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Abstract. Studying the algebraic structure of the double &Y(g) of the Yangian Y(g), we present the triangular
decomposition of 2Y(g) and a factorization for the canonical pairing of the Yangian with its dual inside
Y?{g). As a consequence, we describe a structure of the umiversal R-matrix R for 2Y(g) which is complete for
%Y(sl,) We demonstrate how this formula works in evaluation representations of Y{sl,). We interpret the
one-dimensional factor arsing 1 concrete representations of R as a buinear form on highest-weight
polynomials of irreducible representations of Y(g) and cxpress this form 1n terms of T-functicns.
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1. Introduction

The Yangian Y(g) of a simpie Lie algebra g was introduced by Drinfeld [5] as a
deformation of the universal enveloping algebra U(g[t]) of a current algebra g[t]. The
Yangians Y(g) and quantum affine algebras U,(4) play the role of dynamical symme-
tries in quantum field theories [1, 24]. Tensor products of finite-dimensional represen-
tations of the Yangians produce rational solutions of the Yang-Baxter equation; tensor
products of finite-dimensional representations of quantum affine algebras produce
trigonometric solutions of the Yang-Baxter equation. One can find out other deep
parallels in representation theories of Yangians and of quantum affine algebras.
Nevertheless, both of them have their own original features. The Yangian Y{g}is much
more closer to classical Lie algebras, at least it contains the universal enveloping
algebra U(g) as a subalgebra; morcover the Yangian Y(gl,) could be defined entirely in
terms of classical representation theory [21]. The structure of quantum afline algebra
U,(g) is more complicated. On the other hand, U,(4) inhabit main properties of the
contragradient algebras. For example, Chevalley gencrators and g¢-deformed Serre
relations are permanent participants of the games with the quantum affine algebras.

The theory of the Cartan—Weyl basis (See [16, 17]) allows us to describe explicitly
the universal R-matrix, one of the main objects in physical applications. We have
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nothing of this for the Yangians, although suitable modifications of classical methods
of representation theory work for Y(g) and U,(g) as well (see [4.5,13,20], for
instance). We want to make this gap smaller.

It is more reasonable to work with quantum double 2Y(g) of the Yangian, il we
keep in mind physical applications. We present here an algebraic description of
2ZY(g) in terms of the ‘second’ Drinfeld realization of Y(g). Unfortunately, we can
give rigorous proof of this presentation only for g =sl, (see Theorem 5.1 and
Section 6.2). For the general case, we have a number of indirect arguments; the
arguments of Section 6.2 can be also generalized for arbitrary simple g, but
technically it looks too cumbersome.

Finite-dimensional representations of #Y(g) do not differ much from the repre-
sentations of the Yangian Y(g) the extension of a representation ol Y{g) to a
representation of ZY(g) can be achieved just by re-expansion of the currents from
Y(g) in other points of the projective line. We present here a study of some
algebraic properties of 2Y(g), with the accent to the canonical pairing in the
double.

We prove that 2Y(g) itself and a Hopf pairing of Y(g) with its dual inside ZY(g)
admit a triangular decomposition analogous to a Gauss decomposition of ordinary
matrices. This property gives the possibility to describe the pairing quite explicitly.
As a consequence, we obtain an explicit factorized expression for the universal
R-matrix of @Y(g) (completely proved for 2Y(sl;) and partially in the general
case). To make the formulas more transparent, we present detailed calculations for
ZY(sl), including the action of the universal R-matrix on evaluation representa-
tions.

The most interesting factor R, of the universal R-matrix is concerned with a
(zero-charge) Heisenberg subalgebra of 2Y(g) which is a deformation of the
currents to the Cartan subalgebra h of g. Analogously to the case of U,(g) [14, 16],
the structure of R, is governed by the g-analog of the invariant scalar product in
h; whenever R, acts on representations of 2Y(g), a variable g becomes a shift
operator T: Tf(x) = f{x — 1) {for quantum affine algebras, the parameter g goes
to multiplicative shift T, f(x) = f(gx) in an analogous situation). After substitution
of the universal R-matrix into the tensor product of concrete representations of
ZY(g), we obtain a more than usual rational R-matrix; some additional informa-
tion is concentrated in a scalar-phase factor (scalar S-matrix) which we interpret as
a bilinear multiplicative form on highest-weight polynomials of finite-dimensional
representations ¥V of Y(g) (or, equivalently, on K,(Rep Y(g)). This form is a
deformation of skewsymmetric form ¢,>/(a — b) on irreducible evaluation represen-
tations of g[t], where ¢,) is an invariant scalar product in k* and 2 and b are the
points where the evaluation representations are living. We present an explicit
expression of this form as some ratio of I'-functions defined by the structure of the
g-analog of the invariant scalar product in A.
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2. Yangian Y(g) and its Quantum Double

The Yangian Y(g) as a quantum deformation of the universal enveloping algebra
Ug[r], where g[¢] is the polynomial currents over a simple Lie algebra g, was
introduced by Drinfeld [5] firstly in terms of generators which actually are not
associated to the choice of a concrete basis in g. Later in [6-8], Drinfeld gave
another realization of the Yangians in terms of generators connected with the
Cartan-Weyl basis in g. In this Letter, we use this second Drinfeld realization. Let us
recall the definition of this realization.

Let g be a simple Lie algebra with a standard Cartan matrix 4 ={g,,)} ;-0 2
system of simple roots IT:= {a,, ..., } and a system of positive roots A . (g). Let

€; ::ea.s hl::ha,s f“ = j'n, ::e—a, (li 17'~--r):

be Chevalley generators and {e,, f,}, (7 € A), be a basis Cartan-Weyl in g, nor-
malized so that {e,, f,) = 1.

DEFINITION 2.1. The Yangian Y := Y(g) associated to g is the Hopf algebra over
C generated (as an associative algebra) by the elements

i = Cyks hlk = hdx,kv ,f[k ::j‘m,k (i: ls ey k =0- Iwzs"-)s

with the relations:

[hm,hﬂ] =0, ['-’ikafﬁ] = 5i1hi.kil~ 210
(ho, el = (@i aen,  [hw, fpl=—(o,2;) [ (22)
[horereen] = Chi,ejici 1= Y20 (haenl. (2.3)
Chigsns £ = Dhae Frav1] = —3@n a) tha fals (24)
Leiwvrsep] — Lleusejivr] = LICTA 2 ¢ i) (2.5)
ikets Fu]l = Ui Fraer) = —3on 24 fus Sals (2.6)

Symy, [¢ix, lein, - Likn,-€n]- 11 =0,
Symw [fi,h[fi,kz {kallU* fjl] - J1=0, fori#},
where [a, b}:=ab + ba, n;;:=1 — A;;, the symbol ‘Sym’,,, denotes a symmetrization

on ky, ki, ..., ki;. The comultiplication map of Y is given for basic generators ey, hy,
flk! (k = 07 l)v by

(2.7)

AX)=x® 1 +18x, xeg, (2.8}

Ale)=e 1 @1+ 18 e, + h,o®ep— Z £, ®[e,,.e] (2.9)
veN  (g)

Alfu)=fu@1+ 1@ f, + fio®hyg+ Z S [11®0e,, (2.10)

veA (g
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Ah))=h; @1+ 1@k, + h;g®hip — Z {(ai7)f, Qe,. (2.11)

rediig

Remarks. (i} The universal enveloping algebra U(g) is embeded in Y(g):
U(g) < Y(g).

(i) One can show that Y{g) is generated only by the elements ey, fio, fin
(i=1,...,r) and, therefore, we can obtain the comultiplication map for all generators
Cies L Bies fu i=1,...,r; ke 7).

(ii1) Tf we replace the right parts of (2.3}2.6) by zeros, then we obtain the algebra
isomorphic to U(g[z]).

In this Letter, we study a quantum double 2Y{g) of Y(g) (see [7] for definitions).
In the following, we describe that algebraic structure of 2Y(g).

Let C(g) be an algebra generated by the elements ¢y, fu, Ay, = 1,....r, ke Z),
with relations (2.11H2.7). Algebra C{(g) admits Z-filtration

‘-CC,"C'--CC,ICCOCC‘l---CCn---CC(g) (2.12)
defined by the condition
degeyp=deg [ =deghy=k;deg C,,=m

Let C(g) be the corresponding formal completion of C(g). The generators ey, fix. b
(i=1,...,r,k = 0) define an inclusion Y(g) o C(g). We denote sometimes its image
by Y*(g) or shortly by Y* when we need short notation. In the next sections, we
prove that dual to Y(g) Hopf algebra with opposite comultiplication Y°(g) is
isomorphic to the subalgebra Y™ :=Y (g) which is generated by formal series
Yo<o Qs deg a,, = m.

An algebra C(g) was introduced by Drinfeld [6, 7] as a quantum double of a Hopf
algebra quantizing the currents to a Borel subalgebra with rational r-matrix. In the
trigonometric situation, he proved that an algebra analogous to C(g) is isomorphic to
the double of U,(b ) modulo Cartan elements (i.e., to U,(g)). This proof does not fit for
the rational case, since Y _(g) is not finitely generated and 2Y(g) has no alternative
description in terms of Chevalley generators. We assume, nevertheless, that algebras
ZY(g) and C(g) are isomorphic and give a sketch of the proof of this for Y(sl,).

For a description of #Y(g), it is more convenient to use the gencrating functions
(fields) e; (u), h; () and f*(w) of Y_(g):

e; (u):= z eatt 71, fi@= Z fau L,

k=0 k=0

(2.13)
hfw=1+ z haou %71,
k20
er (Wy=— ) exu "', fTw=—Y fauTt
e k=o (2.14)

h,“(u)==l - Z hiku‘kil.

k<0
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In the case of Y*(sl;), we omit for simplicity everywhere an index of a simple root,
¢.p. for the fields we use the notations e, {u), h.(w) and /. (u). Moreover, we put
(o, ) = 2. In this case, we can prove the following proposition.

PROPOSITION 2.1. (i) The defining relations (2.1 )—(2.7) of the algebra C(sl;) are
equivalent to the following relations for the fields (2.13) and (2.14):

(=) h*@)] =0, [h' (b ()] =0 (2.15)
fe (. £ )] — 2=
U—r
. (2.16)
S TR C S U
[e*(u) [ ()] = PP
[h*),e=(v)] = — th” (w) (e:(_u)v" ef(v))}‘ 2.17)
[ E R
[, e 7] = — 1 Wl TN, 218)
= *+ — =
[h* (), (] = P00 S 20 = TR0 219)
i ) — ()
. /7 ()] = S0 T (2.20)
[ef(w), e* ()] = — (ei(”)*—ei“’))z*
u—20
2.21
[e™ ) e (@)] = et = e ) -
’ B u—o )
+ _ a2
[fi(“)’ fl(l,)}:(f (ui _j'; (©) )
(2.22)

f ) — (@)’

u—1r

[f* G, )] ="

(ii) An algebra generated by ¢=(u), ht{u), = (u) with the relations ( 2.15)(2.22 ) and
comultiplication map (2.23)-(2.25) is a Hopf algebra isomorphic to #Y(sl;). ( The
co-multiplication map for the positive fields e (u). f ™ () and h ™ (u) were communicated
to us by Molev [19].) The comulriplication in %Y(sl,} looks as follows:

At =e*w) @1+ Y (—D*(fEu+ 1A @ (e )"!
o 2.23)

=etW@ 1+ Y (=R (S u— 1) (e )+,

k=0
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A(f*) = 1@ f*(u) + i (=D (/=)' @ h*(u)fe*+ 1)

) (224)
=1®fEW+ Y (— D 2! ®letu — 1)h=(w),
A(h*(w) = i (=D tk + DO B+ 1)) A= @ hE(w)e=(u + 1)
k=0
(2.25)

= 3 (DM + DRE@(S = — D) @ (e — 1) h=(u).
=0

Proof. Part (i) and compatibility of comultiplication with (2.15142.22) is derived
by direct calculations; an isomorphism with @2Y(sl;) follows from the existence of the
universal R-matrix (sce Remark to Theorem 5.1).

For arbitrary g, we have the following analog of Proposition 2.1:

PROPOSITION 2.2. The defining relations (2.1)-(2.7) of the algebra C(g) are
equivalent to the following relations for the fields (2.13) and (2.14):

[k {w) by @] =0,  [h7 (), ky ()] =0, (2.26}
hEW) — hE(
[e2 @) 17001 = 3,010,
- (2.27)
et ), fF@1 = o, 0O
[h7 0 e 0] = oy ) e D T 0T O @2y
[hE ) e ()] = — bl ay) P (ej(_u)v_ e/ G0 2.29)
+ taN_ fE
Thf(w), £70)] = dloi, o)) i, f " (_”)v ity (2.30)
= £ fF
[h W £ )] = by y) L U TU0 = T O 31
[ef @), ef ()] + [ef (), e’ ()]
- ) {lef(u) — e/ (), (ej () — e} (Un—}, (232)
u—v
[ei+ (u)7 ej_ (l’)] + [ej+ (u)? el-(v)]
- —inay) e @) —e () fe @) —e; (D] (2.33)

u—0v
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LA, f70T+0f 7w, fi0)]

= $ep ) Wi - f?(l;]);(;]f?(u) — [} ! (2.34)

Lf, f7@1+ 1@ fi @]
(S — f o) () @~ )]

U—70v
Sym Lot (uy, ) [e2(uy,) - [ef (s, €)1 =0,
Sym [/ 1t )L 2 (00s) -+~ Lf 2o, S90)] 11 =0, for i # ),

where &, = +.

2%(05& ‘11)

(2.35)

(2.36)

CONJECTURE. Yangian double 2Y(g) is isomorphic to the algebra described in
Proposition 2.2.

In the next section we describe certain decompositions in the Yangians Y(g) and
its quantum double ZY(g).

3. Triangular Decomposition of 2Y{(g)

Let ¥, Yy and Y. be a nonunital {without unit ¢lement) subalgebras of Y{g),
generated by the elements ey (i=1,...,r;k20) hy (i=1,..,r, k=20 fu,
i=1,...r, k = 0} correspondingly. We denote also by Y., ¥, and Y_ the algebras
Yi, Y4, and Y2 with an added unit ¢lement. Foliowing [2], one can deduce from
(2.1H2.7) the following decomposition of Y(g):

PROPOSITION 3.1. A multiplication in Y(g) induces an isomorphism of vector spaces
Y., @Y, BY. ~Y(g) 3.1

We are going to extend this decomposition to the double 2Y(g) and factorize the
natural pairing of Y(g) and Y°(g) with respect to this decomposition. First, we
summarize propertics of the comultiplication in Y := Y(g), which easily gencralizes
by induction of formulas (2.8)(2.11) (see also [2]).

LEMMA 3.1. The following relations hoid:

Ale)=e®@1 (mod Y®Y]), (3.2)
Joranyee Yi;

A(f)=1@f (mod Y. BY), (3.3
forany feY_..

In particular, we conclude that Y, is a right coideal A(Y,} = Y® Y, )and Y_isa
right coideal (A(Y_)= Y_ ® Y} of Y(g).
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Also let Y. be a nonunital subalgebra of Y(g) generated by the elements e;, and k;
(i,j=1,..,r,k,1>0); ¥. be a nonunital subalgebra of Y(g) generated by the
elements fyand hy (i, j=1,..,rk 12 0).

LEMMA 3.2. The joliowing properties take place:

Al)=e®1 (mod Y®Y]), {(3.4)
Joranyee Yi;

A(f)=1® f (mod Y. ®Y), (3.5
forany fe¥.;

A=h®1 (modYRY})
=18@h (mod ¥’ ®Y), (3.6)
forany he Yy,

Let <, denote the canonical Hopf pairing of Y := Y(g) and its dual Y°:=Y%(g). The
Hopf property of {,> in this case can be read as

{ab,c*d*> = {A(ab),c* @ d*> = (b & a, Alc*d*))

for any a,be Y, and for any ¢*,d* e Y° Here, Cca @ b,c*@d*)» = {a,c*> (b, d*>.
Let (Y¥{)* be an annulator of YY' | ie.

(YY) I ={e*e Y% {yf,e*>=0,VyeY,Vfe¥.} (3.7

Analogously, we define (Y. Y)%, (YY2)*, and (Y Y)*. We shall also use the
following short notations

YI=(YY)T, Yi=(Y,Y)7,
T * IRy 7 & ' * (3'8)
YIe=(YY.). YI=(Y1Y)7,
and
Y’g:z ?f(’\?f (39)
PROPOSITION 3.2, The dual subsets Y¥, Y_, ¥Y* Y* are subalgebras of Y°(g).

The validity of the proposition follows directly from Lemmas (3.1), (3.2), and the
following simple lemma.

LEMMA 33. Let A and A* be two Hopf algebras with a Hopf pairing {,>:
A® A* — C. Let a subset X = A satisfy the condition AXX)c X ® A + A ® X. Then
both (AX)* and (X A)¥ are subalgebras of A*.

The main result of this section is the following theorem.
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THEOREM 3.1. (i) Foranyee Y., he Yy, feY_.e*e Y h*¥e Y5, f*eY? the
canonical pairing is factorized as

Cehf, e*h*f*5 = (e e*S<hh* 5 (. f*5. (3.10)
(i) A multiplication in Y °(g) induces the isomorphism of the vector spaces:
YI@YFI®Y* ~Y g (3.11)

Proof. (i} First using Lemmas 3.1 and 3.2, we easily check that for any ec Y,
e*eYF. feF, [*ec F* we have

Cef,e* 1) = (Ale)A(S), e* B [*)
={{(e®@1+ Y 1, @e 1B f +3 fn@yp,) (e*® [*))
={ee*>{f.f*) (3.12)

where e,e Y., f,e Y. by virtue of (3.2}{3.5). Furthermore, we can prove ana-
logously that

Ceh,e*h* > = {e,e*>(h h*> {3.13)

forany ee Y., he #', e*e Y, h* e H* Thus, we have (3.10).

(1) Let us choose a basis in Y(g) in accordance with the decomposition (3.1),
1.c. each basic vector has the form ehf, where ee Y_, he #, f e Y_. Then vectors
biorthogonal to these basic veclors make up a basis in Y %(g) and, in accordance
with (3.11), they bhave the form ¢*h* f* where e*e Y¥, h*e >, f*e Y*. This
means {3.11).

Now we proceed with a more detailed study of the pairing in the Yangian double.
In the next section, we compute explicitly the pairing between the generators of Y(g)
and Y,(g).

4. Basic Pairing for #2Y(g)

The aim of this section is to compute explicitly the pairing between generators
e, hy, and [, of Y'(g) and of Y (g) = ¥°(g). The answer will be written in
terms of generating functions (‘fields’) (2.22) and (2.23). Explicit calculations will be
done for the case of Y(si,} where, for simplicity, we omit everywhere the index of a
simple root, e.g. for generating functions we use the notations e, (u), &, (), and

fi(u)-
Let

ety g ={e e 2.} {fik—l}:: {f—1-f—z,---}
and (B, b= (h b, )
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be some sets of elements from Y*, Y* and Y¥, correspondingly. Let us construct
the generating functions (the fields) of these sets:

= T efu, fH= T SRt
k<0 k<0 (41)
RHWi=1+ Y hfut o

k<0

We are interested in the pairings of these fields with the fields e *(u), £ *(u), and h* (u),
ie. Let(w.e*(®)D, <f @), f*v)> and <h™(u), h*(v)), where |u|» 1> |u|. The
fallowing proposition is valid.

PROPOSITION 4.1. If the fields e*(u), f *{u) and h*(u) are such that
Cet(uy)--e'(uy), e*(v)y = (f T (uy) - f 7 ), f¥0)) =0, (4.2)
Jor any n > 1 and
Ch¥(uy)- et (uy) H*(v))
= R ua B¥)) - KR (u2), R (0)) (4.3)

for n > 1. Then the conditions

-1

ety =——, 0> =T (44)
for some ae C,
—p+1
Ch )y = 5)
are realized if and only if the relations
h*(u) — h*(v
D k)] =0, [e*, W] = 00, )
* *(p) o ¥
[, e*(0)] = — L (eu (_")v ) @)
(h, 101 = RO = L) 8)
* — o¥(n)2
(%, exy] = — W= T
(f*w) — [*0)? “
[rw S @] = 2

are satisfied.
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Proof. Using the expressions (2.23)2.23) and the commutation relations (2.15)-
(2.22) for the fields e*(u), f *(u), h* (), we have

Ales (W) =e, (W1 +h, (W)®e,(u) (modYY RY), {4.10)
A(f1@)=1@ f w+ f (W&h,(4) (mod Y R YY), 411
A,y =h, W) ®h () (mod YY.® Y, Y), (4.12)
Afe* (w)e ™ (v)
=etwe () ®1 + 1 Re*(wet(v) +
vl @ et —
u—v—1
- u—%e*(u “)®e () (mod YY.®Y}), (4.13)

AL u) f " (o)
=W 1L+1@ Frwf )+
u—v—1

"‘mf*(v)@fr(“)*

2 — @ v —1) (mod Y. R Y, Y), (4.14)
u—rov+1

Alh™ (u) f T (v)
=h "W h"(wf )+
+hTW T R®hTWhT () (mod YY. ® Y, Y) 4.15)
Afe” wh™ ()
—eTWh W RAT () +
Fh @k ) ® e wh* () (mod YY. ® YL ¥). (4.16)

Let now

{e(w),e*(v)> = E(u,v),  {f (), f*v)) = F(u,v) and
(™ (w), h* (0> = H(u, v).

The computation of the pairing of the relations (4.6){4.9) with the rhs. of
(4.13)-(4.16) gives the functional equations on the functions E, F, H which determine
them to be equal to the rh.s. of (4.4)44.5). The arguments can be reversed if we use
conditions (4.2}+{4.3).

The main result of this section for £Y(sl,) may be formulated in the following
theorem:
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THEOREM 4.1. (i) Subalgebras Y5, #* and Y* (see (3.7)-(3.9)) of Y _(sl) are
generated by the fields e (u), k™ (1), and f ~(u), correspondingly;

(i) The pairing of the generators of 'Y . (sl,) is given by the relations {|v| «< 1 « |u|)

et £y = (f e (o)) = ——

uw—uv

{4.17)
Gty = S
u—v—1
or, in terms of the generators,
e, [y ={fre 112 = —dy,
4.18)
2! {
hohoyoyp = — m
for k1 =0

Proof. Proposition 4.1 shows that the relations (4.17) are satisfied modulo some
constant o«
2—1

Cet ), f )y =——, e () = —,

Uu—=uv u—-20v

ko=t

v—1°

We can find this constant from the Yangian R-matrix R = | + (P/a — b) acting in
the tensor product V(a) & V(b) of two-dimensionai representations of #Y(sl;). The
action of the generators of #Y(sl,) in ¥ (c) with a basis v, v, can be described by the
formulas

et ) =0, efv)=cvy,  Sfilea) =0,  filvy) = vy,
hy(v,) = c'vy, hi(vs) = —c'v,.
According to Theorem 3.1 (see also Proposition 5.1, the reformulation of the theorem

in terms of the universal R-matrix), we take the Gauss decomposition of the Yangian
R-matrix: R = Ry Ry Ry and find that

Rg=1+ 0® fo=1-3% ,®f (.,

a—bh iz0
which gives {e;, f_,- > = —1Li20,a= 1.
In the general case, we have the following analogous theorem.

THEOREM 4.2. (i) Subalgebras Y*, #* and Y™ (see (3.7)-(3.9)) of Y_(g) are
generated by the fields e (u), hi (), and f7(u) (i = 1,...,r ), correspondingly;
(i) The pairing of the generators of Y ,(g) is given by the relations (| x| « 1 « [u]):
6,
e, F7@)>={f"We; &)= u—_’— (4.19)

&
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+ - U=+ 3o, a;

Chi (W) hy(0)) = ——?u (4.20)
u-—v—5le,u,)

The proof is analogous to the case of sl, with the use of the relations from

Proposition 2.2.

Remarks. (i) Actually, a variant of pairing (4.17), (4.18) was computed by Drin-
feld [9]. It appeared as one of the basic points of his quantization of g[r].

(i1} The pairing (4.17), (4.18) may be considered as a delormation of the classical
pairing in g{[{t~',¢] given by the rational r-matrix r = Q/u, where Q is a split
Casimir operator. Formulas (4.17), {4.18) show that this pairing remains unchanged
for the currents to nilpotent subalgebras and changes by shifts + ¥x«,,%;) in
(de)nominators of the pairing functions of the current Lo Cartan subalgebras.

5. The Universal R-Matrix for 2Y(g)

Let us recall that the universal R-matrix [7] for a quasitriangular Hopf algebra A is
an invertible element R of some extension of 4 ® A4 satisfying the conditions

A'(x) = RAX)R™! Vxed, (5.1)
(ARidR = RVR®, (id®AR = R'¥R'2, (5.2)

where A’ = g, (6(x ® y) = y ® x is an opposite comultiplication in 4. If 4 is a
quantum double of a Hopf algebra A7, A ~A* ® A7, 4 := A% being dual to 4"
with an opposite comultiplication, then 4 admits a canonical realization of the
universal R-matrix: R = X,&,, ® ™, where &, and £™ are dual bases in A* and
A~ Inour case A" = Y(g) and the canonical element R is the universal R-matrix in
ZY(y)-

Let Y, Y5 and Y = be subalgebras of #Y(g) generated by the fields e *(u), i * (1),
and /' (), (i = 1, ....r), correspondingly. As a consequance of Theorems 3.1 and 4.2,
we obtain the following proposition.

PROPOSITION 5.1. The universal R-matrix R of the Yangian double 7Y (g) can be
realized in the factorable form

R=R,.R\R_, (5.3)
where
R, eYI®Y¥Y, Roe Yy XY, R eYZ®Y7.

In the case of #Y(sl,) we easily find by induction the general formulas for the
pairing Y1 with Y_, and Y ! with Y (cf [23]):

(el e el [ e [

= (‘ 1):101 +m5nn‘m1 5nk‘m“1 no-’”i! "kle [5'4)
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CHEN I AR T
= (=1t RSy O Bty (5.5)
The following, lesmmma is an immediate corollary of these relations.

LEMMA 5.1. Theelements R . and R _ in (5.3) for the universal R-matrix of 2Y(sl,)
can be presented as

-

Ri=3 exp(—ex®@ f_, ()=exp(—eo® f jJexp(—e; ®f ), (5.6)

k20

-

Z exp(— [y @ e_y—y)=--exp(—f @e_,)exp(— fo @e_) (3.7)

kx0

R_

(See formulas (5.30% {5.31) at the end of this section for the general case of this
Lemma.)

The middle term K in (33) has a more complicated structure. One can find it
directly by cumbersome calcmiations but we prefer here to use another argument
for the connection between two realizations of 9Y(g). The general scheme is as
follows.

Let Y (g) be a Hopf algebra isomorphic to ZY(g) (as an associative algebra) with
the following comultiplication [7] (it naturally appears in a quantization of the
current algebra g[t]):

Athi @) = bt () @ h (@), (5.8)
Aei(u) = e @ 1 + b (u) ® es(w),

R(f) = 1 ® fifu) + ) @ b7 (u), (39)
where
e)y=e/ (W) —e; W=3 e, u*"
kelZ
filu)= f fu) — fiw= ;:éz fi,ku_kfl.

The arguments of [18] show that just as for a case of quantum affine algebras
U,(§), the coalgebraic sector of ﬁ(g) is connected with a coalgebraic sector of
2Y(g) via twisting by a limit translation automorphism (as an action of an
analog of a ‘virtual’ longest element of an affine Weyl group). The elements of Y 3 are
stable under this action and therefore the pairing {h;* (u),k; (v)) is the same in
2Y(g) and in Qj?(g). Formulas (5.8) show that the components of In A (u) are
primitive elements of ﬁ(g). This allows us to obtain immediately the pairing
for the whole subalgebras Y& and Y. The calculation reduces to a diagonaliz-
ation of the form {Inh; (w), Inh; (v)>. An explicit diagonalization wili be done
later, and now we want to formulate a general statement about the structure
of RO,
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PROPOSITION 5.2. Let

pfW=Y @i u "=k (),

k=0

ol W= @iy T =Inh{ (u)
kg —1
and let ®* and ® be linear spaces with the bases {¢, o, ¢:1,-..} and {®; _,,
@; 2, ...}, correspondingly. The element R in (5.3) has the form

Ro=exp(2 ¢k®¢"), (5.10)

where T, ¢, ® ¢* is a ecanonical tensor in @ ® ® ™ with respect to the pairing

u— v+ o o)

(ol or @) =In 50 )

(5.11)
Here u and v satisfy the constraint |v| « 1 « |ul.

Proof. Tt should be noted that there is no action of the affine Weyl group on
2Y(g) (natural analogs of simple reflections map ZY(g) into another algebra).
Nevertheless, the affine shifts in #Y(g) are well defined. Let, for instance, f be the
following ‘translation’ automorphism of 2Y{(g):

flei) = eixs1 ECfi) = fik-1s Eolhi k) = hy s (5.12)
for all k e Z. The arguments of [18] applied to ZY(g)} give the following lemma.

LEMMA 5.2. The comultiplication maps of the Hopf algebras 97‘\((9) and 2Y(g)
( which are isomorphic as algebras) are connected via twisting by the limit translation
automorphism: t,, = lim, , , % ie.

A(x) = A (x):= lim ({"® i"}A(I ~"(x), (5.13)
Jor any x e @Y(g) (97‘}'(9)) in a suitable topology of 2Y(g) ® DY(g) (see [18]).

The Hopf algebra SB/?(g) is by definition a double of the subalgebra (Eff’(g))+
generated by the elements ¢; , k€ Z, and h;, k = 0. Let (Eﬁ(g})‘ be a subalgebra
generated by f; ;, ke Z, and A,k < Q. Then (Eﬁ’(g))' is isomorphic to a dual of
(‘SIZ/'?(Q))+ with an opposite comultiplication. Lemma 5.2 allows us to compute the
pairing (f’j‘?(g))’r ®(_0§?(g))‘ — C. Before computing this pairing, let us first say
some general words about Hopf pairing and automorphisms.

Let 4, and A, be two Hopf algebras with a Hopf pairing {,>: 4, ® A, — C and let
wy: A, = A} and w,: A; = A% be some isomorphisms of algebras. Then the algebras
A’ and A’ can be canonically equipped with a structure of Hopf algebras if we define
comultiplication maps A™Y: 41— 47 ® 4 and A™?: 4% — A, @ A, by the rules

A™(a) = (w; @ w)Alwi (@),  A*(B) = (w2 B wy)A(w; ' (B) (5.14)

for any ae A and any be A5.
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LEMMA 53. The pairing {,): A} @ A, — C defined by

{a,by ={wil(a),wi'(B)), VYaed), Vbed, (5.15)
is a Hopf pairing.

Taking 4, =Y, A=Y, w, =w, =1" we oblain a Hopf pairing between
(Y )™ and (Y 7)™, where (Y *)™:=F*(Y ), (¥ )™:=f"(Y 7). One can easily see
from (4. 19), {4.20) that this pairing stabilizes when n — oc and defines a Hopf pairing
between (@Y(g)]+ and (.@Y(g)) (which should actually coincide with that from a
double structure of @Y(g] ). This pairing looks like

<ei,lufj,—l—1>= —5i;'5kl (5.16)
and

u— v+%(“isdj)

s 517
- *%(“i,aj) ( )

Chi @), by () =
for |x] « 1 «|ul. The pairing (5.16) coincides with (4.19), since the elements 4,
remain stable under the action of automorphism . From (5.10) we see that

Alpf W) =0fw @1+ 18 ), (5.18)

1
Corwhp; @) =int— F (519
for |p] « 1 « |u|. The relation (5.18) means that the coefficients of ¢, (u) are primitive
elements with respect to A. Now we have the condition of the following simple
general statement.

Let A; and A4, be two dual Hopf algebras isomorphic (as algebras) to [ree
commutative algebras A, =~ C[®"], A, =~ C[® ], where ¥* and ®~ are vector
spaces of generators, such that all ™ e ¥ (or all ¢ ~ e ® ™) are primitive elements.
Let {¢} and {¢*} be dual bases of ®* and ®~ with respect to a (nondegenerated)
restriction of the pairing to ®* ® @ ~. Then, once we choose some order of basic
vectors, we have

D)™ i)™ ()™ ()™ > = by Smie 1L+ 11!

or, in other words, the canonical tensor R*'®4: = ¥ g, ® b* of the pairing of 4, and
A, is an exponential of the canonical tensor & = X ¢, ® ¢* of the pairing of ® and
@:

RA1®42 = exp O (5.20)
which proves Proposition 5.2.

We further describe the canonical tensor Q = £y, @ ¢* from Proposition 5.2
more explicitly, in other words we present concrete diagonalization of the bilinear
form (5.11). For illustration, we first do this for ZY(si,).
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Let (@* () := (d/du) o™ (u). From (5.16) we have

1 1
u—v+1 u—v—1

Lo W), @™} = (3.21)

If
Ty =Y du LT = Y uTt!
i kg -1

iz0

arc arbitrary fields from @* and ®7, then the diagonal pairing <Wy, @ —1- 1 Yysue =
8,5, in terms of generating functions, looks like

_ 1

<¢)+(u)‘ (}5 (v)>diag -

u—v

for |x] <« L« |u|. Let T be a linear operator in the space @ . If we use the notation

Pt (), Tq’)_(z:))ding as a pairing of ¢ *(u) and T¢~(») under the condition that the
pairing of ¢ ™ (1) and ¢ ~(v) is known to be diagonal, then (5.21) can be read as

<((P+(u))’s ¢7(U)> = <((P+(u))’= (T - T71)¢7(v)>diﬂg» (522)

where T: Tf(v) = f(v — 1) is a shift operator. From (5.22), we have

1

Lo @), (T=T ) o @)= @), ¢ (1)) ane = 0o

Now we can formally invert an operator (T — T ') as
(TAT*I)*I:Tfl+T’3+T"5+>.. (523)
which gives the diagonalization of the bilinear form (5.11):

RN ) g (5.24

nx0 u—v

Remark. The inverse (5.23) to a difference derivative T — T ™! is only a right-

inverse operator ( just as usual integral). We can define it in a different manner like,
e.g.

(T-T YHY'= T T3 T5_ .. (5.25)
and obtain the diagonalization form

1

u—v

Y -l Wy, e (v—1-2n)> =

nz0

(5.26)

Both formulas work for proper regions of finite-dimensional representations of
DY (g).
Using the notations (y7{u)), =, for Y(u) = X, u~*" ' and

Res, —, Y () {®p() = Z W @y,
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we interpret (5.24) as the following expression of the factor R, of the universal
R-matrix for 2Y(sl,):

Ro=[] GXP(Z (0 )i R (v+2n+ 1))-k-1)
k

nz0

=[] exp Res, = (¢ W) ® @ (v + 2n + 1) (5.27)

nz0

or, if we use (5.26),

Ro= ] exp(— Y (0 @@ (o o —2n - 1))_H)

nz=0 kz0
=[] exp Res,—(— (") ® ¢ (v~ 2n - 1) (5.28)
nz0

We can summarize the calculations of the universal R-matrix for 2Y(sl,) in the
following theorem.

THEOREM 5.1. The universal R-matrix for 9Y(sl,) can be presented in the fac-
torized form

R=R,ReR_, (5.29)
where
Ri=]]exp(—e.®f_y1) R_=T] exp(—f, Be_,_y), (5.30)
k20 k=0
Ro= [] exp Res,— (¢ () ® @ (v + 2n + 1). (5.31)
nx0

Here = (u) =Inh*(u).

Remark. Actually, we simultaneously prove statement {ii} of Propaosition 2.1, since
we have checked the properties (5.2) of the element R and (5.1) for the fundamental
representation of #Y(sl,), which is sufficient.

Now we return to the general case. Just as for Y(sl,)-case, we have the following
description of the pairing (5.11) in terms of the derivative of ¢," («):

1 1
u—v +%(1£>C’j)_ u—ov—3;,0;)

(@i W), o0}y = (5.32)

It is more convenient to collect fields ¢ * (1) to vector-valued generating functions

o1 (@)
@3 W)

E]

ot =
7w
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where r = rank g. In terms of vector-valued fields ¢ (u) and ¢ (), the diagonal
pairing (@i, P —m-1) = 6; ¢y looks like

1
<'o"(u)9 d’(v))diag = ;—_U Ir

where I is an r x r identity matrix.
Let B = (b} ;- o be a symmetrized Cartan matrix of g with matrix elements being
integers without a common divisor, b;; = («,, %;), and B(g) be a g-analog of B:

q(ahu,) _ q—(zx.,u_,) )
Biq) = oy ], = ————or—. (3.33)
q—4q
Here we use the standard notation

qa_q~a
[al, = ——.
" g—q7!

Let D}{g) be an inverse matrix to B(g). One can see that D(g) can be presented in the
form

D(g)=

1
(i3, <@ (3349

where C(q) is a matrix with matrix coefficients c,;(g) being polynomials of ¢4 and of
g~ ! with positive integer coefficients and I{g) being a positive integer. Actuaily, the
calculation of det B(q) shows that !(g) is proportional to a dual Coxeter number h of
g (see also Table (7.6) below:

l(g) = hv(q‘) fO[' g= AmE6,E7,EB;
I(g) =2h'(g) forg =B, D, Fy (5.33)
(g) =3k{g) forg=0G,  lg)=4h1(g) forg=C,.
In these notations, the pairing (5.32) can be written as
Lo ), 9~ ()> = e W), (g — 7 IB(Q) | =712 @ (2)) tings (5.36)

where a shift operator T: Tf(v) = f{(v — 1) is substituted inside the r.h.s. of (5.36)
instead of ¢2. Next, we deduce that

(9 @y, (11077 — T o)t (7 =) (1) = ——

I (537

Returning to the original notations, we get the following diagonalization of the
pairing (5.11):

% (5.38)

2 ol @), Loy o0 o+ (n+ Dilghy = =

n>0 i -
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Let us note once more that ( just as in Y(sl,) case (5.28) it is possible to write down
another diagonalization of the pairing (5.16) for any Y(g). We can summarize the
calculations in the following theorem.

THEOREM 35.2. The element R in (5.3) for the universal R-matrix of ZY(g) can bhe
presented as

Ro=[lexp ¥ 3 (¢/Wh®culT " )of @+ + (g -u

nx0 i, j=1, ,rkzQ
= [lexp ¥ Res,oo(o ' ) @ci(T D)o, (v + (1n + Hg)
nz0 Lj=1, ,r

(5.39)

In order to complete the description of the universal R-matrix for ZY(g), we
should extend the description of their factors R, and R_ from the sl, case to the case
of arbitrary simple Lic algebra g. Let us first change the notations for generators of
ZY(g). Instead of ¢; ;, we use e, +1; and instead of f;,, we use e, 4. We denote
also by A™ the set of all real roots of corresponding affine nontwisted Lie algebra.
Let T be a subsct of A™. Recall that a total linear ordering < of Z is called normal (or
convex) [27] if, for any three roots, «, f,y€Z, y =2+ B, we have a <y < f or
p<y<a.

Let £, and T_ be the following subsets of A™:

L, ={y+kélyeA.(y, k =0}
5 (5.40)
Eo={-y+kdlyeA.(ghkz=0}

Here & is a minimal imaginary root of §. Let us equip X, and £ _ with two arbitrary
normal orderings <, and < _ satisfying the additional constraint

v+ ké<,y+16 and —y+10<_—y+13 iln>m, (541

for any y € A, (g). We can define the ‘root vectors’ e.;, fe X, w Z_ by induction
following the instruction [17]

€py, = [eﬂﬂ eﬁz]! €opy = [e—ﬂ'z! 6—51] (542)

if fy < f3 <P, and (B4, f,) is a minimal segment in a sense of chosen orderings
containing f;, and ey,, e, are already being constructed. Analogously to the case
U,(4), [17,18] one can prove that the procedure (542) is correctly defined and the
monomiais

egiegimegy, Bi<iPr<4 - <y P, PieX.
form a basis of the subalgebra Y. < Y(g) and the monomials

egies;cegy, fi<_Br<_- <_f, PieZ
form a basis of subalgebra Y_ < Y(g).
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Various arguments [ 14, 15] show that the factors R, and R_ of the universal R-
matrix for ZY(g) should have the following form which we state here as a conjecture,
since we did not check the rigorous proof.

CONJECTURE. The factors R, and R_ of the universal R-matrix for 2Y(g) have
the following form

R. =[] exp(—a(Pre; ®e_z),  R_= [] expl—a(fle,@e_y), (5.43)
el BeE_

where the products are taken in the given normal orderings < . and < _ satisfying
(5.41). Normalizing constants a(f}) are taken from the relations

[e[h e*ﬁ]:(a(ﬁ))_lhv ifﬂ=)‘+l’l(552+, )’EA+(Q):
[e-pes]=(@(B) ' h, f=—y+ndcE_, ycA.lg

6. An Example of Y(sl,)

6.1. R-MATRIX FOR TENSOR PRODUCTS OF EVALUATION REPRESENTATIONS OF Yisl,)

Here we demonstrate how the general formulas (5.29)43.32) for the universal
R-matrix work in evaluation representations of the Yangian Y(sl;). Analogous
calculations for U,(sl;) are presented in [14].

One can casily check that the assignment

LU Hf?, (6.1)

Breg—re, ho—h [for/f, ¢ =

extends to an epimeorphism of algebras Y(sl;) — U(sl;). In terms of generating
functions, morphism ® can be written as

Oetw)=w—3th—1)""e, Of W= flu—3th—1)"" ©2)
O (W=1+u—-3h—1"tef —lw=3h+ 1) fe. |ul»1. '

Morphism ¢ is also properly defined for 2Y(sl,), since one can interpret the rhs, of
(6.2) as an expansion near zero:

e W=m—3h—1)"'e Of (W= f(u—4k- 11
6.3
Oh w=1+@w—4h— 1)y tef —w—3h+ 1) *fe, |ul«l. ©3

Let V; and ¥, be two representations of Lie algebra sl; with highest weights A and p
(Verma modules or their finite-dimensional quotions, for instance), let V(@) and
V,(b) be corresponding evaluation representations. In a concrete example, when V,, is
finite-dimensional representation (dim ¥V, = n + 1) with highest-weight vector v, and
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a basis vy, vy, ..., V,, we have for ¥V {a) by (6.2)

— 2k + 1\ —2k—1Y
eivk=k(a+n——i+) Up-1: fi”k=(n_k)(a+n#) Ui

2
hyvy = ((k + 1)(n — k)(a + L_%tﬂ-) -
—k(n—k+ 1)(a ¥ 1'_7—225+—])) 2. (6.4)

For the calculation of R-matrix in V(@) ® V,(b) it is sufficient to compute
(¢ ® )T, ® T,)R as a function of @ — b with values in U(sl,} & U(sl; ). Here Tyis a
shift operator in 2Y(sl,),

Tie,y=e,u—d), Tohy@=h(u—d), T.f.@)=fulu—d).
We do this first for the factors R. and R_. Let

h@1—-1&®h

5 (6.5)

y=a—-b+
We think of y as of diagonal matrix acting in V;(a) ® V,(b). Substitution of {6.2)
into (5.6} gives the following answer:

@®O)I, ®T;)R,

1 1
4@ ye@fp_ 1
te® S T ate eyt

i
Mo+ (am

S+

L ® (6.6)

One can consider r.h.s. of (6.6) as a difference analog of the ordered exponential:
(@R O)NT, ® T,)R.)=expe® f(y+ 1) ipo

where T: Tf(x) = f(x — 1) is again a shift operator and
exp f(Wr =1+ N+ 3Dy + D+ +

|
SOy + ) fly+ @ —1)+ -

Analogously,
(O©RONT, @ T;)(R_)
=exp(y+ 1) fRe:p

1

L 2R 4.
Wy+Dy+y) et

1
=1l+——f®
+y+1f e+
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1
R+ D (v )

fr®e 4 - (6.7)

Note that, for any weight vector of V, @ V,, the series (6.6) and (6.7) is finite and
has a form of operator from U(sl,} & Ufsl,) with rational coefficients.
The calculation of (@ ® ®)(T, & T,)(R,) is more complicated. We perform this

calculation directly in V; ® V, for simplicity. We can rewrite the action of A * (1) in
V,(a) (6.4) as

w—a—%Yu—-a+*%

1 6.8
w—a-Bhu—a—m5y “” (63)

h*(u) =

and, analogously, the action of k™ () in V,(b) as

v—b Y — b+ 131

h(’]w( T S TC LR (6.9)

From (6.8) and (6.9), we get

L o) = d log h*(w)
du

1 1
T-a i) Cwoar

1 1
Tw—a—Y) woa-my M7 (610
and
O e z)(v*bv“%) ,
© (D)_IOg(u——b—"i]( _31), |o| « 1. (6.11)

The rest of the computations reduces to the calcuiation of the residues for the
functions with simple poles. Denoting

hy=h®1. h,=1®h  c=25 (6.12)

2

we finally get the following horrible answer:

Relvimer.m

_Tle+452 4 PPle — 452 4 Hl(e + 257 + Yl e = 242
C Tl DT -S4 T+ 4 + DI — 559
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Cle+"57% + HT(e + 534 + HL(e + M3 + DT (e + 254
Cle + 2520 T e+ 252 + 1) T+ 32 + 1)

(6.13)

If we suppose 1 and u to be integers and V;, ¥, be finite-dimensional
(dim ¥V, =4+ 1, dim V, = y + 1), then the whole R-matrix has rational coefficients
up to a scalar factor. We can easily find this factor x‘fL normalizing the R-matrix in
such a way that the matrix coefficient of the tensor product of the highest-weight

vector to itself is equal to one. This gives

w _ T2+ 4%+ DUzt — 230 4 )
T T R DT (R 4 1 )

{6.14)

In the next section we describe this scalar factor for arbitrary finite-dimensional
representations of Y{(g).

6.2. L-OPERATCR PRESENTATION OF 2Y(sl;)

An explicit expression for the universal R-matrix for 2Y(sl,) gives the possihility to
present Z#Y(sl;) in the form of L-operators [11,22]. Let

L7z =(p1(2)®id)R, L'(z)=(p(z) @ id}(R?"), (6.15)

where p(z) is a two-dimensional representation ¥, (z) of 2Y(sl;) (see {6.4)). Substitu-
tion of (5.28)-(5.31} into (6.15) gives the following Gauss decomposition of L*(z)
(compare [10] for U, (gl,)):

e {1 [HRN[kE@ 0 1 0
L (Z)"(o 1 )( 0 k;(z))(e+(z) 1)’ (6.16)

where

(5G) ki@ =hiE),  kE@kiE- D=1,

ten_ 17 P z=2n—-1) by = h*(z—2n-1
o=y B
o h—{z + 2n) S L R (z+2n+12)
we= Uiy %9=

L-operators L=(z) satisfy the equations

Ri2(z —w)Li{z)L5 (w) =L (W)Li(z)R12(z — w),
Riziz—wiLT(z) Ly (w)=L3(WILT{2}R 2z —w), gdetL*(z)=1,

where

P
Rize—w)=1+—o
Z—w
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is a rational R-matrix in V,(z) @ V,{w),

Liz)=L*z)@id, Li(z)=id ® L™(2),

q det A(z) = ay,(2)az{z — 1) — az(z)a,,(z — 1)

Note that if we apply p; ® id to the current realization of R or, equivalently, take the
current realization of generators in (6.16), then we get sl; & C(z) matrix

- htl '
L‘(z):c*(z,).)(u+ : f,,_l>,
2

¢ z =

where c*(z, /) is the coefficient

Ci(‘f/"‘)—_- r(;z’ii)r(iz’+;’_12) ”:E+l
R Y I T S T

with A being the value of the highest weight on which L{z) acts (actually c(z. })
depends on the Laplace operator, since ¢*(z, 2) = ¢*{z, — 2 — A)}.

7. The Character of Universal R-Matrix

Let ¥ and W be two irreducible finite-dimensional representations of the Yangian
Y(g). It can be proved by fusion procedure and by studying the R-matrix for
fundamental representations of the Yangian, that the R-matrix Ry y inlertwining
two coproducts A and A’ in V{a) @ V(b), can be presented as a matrix with rational
coefficients of @ — b (here Via) and W (b) are obtained from V¥ and W by means of a
natural shift automorphism of Y(g)). On the other hand, one can apply gy ® pwa
to the universal R-matrix. The results should differ by a scalar phase factor yyw
which appears due to nonlinear conditions (5.2) on the universal R-matrix. The
factor y{¥' is, by definition, a unique modulo rational function of (¢ — b) and plays
an important role in scattering theory.

Unfortunately, the intrigning theory of finite-dimensional representations of
Yangians is too young and does not savs such about representations: there is a
classification of irreducible modules but their structure is almost unknown (including
the dimensions and characters). Nevertheless, the theory of highest weight developed
by Drinfeld [7] (see also [25,26] coupled with our description of the universal
R-matrix, allows us to compute the factor y{%% for arbitrary irreducible finite-
dimensional representations of Yangian Y(g).

Let us recall the basic definitions of highest-weight polynomials of finite-dimen-
sional representation of Y(g).

DEFINITION 7.1. Tet I be a Y(gr-module. A vector eV is a highest weight
vector if

i) e (we=0 i=1,..,r
(i) A (e = H,(wv (i.e. vis an eigenvector for all h;,,n = 0).
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The functions H,(u), i = 1, ..., r, are called eigenfunctions of v.

THEOREM 7.1 [6]. (a) Any irreducible finite-dimensional Y(g)-module is generated
by a highest-weight vector; (b) An irreducible finite-dimensional Y(g)-module V with a
highest-weight vector v is finite-dimensional iff the eigenfunctions H,(u) of v can be
presented as a ratio of polynomials

. Howi, oy
H;(u) - Pz(u —;,_Z(S”a'))

(7.1)
DEFINITION 7.2. {a) A polynomial-tuple (vector polynomial) P(u}:=(P,(), ...,
P,(u)) defined by the condition (7.1) is calied a highest-weight vector polynomials of a
highest-weight vector v (and of finite-dimensional representation V);

(b) Finite-dimensional representation of Y(g) with a highest-weight vector poly-
nomial

Pi)={l,...,Piwy=u—a1,..,1), acC,

is called ith fundamental representation of Y(g).
We denote the i-th fundamental representation of Y(g) by w;(a).

Componentwise multiplication of the weight polynomials endows the set E(g) of all
irreducible finite-dimensional representations of Y(g) with a structure of Abelian
(multiplicative) semigroup generated by fundamental representations. An element V
of E(g) can be presented as

V=wa, ) wlay ;) ol ola,;), (7.2)

which means that the j-component of the highest-weight vector polynomial of V is
Piu)y=(u—aj;)--(u—a;;) and V can be realized as a subfactor of the tensor
product of fundamental representations w(a,;} containing the tensor product of
highest-weight vectors of fundamental representations. Analogously, the multiplica-
tion law U = V- W implies that an irreducible module U is a subfactor of V & W
generated by the image of the tensor product of the highest-weight vectors of ¥
and W.

Now let ¥ and W be finite-dimensional irreducible representations of Y(g)
generated by highest-weight vectors v and w. They can be endowed with a structure
of Y_(g) {and of 2Y(g))}-module just by re-expanding of matrix coefficients of
e (u), hi* (w), £ (@), in u = 0. The general structure (5.3) of the universal R-matrix
shows that v @ ¢ is an eigenvector of R.

DEFINITION 7.3. A scalar function y{fy defined by the condition
Re®w =y rQw, (7.3)

where R is a universal R-matrix for ZY(y) and v and w are highest-weight vectors of
V and W, is called the character of the universal R-matrix R corresponding to
highest-weight representations V and W.
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The following lemma explains that the character of the universal R-matrix may be
considered as a (multiplicative) bilinear form on E(g).

LEMMA 7.1. Let V, V,, Vo; W, W,, W, e E{g). Then

R
AVevaw = Xvew  Avews (7.4)
R R
K, = 2w 1w (7.5)

The proof follows immediately from (5.2).

The general expression (5.39) for the factor R, of the universal R-matrix allows us
to find out the character of R for arbitrary finite-dimensonal representations of Y(g).
Indeed, the action of R on the tensor product v @ w of highest-weight vectors reduces
to the action of its factor R,. If P(u) is the highest-weight vector polynomial of » and
Q(u) is the highest-weight vector polynomial of w, then the action of the fields
{(d/du)e . (1) on v is given by the expression

a%ﬁ!)? (We = (dlog Pi(u + 3oy, o)) — dlog Piue, [u] » I

¢ (v) act on w as

Q;le + %(Ofi,%))w
Q) '

The rest is a technical application of (5.39). Due to Lemma 7.1, it is sufficient to compute
the characters corresponding to the tensor product of fundamental representations.

Let us recall the notations of the previous section. Now, again, B is a symmetrized
Cartan matrix of g with the matrix elements being integers without common divisor,
Bi;=(a,a;)i,j— 1,...,r and B(g) is a g-analag of B; D(g) is an inverse matrix to
B{qg) and C(g) is an r x r matrix with coefficients from Z[q,4~ "] defined by the
condition D(g) = 1/([}{(g)],) Clq), where [(g) is proportional to the dual Coxeter
number A{g) (see (5.35)). A presentation (5.34), (5.35) of the inverse to g-analogue of
the symmetrized Cartan matrix follows from calculation of det B(q):

@ (t)w=1log [v| « 1.

g det B(q) Kig) i{g)
A, [+ 1], It 1 I+ 1
[2(20 - 1)],
B, L 1] 21 220 —1)
[23,[20 + 1)],
C, T I+1 Al +1)
[2],f2! - 2)],
D, T 22 2020 —2)
Es [21a[31[12], 12 12 (7.6)

(41,061,
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LR e

The calculations with R, gives the following theorem.

THEOREM 7.2. Let Cy(q) = Z, C¥q*, CYeZ,. The character Yo, ww of the
universal R-matrix corresponding to fundamental representations w;(a) and w,(b), is
equal to

(R)
th(a).co,(b)

a—b Mg) —k— tas, a0) a-b Ugy—k+apad N\ Ck

TGy + T Gy + )) ’

= a0t Ral—k a—b , fgl— k¥, a,)={a, o) '
N\ Gy + 2T Gy + Ziig) )

)]

For instance, for Y(sl,) the pairing (7.7) looks like

LR _ rE)rest+1)
o{a). w(b) — —b 1y2
s +3

(7.8)

and, more generally,

T2 (35> 4 1)
xg{.)m(a-l-ﬂg w(b;) = l_[ I-'(m%b_‘l + Ji)z (79)

9]

which agrees with (6.14) since

v _ n—1 n—3 n—1
,,(a)—a) Q_T mla— 2 e a+T

in E(sl,).

Quasiclassically, R(u) = 1 + (Q/u} and the quasiclassical limit of the form (7.3} on
highest weights of evaluation representation V;(a) and V,(b) of Lie algebra g[t]
should be ({4, u>)/(a — b) where {,> is an invariant scalar product in hA* (h is a
Cartan subalgebra of g).

It will be interesting to obtain combinatorial and geometric interpretations of the
form (7.3).
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