simplicity. We can rewrite the action of h +(u) in 
Vx(a) (6.4) as 

h+(u ) ( u - a - ~ - ) ( u - a  + Z ~ )  = (u - a - ~ ) ( u  - a - ~ ) '  lul >> 1 (6.8) 

and, analogously, the action of h- (v )  in Vu(b ) as 

( v - b -  +~2 ) ( v - b +  +~2 ) 
h- (v )  - (v - b - h+~z )(v - b - h2~) ' IVl << 1. (6.9) 

From (6.8) and (6.9), we get 

~u ~0+ (u) = d log h+(u) 

1 1 
- (u_a_~)+(u_a+~_!) 

1 1 
( u - a - ~ - t )  ( u - a - * - ~ 2 ) '  luI>>l (6.10) 

and 

(v - b - ~ ) ( v  - b + ~ - )  
~p-(v) = log 

(v - b - ~-~-)(v - b - h~_~), 
Ivl << 1, (6.11) 

The rest of the computations reduces to the calculation of the residues for the 
functions with simple poles. Denoting 

a - b  h l = h |  h 2 = l |  c -  2 (6.12) 

we finally get the following horrible answer: 

R o I V..x.(a)| 

r ( c  + ' 2  ~ + � 8 9  - *~?~ + � 8 9  + ~ + 1 ) r ( c  - L ~ )  

= r ( c  + *~. + �89 - ~ + 1))r(c + ~ + 1 ) r ( c  - ~ )  x 
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F(c + ~'4" + �89 + ~ + �89 + *'2" + 1)F(c + h'2" ) 
X F ( c + h ' F , h ~ ) ( F ( c + ~ + � 8 9  1) (6.13) 

If we suppose 2 and # to be integers and Vz, V. be finite-dimensional 
(dim Va = 2 + 1, dim V. =/~ + 1), then the whole R-matrix has rational coefficients 
up to a scalar factor. We can easily find this factor zz..-tm normalizing the R-matrix in 
such a way that the matrix coefficient of the tensor product of the highest-weight 
vector to itself is equal to one. This gives 

(m F("@ + ~ + �89176 ~ + I) (6.14) 

In the next section we describe this scalar factor for arbitrary finite-dimensional 
representations of Y(g). 

6.2. L-OPERATOR PRESENTATION OF ~Y(slz) 

An explicit expression for the universal R-matrix for ~Y(sl2) gives the possibility to 
present ~Y(sl2) in the form of L-operators [11, 22]. Let 

L-(z) = (pl(z)|  id)R, L+(z) = (pl(z)| id)(R21) -1, (6.15) 

where p l(z) is a two-dimensional representation V1 (z) of ~Y(sl2) (see (6.4)). Substitu- 
tion of (5.28)-(5.31) intoo (6.15) gives the following Gauss decomposition of L+-(z) 
(compare [10] for Uq(gl.)): 

L+(z)=(10 f~(z))(k~(z)kO(z))(e+_l(z  ) ~ ) ,  

where 

(k2(z))- '  kf(z) = he(z), k~( z )k~(z -  l) = 1, 

h+(z - 2 n -  t) 
h+(z-2n -1)  k~(z) = 1-I h+(z_2n) k~(z) = [I h + ( z _ 2 n ~ ,  k~o k>~O 

h - ( z + 2 n )  --- 1-I h - ( z + 2 n + 2 )  
k;(z) = I~ h-(z + 2n + 1)' k~(z) ~>'oh:-~+ 2n + 1) k>~O 

L-operators L -+ (z) satisfy the equations 

R12(z -- w)L~(z)L~(w) = L~(w)L~(z)R,2(z - w), 

R12(z  -- w ) L ~  ( z ) L ~  (w) = L ~  (w)L ' I  ( z )R12(z  - w), 

where 

P 
R 1 2 ( z - w ) =  1 + - -  

Z - - W  

(6.16) 

q det L -+ (z) = 1, 
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is a rational R-matrix in V1 (z) | V1 (w), 

L ~ (z) -- L • (z) @ id, L ~ (z) -- id @ L -+ (z), 

q det A(z) = al~(z)a22(z- 1) - a21(z)a12(z - 1). 

Note that if we apply Pl @ id to the current realization of R or, equivalently, take the 
current realization of generators in (6.16), then we get S12 | C(Z) matrix 

L+-(z)=c+(z'2)( z+h~le z -J l2~) '  

where c+-(z, s is the coefficient 

F ( ~ - z ' -  �88 +'~+4 2) z 1 
c+-(z'2) = r(-T-z' + a2a)r(-T-z' + __~�88 =" = -2 + 4 '  

with 2 being the value of the highest weight on which L(z) acts (actually c(z, 2) 
depends on the Laplace operator, since c+-(z, 2) = c+(z, - 2 - 2)). 

7. The Character of Universal R-Matrix 

Let V and W be two irreducible finite-dimensional representations of the Yangian 

Y(g). It can be proved by fusion procedure and by studying the R-matrix for 
fundamental representations of the Yangian, that the R-matrix Rv.w intertwining 
two coproducts A and A' in V(a) | V(b), can be presented as a matrix with rational 
coefficients of a - b (here V(a) and W(b) are obtained from V and W by means of a 

natural shift automorphism of Y(g)). On the other hand, one can apply Pv~a> | Pw<b~ 
to the universal R-matrix. The results should differ by a scalar phase factor ~IR~ A V ,  W 

which appears due to nonlinear conditions (5.2) on the universal R-matrix. The 
factor ~V.W"<R~ is, by definition, a unique modulo rational function of (a - b) and plays 

an important role in scattering theory. 
Unfortunately, the intriguing theory of finite-dimensional representations of 

Yangians is too young and does not says such about representations: there is a 
classification of irreducible modules but their structure is almost unknown (including 
the dimensions and characters). Nevertheless, the theory of highest weight developed 
by Drinfeld [7] (see also [25,26] coupled with our description of the universal 
R-matrix, allows us to compute the factor x~vRJw for arbitrary irreducible finite- 
dimensional representations of Yangian Y(g)- 

Let us recall the basic definitions of highest-weight polynomials of finite-dimen- 
sional representation of Y(g). 

D E F I N I T I O N  7.1. Let V be a Y(g)-module. A vector v ~ V is a highest weight 
vector if 

(i) e,+(u)v=O, i =  1 . . . . .  r 
(ii) h+(u)v = H,(u)v (i.e., v is an eigenvector for all hi.,,n >>-0). 
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The functions Hi(u), i = 1, ..., r, are called eigenfunctions of v. 

THEOREM 7.1 [6]. (a) Any irreducible finite-dimensional Y(g)-module is generated 

by a highest-weight vector; (b) An irreducible finite-dimensional Y(g)-module V with a 

highest-weight vector v is finite-dimensional iff the eigenfunctions Hi(u) of  v can be 
presented as a ratio of  polynomials 

Pi(u + �89 ~i)) 
Hi(u) = (7.1) 

Pi(u) 

DEFINITION 7.2. (a) A polynomial-tuple (vector polynomial) P(u):=(Pl(u)  . . . .  , 

P,(u)) defined by the condition (7.1)  is called a highest-weight vector polynomials of a 
highest-weight vector v (and of finite-dimensional representation V); 

(b) Finite-dimensional representation of Y(g) with a highest-weight vector poly- 
nomial 

PAu)=(1 . . . .  ,1, P i ( u ) = u - a ,  1 . . . . .  1), a e C ,  

is called ith fundamental representation of Y(g). 
We denote the i-th fundamental representation of Y(g) by oi(a). 

Componentwise multiplication of the weight polynomials endows the set E(g) of all 
irreducible finite-dimensional representations of Y(g) with a structure of Abelian 
(multiplicative) semigroup generated by fundamental representations. An element V 
of E(g) can be presented as 

V = col(a 1,1)..-o)l(al.i,) . . . . .  cot(a,. 1) ' "  or(ar, lr), (7.2) 

which means that the j-component of the highest-weight vector polynomial of V is 
Pj(u) = ( u -  a i. 1 ) ' " ( u -  a i, i)) and V can be realized as a subfactor of the tensor 
product of fundamental representations o2(alj) containing the tensor product of 
highest-weight vectors of fundamental representations. Analogously, the multiplica- 
tion law U = V" W implies that an irreducible module U is a subfactor of V | W 
generated by the image of the tensor product of the highest-weight vectors of V 
and W. 

Now let V and W be finite-dimensional irreducible representations of Y(g) 
generated by highest-weight vectors v and w. They can be endowed with a structure 
of Y _ ( g ) ( a n d  of @Y(g))-module just by re-expanding of matrix coefficients of 
e~(u) ,h~-(u) , f3(u) ,  in u = 0. The general structure (5.3) of the universal R-matrix 
shows that v | u is an eigenvector of R. 

DEFINITION 7.3. A scalar function ;(~vR~w defined by the condition 

(R) V R(v | w) = ;(v.w | w, (7.3) 

where R is a universal R-matrix for ~Y(g) and v and w are highest-weight vectors of 
V and IV, is called the character of the universal R-matrix R corresponding to 
highest-weight representations V and IV. 
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The following lemma explains that the character of the universal R-matrix may be 
considered as a (multiplicative) bilinear form on E(g). 

LEMMA 7.1. Let V, V1, V2; W, W1, I4"2 ~ E(g). Then 
(R) w (R) (R) Zv~.v2,,, = Zv,.w" Zv2,w, (7.4) 
(R) (R) (R) 

Zv.w,.w2 = Zv, w, " Zv.w~ (7.5) 

The proof follows immediately from (5.2). 

The general expression (5.39) for the factor Ro of the universal R-matrix allows us 
to find out the character of R for arbitrary finite-dimensonal representations of Y(g). 
Indeed, the action of R on the tensor product v | w of highest-weight vectors reduces 
to the action of its factor Ro. If P(u) is the highest-weight vector polynomial of v and 
Q(u) is the highest-weight vector polynomial of w, then the action of the fields 
(d/du) ~0 + (u) on v is given by the expression 

d 
d---u cp~- (u)v = (d log Pi(u + 1(~i, 7i)) - d log Pi(u))l), lul >> 1; 

~0j(v) act on w as 

q~f (v)w = log Qj(v + �89 a1))w ' Ivl << 1. 
QAv) 

The rest is a technical application of (5.39). Due to Lemma 7.1, it is sufficient to compute 
the characters corresponding to the tensor product of fundamental representations. 

Let us recall the notations of the previous section. Now, again, B is a symmetrized 
Cartan matrix of g with the matrix elements being integers without common divisor, 
B~j = (~,  ~j) i , j -  1 ... . .  r and B(q) is a q-analog of B; D(q) is an inverse matrix to 
B(q) and C(q) is an r • r matrix with coefficients from 7/[q,q -1] defined by the 
condition D(q)= 1/([l(g)]q) C(q), where l(g) is proportional to the dual Coxeter 
number hV(g) (see (5.35)). A presentation (5.34), (5.35) of the inverse to q-analogue of 
the symmetrized Cartan matrix follows from calculation of det B(q): 

g det B(q) h'(g) l(g) 

At [l + 1]q 1 + 1 

BI [2(21- 1)]q 2 1 -  1 
[2]q[2/ -  1]q 

C1 [2]q[2(/+ 1)]q l + 1 
[I + 1]q 

D~ [2]q[21 - 2)]q 21 - 2 
[ I -  1]q 

E6 [2]q[3],[12]q 12 
[4]q[6]q 

/ + 1  

2 ( 2 l -  1) 

4(/+ 1) 

2 ( 2 / -  2) 

12 (7.6) 
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Ev [2]q[3]q[18]q 18 
[63q[9]q 

Es [23q[3]q[5]~[30]q 30 
[6]q[10]q[15]q 

F4 [2]q[3]q[18]q 9 
[6]q[9]q 

G2 [2]q[3]q[12]q 4 
[4]q[6]q 

s. M. KHOROSHKIN AND V. N. TOLSTOY 

18 

30 

18 

12 

The calculations with R o gives the following theorem. 

THEOREM 7.2. Let Cij(q) Y~k Ck" k (R) b = ,jqk, C i j e Z + .  The character ;(,o,(,,),o,( ) of the 
universal R-matrix correspondin9 to fundamental representations o)i(a) and (oj(b), is 
equal to 

(R) tb Z(o,(a), os, ) 

a - b  • I ( o ) - k - ( c t , , c t , ) . ~  F l a - b  • t ( o ) - k + ( o t r  ~ 
__ / 'F ( t~ -  7- 2/(o) J-~ 1(o) 7- 2l(o) I |  - 

= | l ~ r  - -  • t (o ) -~r t  a-a • t(g)-k+(~j,~j)-(~,,~,)'~ l �9 
k (l(g~ q- 21(g) , l l  l(o) - r  21(0) I / 

(7.7) 

For instance, for Y(sl2) the pairing (7.7) looks like 

z ( R )  F(~176 + 1) 
r = r(~L~2 + 1)  2 

and, more generally, 

+ 1) 
) = ! - [  + 

(7.8) 

(7.9) 

which agrees with (6.14) since 

n l n 3 )  

in E(sl2). 
Quasiclassically, R(u) = 1 + (f2/u) and the quasiclassical limit of the form (7.3) on 

highest weights of evaluation representation Vz(a) and Vu(b ) of Lie algebra 9[t] 
should be ( ( 2 , / x ) ) / ( a -  b) where ( , )  is an invariant scalar product in h* (h is a 
Cartan subalgebra of g). 

It will be interesting to obtain combinatorial and geometric interpretations of the 
form (7.3). 
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