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Abstract. The structure-function parameters C~. and C'~ of temperature and velocity, respectively, 
from the 1973 Minnesota experiments and from large-eddy and direct numerical simulations show 
a smooth transition from M-O similarity to the "local scaling" hypothesized by Nieuwstadt for 
the outer regions of the stable boundary layer. Under that hypothesis, turbulence statistics aloft 
depend on the local vertical fluxes of momentum and temperature, so these results suggest that 
remote-sensing measurements of C '2 and C'~ could be used to infer vertical profiles of those fluxes. 
We argue that the sensitivity of the fluxes to unsteadiness, baroclinity, terrain slope, and breaking 
gravity waves precludes the universality of the vertical profiles of structure-function parameters 
in the stable PBL. We find that the C~ profile is particularly sensitive to these effects, which is 
consistent with observations that it varies considerably from case to case. 

1. Introduction 

Many boundary-layer researchers will recall the impact of  the McAllister et al. 

(1969) paper. These authors had pulsed an array of  loudspeakers and detected 
the backscattered energy with the same array. By cleverly recording the signal 
on a facsimile receiver, they produced striking time-height displays showing how 
convective eddies rising from the heated surface in the early morning break up 
the nocturnal boundary layer. Use of the acoustic echo sounder, as it was soon 
called, spread rapidly. 

Deardofff  (1972) suggested that the acoustic echo sounder would be able 
to provide direct data on the nocturnal boundary-layer height h, a subject of  
speculation and controversy at that time. Similarity theories (e.g., Clarke, 1970) 
held that h satisfied the equilibrium relation 

(T) 
where c ~ 0.3, zL, is the friction velocity (the square root of  the kinematic 
surface stress), f is the Coriolis parameter, and L is the Monin-Obukhov length; 
the function F is unity at neutral and decreases under stable stratification. It 
was not clear, however, whether the nocturnal boundary layer could reach this 
equilibrium. The behavior of conventional soundings of temperature and wind 
had led Blackadar (1957) to conclude that h typically increases during the night 
from its early-evening minimum. 

On the basis of  his one-dimensional model calculations, Deardorff inferred 
that h is generally time dependent and cannot be diagnosed from a steady-state 
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similmity relation such as Equation (1). [He had just carried out time-dependent, 
fine-mesh, three-dimensional calculations of the neutral and convective PBLs; his 
attempts to extend these to the stable case failed because most of the turbulence 
became subgrid-scale. This approach, which we now call large-eddy simulation, 
or LES, was first applied successfully to the stable case by Mason and Derbyshire 
(1990).] 

Rather than prescribing eddy-diffusivity profiles, as Deardorff had done in 
his model study, Delage (1974) used eddy diffusivities based on predicted turbu- 
lent kinetic energy. His one-dimensional model of the nocturnal boundary layer 
reached a steady state after several hours with a realistic rate of surface cool- 
ing. Wyngaard (1975), integrating a fuller set of second-moment equations, had 
similar findings. Brost and Wyngaard (1978), using a simplified form of Wyn- 
gaard's second-moment model, found that the stable boundary layer could reach 
an essentially steady state within a few hours. 

Nieuwstadt (1984) showed that the Brost-Wyngaard equations have steady 
solutions displaying a similarity structure in outer regions that is an extension 
of Monin-Obukhov (M-O) similarity. In M-O similarity the friction velocity u .  
and the surface temperature flux Ow8 define the Obukhov length L: 

3 

L = - k(g/T)Ow~ (2) 

Here k is the yon Karman constant and 9 / T  is the buoyancy parameter. The 
counterpart of L in "local scaling", as Nieuwstadt termed it, is the "local Obukhov 
iength" A 

7-3/2 
A - (3 )  

k(g /T)O~, 

where ~-(z) is the magnitude of the local kinematic stress (i.e., T2(Z)  = ~--W2(Z) + 
~--~2(Z)) and 0-~(z) is the local temperature flux. Under Nieuwstadt's local-scaling 
hypothesis, quantities made dimensionless with T, Ow, and A depend only on z / A .  
Nieuwstadt showed that observations taken in the nocturnal PBL at Cabauw, The 
Netherlands, support this hypothesis. 

Nieuwstadt pointed out that local scaling is not very well suited for practical 
applications because it does not directly give vertical profiles of turbulence. How- 
ever, one can obtain profiles by using local scaling as a closure in model equations 
for the stable boundary layer. With such a closure, one finds that the turbulence 
profiles depend on the time history of the boundary layer. As Wyngaard (1988) 
states, " . . .  a simple, diagnostic similarity framework for the structure of the noc- 
turnal boundary layer seems not to exist. What we have described instead is a 
relatively simple model of its dynamics . . . .  (Its) so lu t ion . . ,  gives the structure, 
which then depends on the history of the flow and boundary conditions." 
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2. The Structure-Function Parameters 

2.1. R E F R A C T I V E  INDEX 

Most theoretical analyses of the scattering of electromagnetic, acoustic, and opti- 
cal radiation by turbulence use the refractive index structure function (Tatarskii, 
1971) which is defined by 

[n(x,  t) - n ( x  + r,  t ) ]  2 =-- ( n  - n ' )  2, (4) 

where n is the fluctuating refractive index at point x and n ~ that at point x + r. The 
overbar denotes the ensemble average. Many problems of practical importance 
involve this structure function only for separations r =1 r I in the inertial range 
of scales, where it has the form 

( n  - -  n ' )  2 = C2r 2/3. (5) 

Fluctuations in the refractive index for electromagnetic radiation are caused 
primarily by fluctuations in temperature and absolute humidity, 0 and q, respec- 
tively. For fluctuation levels typical of the atmospheric boundary layer one can 
write 

n = aO + bq, (6) 

where the coefficients a and b depend on the wavelength of the radiation. Wyn- 
gaard et al. (t978) have shown that this implies that C 2 may be expressed in 
terms of the structure-function parameters for temperature and humidity, C 2 and 
C~, and the joint parameter, CTQ: 

C 2 = a2C 2 + 2abCTQ + b2C~. (7) 

(For acoustic radiation, C } depends also on the turbulent velocity field.) Func- 
tional forms for the coefficients in Equation (7) are summarized by Burk (1979) 
for acoustic, microwave, and optical radiation. Gossard (1988) has discussed the 
maintenance of the joint parameter CTO. and its role in radar scattering. 

These structure-function parameters are directly proportional to the spectra 
of temperature and humidity, and their cospectrum, respectively, in the inertial 
subrange. Similarity arguments due to Kolmogorov, Obukhov, and Corrsin (see 
Tennekes and Lumley, 1972) indicate that these inertial-range spectral levels 
depend only on the molecular destruction rates e, X0, Xq, and XOq of turbulent 
kinetic energy, potential temperature and humidity variances, and their covari- 
ance, respectively. In the inertial range the one-dimensional spectra behave as 
(Wyngaard and LeMone, 1980): 
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~T(~I) = 2(2rr) 1F(5/3) sin(rr/3)C2~l 5/3, 

= 0.25C2~;1-5/3 =/~1~-1X0~7  5/3, (8) 

COTQ(~I) = 0.25CTQ~15/3 = "yle-1/3XOqal 5/3, 

~Q(~I) = 0.25C~gl -s/3 =/~1e-1/3Xqn15/3, 
where/31 and 71 are the one-dimensional spectral constants. Our normalization 
in Equation (8) is such that the integral over the half-line is the covariance. 
Following Wyngaard and Lemone (1980), we take /51 = "~1 = 0.4 and recast 
Equation (8) as 

C 2 = 1.6e-U3Xo, 

CTQ = 1.6e-t/3XOq, (9) 

C~ = 1.6e-i/3~q. 

2 .2 .  VELOCITY 

As discussed by Kaimal (1973), the inertial-subrange form of the velocity struc- 
ture function for ul,  for example, is 

Jut(x, t) - ul(x + r, 0]  2 = C2r 2/3, (10) 

where C 2 is called the velocity structure-function parameter. Kaimal presents the 
spectral relations analogous to Equation (8). We need only the result 

C 2 = 4Cite 2/3 ~ 2e U3, (11) 

where c~1 ~ 0.5 is the one-dimensional spectral constant for velocity. When 
acoustic radiation is scattered at angles other than 180 ~ C~ can be the dominant 
factor in the scattering cross-section. 

3. Similarity Structure 

Equations (9) and (1 t) tie the structure-function parameters to the rates of molec- 
ular destruction of the temperature-humidity covariances and of turbulent kinetic 
energy. We can relate these destruction rates to the dynamics of the turbulence 
through the second-moment equations. We derive these formally by using the 
ensemble mean, fluctuating decomposition for all random fields (Tennekes and 
Lumley, 1972). We denote these fields with a tilde, using upper and lower case 
symbols for their mean and fluctuating parts, respectively: 

~i = Ui + ui; !5 = P + p; 2F=O+O;  r  Q + q. (12) 
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We shall use the mixed notation ui = (Ul, u2, u3) = (u, v, w); xi = (Xl, x2, X3) = 

(x, y, z). 
Let us assume that conditions are locally homogeneous in the horizontal and 

quasi-steady, so that the mean advection and time-change terms in the second- 
moment equations are negligible. Satisfying these assumptions requires that the 
time and length scales of the turbulence are small compared to those of the 
external changes, which is often the case under clear conditions at good sites 
(Wyngaard, 1992). Then the budget of potential temperature variance is (Wyn- 
gaard and Cot6, 1971): 

~Z  O02W -- 
20W + OZ -XO, (13) 

The budgets of humidity variance and the temperature-humidity covariance are 
(Wyngaard et al., 1978) 

+ Oz - - X q ,  (14) 

z~q--~z + pU~w + Oz = -X~Oq, (15) 

where p is the mean density. Finally, the turbulence kinetic energy (TKE) equation 
is 

OU OV 0 wuiui  _ 1 0 ~  gO 
u--W-~z + v-~-~z + O z 2 p O ~  + -T w - e, (16) 

where repeated indices are summed. We are assuming here that the humidity 
is sufficiently small that it does not contribute significantly to buoyancy; if this 
is not the case, one can use the same equations but interpret 2? as the virtual 
potential temperature (Lumley and Panofsky, 1964). 

It seems generally agreed (Panofsky and Dutton, 1984) that to a good approx- 
imation in the quasi-steady, locally homogeneous surface layer, the budgets of 
scalar variance and turbulent kinetic energy reduce to a local balance between 
production and molecular destruction. The Oq budget has not received as much 
attention, but Wyngaard et al. (1978) found that in the unstable surface lay- 
er, it also has a local balance. Since our experience with these second-moment 
budgets generally indicates that the turbulent transport (i.e., the third-moment 
divergence) terms are least important under stable conditions, it is plausible that 
the local balance for the Oq budget extends to stable conditions as well. Thus, 
we write Equations (13)-(15) as 

- - 0 0  
Xo = - 2 0 w  Oz ' 



282 J. WYNGAARD AND B. KOSOVIC 

- q---~ ~-z" (17)  

The TKE Equation (16) becomes 

OU OV g - -  
To Ow. e = - u W - ~ z  v w - ~ z  + - -  (18) 

3.J-,  S U R F A C E - L A Y E R  SIMILARITY 

We use the conventional surface-layer temperature and humidity scales T,  and 
q*, 

Ow~ -qw~ 
T , -  - - ,  q , -  , (19) 

where qws is the surface humidity flux. Under the M-O hypothesis for the quasi- 
steady, locally homogeneous surface layer, mean gradients made dimensionless 
with these scales and height z are universal functions of z / L :  

k z  O 0  
7', Oz - e h ( z / L ) ,  

-q-~, P--~z : e q ( z / L ) .  (20) 

It is not clear whether the functions eh and eq differ; following Panofsky and 
Dutton (1984), we assume that they are equal. In the surface layer the fluxes 
of temperature, humidity, and momentum are essentially equal to their surface 
values, so under the M-O hypothesis we can write Equation (17) as 

:r? 2 u,q2, 2 u , T , q ,  
Xe - k2 u* ' r  Xq - k z eh; Xoq - k z eh. (21) 

We choose the x-axis along the mean wind, so that Ui = [ U ( z ) ,  0, 0] and the 
M -O function for mean wind shear is 

k z  OU 
ern ( z /L )  - Oz" (22) 

U,  

We can write the dissipation-rate expression (18) as 

e = u, 3~*(r - z / L ) .  (23) 
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Combining Equations (9), (21), and (23) then yields M-O expressions for the 
refractive index structure-function parameters: 

C2 z 2/3 _ C~ z2/3 _ CTQZ 2/3 3.2 
T2, q2. q ,T,  - k2/g~h(~m - 

That for velocity is 

C2z 2/3 2 
U2 - k2/3 (~m -- z / L )  2/3. 

z / L )  -1/3. (24) 

(25) 

Unlike the other structure parameters, CTQ is not positive definite; its sign 
is that of T,q ,  - i.e., that of the product of the surface fluxes of temperature 
and humidity. Under stably stratified conditions, the surface temperature flux is 
negative; we would normally expect the surface humidity flux to be positive, so 
@Q is negative under typical stable conditions. 

Of the three refractive-index structure-function parameters, only C 2 has been 
measured extensively. The Kansas results (Businger et al., 1971) indicate for 
stable conditions 

q~h = 0.74 + 4.7z /L;  r  1.0 + 4 .7z /L ,  (26) 

that with the Kansas value of 0.35 for k, the M-O form Equation (24) for C 2 so 
becomes 

C2z 2/3 4.8(1 + 6 .35z /L)  
T 2 (1 + 3.7z /L) l /3  " 

(27) 

Figure 1 shows C 2 data from the 1968 Kansas experiments (Wyngaard et al., 
1971), the 1973 Minnesota experiments (Caughey et al., 1979), and experiments 
reported by Foken and Kretschmer (1990). Equation (27) fits those results fairly 
well. 

3.2. THE STABLE SURFACE-LAYER ASYMPTOTE 

Under very stable conditions (large z /L ) ,  expression (27) for C~ becomes 

C~z2/3 ~ 20 ( z /L )  2/3. (28) 
T ?  - 

Equation (25) for C 2 becomes, using Equation (26), 

C2z2/3 
u---T--. ~- 9"6(z/L)2/3" (29) 
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Exper imenta l  data on C 2 in the stable surface layer, presented  in M - O  coordinates.  

In this limit, the structure-function parameters are independent of z: 

T 2 u2, 
~ �9 2 (30) - 20L--57g/3, Cv _~ 9.6L2/3. 

A "local z-less stratification" interpretation of Equation (30) (Wyngaard, 1973) is 
that under very stable conditions, turbulent eddy sizes are restricted by stability 
and z loses significance as a length scale for the turbulence. Then the only length 
scale is L, the only temperature scale is T,, and the only velocity scale is u . ,  so 
that C2T and C~ must Scale with T2/L 2/3 and ~2/L2/3, respectively. 

5 . 3 ,  O U T E R - L A Y E R  S I M I L A R I T Y  

Let us briefly review the physics underlying the notion of local scaling of turbu- 
lence in the stably stratified boundary layer and the evidence supporting it. 

When the requisite turbulence sensors and data-acquisition systems became 
available by the 1960s, researchers studied in detail the structure of the sur- 
face layer and the transport processes within it over a wide range of stability 
conditions. Under stable conditions, the second-moment budgets showed a local 
equilibrium state in which the turbulent transport (third-moment flux divergence) 
terms were small and the production and destruction rates were in balance, as 
exhibited in Equations (17) and (18). Furthermore, the data behaved as if L rather 
than z determined the length scale of the turbulence under very stable conditions, 
as exhibited in Equation (30). These findings stood in striking contast with those 
for the unstable surface layer. 
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Numerical models that used closures rooted in this interpretation of sta- 
ble surface-layer physics appeared (Delage, 1974; Brost and Wyngaard, 1978; 
Nieuwstadt, 1984). There were indications that such models could account fairly 
well for observed behavior (Caughey et al., 1979; Nieuwstadt, 1984), although 
flow intermittency under very stable conditions (Kondo et al., 1978) and gravity- 
wave effects (de Baas and Driedonks, 1985) were not generally accounted for 
by the models. 

When the stably stratified boundary layer yielded to large-eddy simulation 
(Mason and Derbyshire, 1990), a new avenue to studying its structure and dynam- 
ics was opened. Derbyshire (1990) suggested that a key parameter is/3o/(G2f),  
where t30 is the surface buoyancy flux and G is the magnitude of the geostrophic 
wind. He argued that when/3o/(GZf) _< 0.1, approximately, the layer can exist 
in a quasi-steady state. Regarding gravity waves, Mason and Derbyshire stated 
that "The potentially nonlocal character of some wave motions does not seem to 
be strong enough to invalidate local scaling . . . .  Arguments given by Derbyshire 
(1990) show that this is to be expected if the waves are generated purely by 
turbulence, though topographic waves may of course behave differently." In the 
quasi-steady state and without topography, the Mason-Derbyshire results indicate 
broad agreement with the local-scaling hypothesis for the nocturnal boundary 
layer. 

Under the local scaling hypothesis we can write for the outer layer 

C2TA2/3 f l ( z / A ) ,  C~2v C2A~/3 
= = _ --v-- - f 2 ( z / A ) ,  (31) 

C~ Ow 2 ~- 

where f l  and f2 are functions to be determined. The vanishing significance of z 
under strong stratification implies that fl and f2 approach constants in the limit 
z / A  --~ oc, as do the flux and gradient Richardson numbers. The Brost-Wyngaard 
model gives in this stable limit 

~-- 1/6 
6.2w 2 

C 2 = fl =/~h5/6/)1/2 , 
0.54E 

C 2 = f2  - 7.~,21/3 < 1 /3 '  
//3 Pi  h 

(32) 

where Kh is the eddy diffusivity for temperature, E is twice the turbulent kinetic 
energy per unit mass, and a tilde denotes nondimensionalization with the local 
scales Ow, r,  and A. Each of these dimensionless dependent variables is a func- 
tion of z / A .  Nieuwstadt's numerical solutions show that as z / A  increases, they 
approach constant values of 

/'~'h ~ 0 . 0 8 ,  /771/2 --~ 2.9, W 2 --~ 1.7, (33) 

so that from Equation (32) 

f l -~  19, f2~-9 ,  (34) 
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19 (~-0)2 7" 
C 2 ~ ,rA2/3 , C 2 ~- 9 A2/----- ~. (35) 

These agree well with the surface-layer asymptotes in Equation (30) because the 
closure constants in the Brost-Wyngaard model were chosen so that its results 
were compatible with this stable limit. This is consistent with Sorbjan's (1986) 
hypothesis that for a given variable the forms of the M-O and outer-layer simi- 
larity functions are the same. 

We tested the predictions (35) of the local-scaling hypothesis with results 
from both large-eddy and direct numerical simulation and with experimental data. 
The LES data, from the Mason-Derbyshire (1990) study of the stably stratified 
boundary layer, were provided to us by S. Derbyshire directly in the form of the 
molecular destruction rates and other statistical parameters. They used a domain 
500 m in the direction of the geostrophic wind, 300 m wide, and 1000 m deep. 
Their numerical grid was 40 • 32 • 62 points. The direct numerical simulation 
(DNS) data are from case SA of Coleman et al. (1992), who simulated a boundary 
layer over a cooled surface with a numerical grid having 96 • 96 x 45 points. 
The flow was very low Reynolds number; GD/u ,  where the laminar Ekman- 
layer depth, D = ~ ,  was 400. For air at midlatitudes, this corresponds to 
G ~ 1 cm s 1. By contrast, this Reynolds number for an atmospheric case is 
about 400,000, 3 orders of magnitude larger. We accessed the DNS data base 
from G. Coleman and computed the statistics, averaging over horizontal planes 
and over five different times. We performed the calculations on the Cray-YMP 
at NCAR. 

The LES data indicate that C 2 approaches an asymptote of about 12 (Figure 

2), while the DNS data suggest an asymptote perhaps 50% larger. For C~, the 
LES data show an asymptote of about 7 (Figure 3), while the DNS asymptote is 
again about 50% larger. This difference between the LES and DNS results could 
be due to the small Reynolds number of the DNS. Nonetheless, these asymptotes 
agree fairly well with those of Equation (35). 

The experimental data were taken at 0.3 < z / h  < 0.75 in the 1973 Minnesota 
experiment (Caughey et al.. 1979). Unfortunately, only ~ data are available; the 
lateral stress vw was contaminated by balloon motion. Thus, in calculating the 
local scaling parameter r we neglected the contribution of ~--~, which is difficult 
to justify near h. The Minnesota C2T and Cv 2 data so scaled are plotted in Figures 
4 and 5. respectively. In general they agree well with the local-scaling results 
Equation (35) and the results from the numerical simulations. 
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Fig. 2. C~- data from numerical simulations of the nocturnal boundary layer, presented in 
local-scaling coordinates. - - ,  Mason-Derbyshire LES; . . . . .  , Coleman et al. DNS. 
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Fig. 3. C~ data from numerical simulations of the nocturnal boundary layer, presented in 
local-scaling coordinates. - - ,  Mason-Derbyshire LES; . . . . .  , Coleman et al. DNS. 
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Fig. 4. A test of the local-scaling prediction that the dimensionless C~ approaches a constant. 
The Minnesota data are averages over a few measurements; the symbol represents the mean and 
the bracket indicates plus and minus one standard error. 
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A test of the local-scaling prediction that the dimensionless G '2 approaches a constant. 

4. Vertical Profiles 

From Equations (30) and (35) we have similarity relations for the vertical profiles 
of  C 2 and C 2 over most of the stable boundary layer. From the outer edge of 
the surface layer through the outer layer we can write 

2/3 [0-~ ] 8/3 C~(z) ~ 9 ] Ow (36) C2(z) ~ 20 k 7- 2 , 
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The key ingredients in these similarity relations are the vertical profiles of kine- 
matic stress magnitude 7-(z) and temperature flux O--w(z). The C 2 profile depends 
on both T(Z) and Ow(z); their effects are opposite, and we shall argue later that 
their balance is so delicate that C 2 can either increase or decrease with height. 
By contrast, the profile of C 2 depends only on the ~ww profile and we expect both 
to decrease monotonically with height. Let us now consider the behavior of the 
7- and Ow profiles in more detail. 

4.1. IDEAL (QUASI-STEADY, HORIZONTALLY HOMOGENEOUS) CONDITIONS 

In the simplest quasi-steady case with horizontal homogeneity and z-independent 
geostrophic wind components Ug and Vg, the equations for the evolution of the 
vertical gradients of mean wind and temperature reduce to 

02~--~ _ f OV, OaS-~ _ f OU 
Oz = O z '  

(37) 

0 2 m  
Oz ~ Ow = 0. (38) 

With the boundary conditions Ow = Ows at z = 0 and Ow = 0 at z = h, Equation 
(38) yields the steady-state Ow profile 

Ow = Ows(1 - z / h ) .  (39) 

Nieuwstadt (1984) showed also that a stress closure based on local scaling gives 
a solution of Equation (37) whose T profile is 

2 7- = u.(1 - z/h)  3/2. (40) 

It follows from Equation (36) that the corresponding profiles of C 2 and C~ from 
the outer edge of the surface layer through the outer layer are 

2 

C 2 ~ 20L--~g/3 (1 - z /h)  -1/3, C 2 ~ 9L--~/3 (1 - z/h)  2/3. (41) 

Equation (41) predicts that C 2 increases with height, but the observations of 
Caughey et al. (1979) and Cuijpers and Koshiek (1989) show that it decreases. 
The prediction of Equation (41) of an increasing C 2 profile results from the 
balance between the competing effects of Ow, which causes C 2 to decrease with 
height, and r,  which causes it to increase. Let us now examine other factors that 
can influence the shapes of the Ow and r profiles and, hence, change this balance. 

4.2. DEPARTURES FROM IDEAL CONDITIONS 

Since the stress and temperature flux profiles enter the mean balances of horizon- 
tal momentum and potential temperature, respectively, their shapes can depend on 
the many influences on these balances that appear under less than ideal microme- 
teorological conditions. Let us consider a few of these influences. For simplicity 
we shall investigate them in isolation - i.e., one at a time. 
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4.2.1. Time Changes 
During its early phases, the nocturnal PBL must be unsteady. Near sundown the 
changing surface energy balance causes the surface heat flux to change from 
positive to negative; in a horizontally homogeneous case, the mean potential 
temperature gradient in the air above must then evolve according to 

0 0 0  0207  
+ - -  - 0. (42) 

Ot Oz Oz 2 

In the initial stages of evolution, O0/Oz grows in time, so that 020-~/Oz 2 is 
negative. Let us now estimate the departures from a linear Ow profile that this 
causes. 

Let us model the Ow profile in the evolving nocturnal PBL as 

O w = O w s ( 1 - h ) + 4 r S - O - - W h ( 1 - h ) ,  (43) 

where 60w is the midlayer departure from a linear profile. We scale the terms in 
the mean temperature evolution equation as 

Oz 2 - h 2 ' 0--7 0--7 "" ~ 0--7' (44) 

where 7-g is a time scale of the evolution of the mean potential temperature 
gradient. Thus, the balance Equation (42) is 

60w 1 O0 h 2 hAO 
. . . .  (45) 
Ow8 7-90z 80w8 87-gOwn' 

where A denotes the change across the boundary layer. For typical values of 
h = 200 m, AO = 5 K, 7-9 = 12 h, and 0--w8 = -0 .01  m K s -1, Equation (45) 
yields 60w/Ow, ~- -1/4 .  Then to a good approximation, the Ow profile (43) 
becomes in this case 

__  __  z , -  z ( 1 _ ~ ) = _ 0 _ ~  s ~)2  O w ~ O w s ( 1 - - ~ j  -Ows-~ ( 1 -  . (46) 

The data on Ow from the rapidly evolving, early-evening boundary layers in the 
Minnesota experiment (Caughey et al., 1979) are fit well by Equation (46). 

It appears that this time-change-induced departure from linearity of the Ow 
profile can have a strong effect on C~. Consider, for example, a situation where 
7- behaves as (i - z/h) 3/a, as in Equation (40). Then Equation (36) shows that 
a linear 0---w profile gives C 2 increasing as (1 - z/h) -1/3, while a parabolic Ow 
profile yields C 2 decreasing as (t - z/h) -7/3. Put another way, for a given 
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r profile, Equation (36) shows that the ratio of C 2 for linear and parabolic 
Ow profiles varies as (1 - z/h) -8/3, which translates to an order-of-magnitude 
difference in C~ values at z /h  ~ 0.6. 

Under unsteady but horizontally homogeneous conditions, the z-derivatives 
of mean horizontal momentum equations are 

02~-~ _ f OV 0 0 U  02~-W OU 0 0 V  (47) 
Oz Ot Oz' Oz 2 - - f  Oz Ot Oz" 

We can define a time scale r8 of the evolution of mean shear in analogy with 
"r 9, the time scale for evolution of the mean temperature gradient in Equation 
(44). We see from Equation (47) that if f% ~ 1, the evolving mean shear can 
have a significant effect on the stress profile curvature. Since the time scale for 
adjustment of the mean wind profiles to the decaying turbulent stress divergence 
in the late afternoon and early evening is I / f ,  it appears that fr8 could be of 
order 1 at those times. 

4.2.2. Baroclinity 
Let the flow be steady and horizontally homogeneous except for mean tem- 
perature gradients in x and ft. The vertical gradients of U a and V o are given 
hydrostatically by 

OUg_ g OT OVg_ g OT (48) 
Oz f T  Oy' Oz f T  Ox" 

The mean-shear equations are now 

Oz 2 - -  f Oz Oz J ' Oz 2 - f ---~z + ---~z J " (49) 

The terms on the fight side represent the rate of generation of mean wind shear 
by Coriolis forces and baroclinity, respectively; in steady conditions, they balance 
the stress curvature. 

The mean potential temperature gradient balance now becomes 

02-w-O f T  { OV OUg OU OVg "~ 
(50) 

Oz 2 g ~, Oz Oz Oz Oz / 

The right side represents the rate of generation of vertical gradients of potential 
temperature by the interaction of mean wind shear and the horizontal temperature 
gradient, which has been written in terms of the baroclinity through Equation 
(48). 

Equation (49) shows that the stress profile curvature will be significantly mod- 
ified by baroclinity if the geostrophic wind shear is an appreciable fraction of the 
wind shear. According to Equation (48), in midlatitudes a horizontal temperature 
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gradient of 3 K p e r  100 km, not an unusually large value, causes a geostrophic 
wind shear of i0 m s -1 per km. This is comparable to the wind shear, so we 
conclude that typical magnitudes of baroclinity can indeed have a substantial 
effect on the curvature of the stress profile. 

Equation (50) shows that baroclinity also induces curvature of the Ow profile. 
Let us estimate the geostrophic wind shear required to generate a significant 
departure from a linear profile. Denoting the magnitude of the mean wind as 
S, we use Equation (43) as a model of the Ow profile and scale the terms in 

Equation (50) as: 

85w0 f T  A S  AG 
h - - - ~ -  g T h (51) 

It follows that the fractional change in midlayer temperature flux with respect to 
a linear profile is 

(SwO f T  z2SAG 
- _ . ( 5 2 )  

Ows/2 49 Ow~ 

For Ow8 = -0.01 m s -1 K and A S A G  = 10 m 2 s -2, Equation (52) gives a 70% 
change in the mid-layer temperature flux. We conclude that moderate baroclinity 
can appreciably change the Ow profile. 

4.2.3. Terrain Slope 
Consider a nocturnal PBL that is homogeneous in planes parallel to a land surface 
that slopes at an angle fl to the horizontal. Then the steady mean wind gradient 
equations in coordinates aligned with the sloping terrain are (Brost and Wyngaard, 
1978) 

02~u _ f OV g O0 
oz2 r oz  l l c~ % 

_ f o u  + g o o  
Oz 2 - Oz T - ~ z  ] f l ] s i nT .  (53) 

Here "~ is the angle, measured counterclockwise, from the fall-line vector (the 
vector perpendicular to the contour lines and pointing down the slope) to the 
:c-axis. Let us use Equation (53) to estimate the threshold terrain slope that gives 
a drainage term that appreciably changes the stress profile. We can do this simply 
by equating the magnitudes of the drainage and Coriolis terms. This yields 

f T A S  
/ 3~  gA----- ~ .  (54) 

For A S  = 10 m s -1 and AO = 5 K, this gives/3 ~ 1.5 x 10 -3, a terrain slope 
of 1.5 parts per thousand. This is the slope of the unusually flat Minnesota site 
(Caughey et al., 1979). We conclude that terrain-slope effects on the stress profile 
are apt to be significant. 
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4.2.4. Internal Gravity Waves 
De Baas and Driedonks (1985) observed nocturnal PBL structure from the 200-m 
tower at Cabauw, The Netherlands. On occasion they detected Kelvin-Helmholtz 
waves with frequencies in the range 3 • 10 -3 Hz to 2 x 10 -3 Hz that persisted as 
quasi-steady oscillations for as long as one hour without breaking into turbulence. 
Their presence was seen not only in the time series of flucturations, but also in 
the increase of the vertical velocity and temperature variance with height. 

Einaudi and Finnigan (1981) analyzed a nearly monochromatic wave of 240 s 
period detected in a weakly stable, nocturnal boundary layer at the Boulder Atmo- 
spheric Observatory. They found that linear wave theory described the wave 
properties and the vertical structure of the w and 0 fluctuations well. In a sec- 
ond paper (Finnigan and Einaudi, 1981) they showed that while the wave-like 
fluctuations in Reynolds stress were larger than the background turbulent stress 
levels, they were nearly in quadrature with the gradients of wave velocity, so 
they did not extract energy from the wave at an appreciable rate; as a result, the 
wave could persist in a quasi-steady state. They found that the turbulence time 
scale was longer than the wave period, however, so the turbulence was not in 
equilibrium with the large, wave-frequency fluctuations in shear production. 

Coulter (1990) found that the turbulence levels in the nocturnal PBL over 
gently rolling terrain in northeastern Illinois were quite different on consecutive 
nights with similar mean conditions. Turbulence levels were low on the first 
night, but during the second night the signals showed evidence of waves of 2-min 
period that grew and extended beyond the PBL depth at approximately 60-min 
intervals. The records showed clearly defined active and inactive periods, with the 
differences in turbulence parameters cr w, N,  and e ranging from a factor of 2 to 
4 between them. Coulter interpreted the 2-min periodicities as Kelvin-Helmholtz 
waves made detectable to the acoustic sounder through their modulation of the 
local turbulence structure. He inferred that they grew rapidly in amplitude with 
time until they overturned and broke into turbulence that temporarily erased the 
wind shear and temperature gradient. Within about 30 minutes, the cycle was 
renewed. 

These studies indicate that the nocturnal PBL can have strong gravity-wave 
activity that modifies its turbulence structure. In view of the Finnigan-Einaudi 
finding that the time scales of the wave and the turbulence can be of the same 
order, we must conclude that the local-scaling relations for structure-function 
parameters could be modified as well. For this reason, in his analysis Nieuwstadt 
(1984) excluded cases with strong gravity waves by including only those for 
which w 2 decreased continuously with height. He then used a high-pass filter on 
the time series, as did Caughey et al. (1979). 

4.3. IMPLICATIONS FOR REMOTE SENSING 

We have argued that the sensitivity of structure-function parameter profiles in the 
stable PBL to flow unsteadiness, baroclinity, terrain slope, and internal gravity 
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waves precludes the universality of these profiles in the typical nocturnal case. 
This is consistent with the findings of Cuijpers and Koshiek (1988). Their mea- 
sured 6 '2 profiles in the nocturnal boundary layer were not fit well by the steady 
state models of Nieuwstadt (1984, 1985) or Sorbjan (1986). The numerical mod- 
el of Duynkerke and Driedonks (1987), which uses closures similar to those of 
Nieawstadt but allows for time evolution of the boundary layer, gave the best 
results. 

At the same time, the similarity expressions (36) that relate the structure- 
function parameters to local values of turbulent stress and temperature flux are 
consistent with observations, LES results, and model predictions. Thus, the evi- 
dence suggests that the similarity relations coupling the structure-function param- 
eters to the turbulence are more robust than similarity relations for the vertical 
profiles of structure-function parameters. We interpret this as a characteristic 
of the turbulence dynamics underlying the second-moment Equations (13)-(16); 
evidently the spatial and temporal scales of that turbulence are sufficiently small 
that this dynamics is not substantially affected by slower and larger-scale changes 
in the background conditions. 

This has interesting implications for remote sensing. From the second of 
Equation (36), we see that a measurement of C 2 yields the temperature flux 
directly: 

0.037T 2 3 /2  o w -  (c;) (55) 

A measurement of C 2 as well then yields the stress magnitude from the first of 
Equation (36): 

0.055T (C2) 2 
7"- -  k g  ( 2"~1/2 " (56) 

Neff and Coulter (1986) and Gossard (1992) have discussed the measurement of 
structure-parameter profiles with ground-based remote sensors. 

If the measured C2r and C 2 have errors e(C 2) and e(Cv2), then from Equations 
(55) and (56) the errors in the inferred fluxes are, to first order, 

e(wO) , 3 e(C 2) e(r) 2e(C 2) 1 e(C 2) (57) 

2 : 2 

showing that the technique is considerably more sensitive to errors in C 2 than 
i n  6 , 2  . 

5. Conclusion 

The local-scaling hypothesis holds that over most of the nocturnal boundary lay- 
er, the turbulence is near its critical Ricardson number and its length, velocity, 
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and temperature scales are determined by the local stress and buoyancy flux. Data 
from several field experiments and both direct and large-eddy simulations show 
that the structure-function parameters for temperature and velocity are consistent 
with local scaling. The vertical profiles of the structure-function parameters are 
apt to be highly variable because of the sensitivity of the stress and temperature 
flux profiles to unsteadiness of the flow, baroclinity, terrain slope, and gravity 
waves. The local scaling result does offer the prospect that the stress and temper- 
ature flux profiles can be inferred from measurements of the structure-function 
parameter profiles, however. 

Acknowledgments 

The authors are grateful to Drs. R J. Mason and S. H. Derbyshire for providing 
us with their LES data; to Dr. G. Coleman for providing his DNS data; to 
Drs. E. Andreas, D. Thomson, and J. Peltier for helpful discussions; and to 
the Geophysical Turbulence Program of the National Center for Atmospheric 
Research for providing computer time. This work was supported by the U.S. 
Army Research Office. 

References 

Blackadar, A. K.: 1957, 'Boundary-Layer Wind Maxima and Their Significance for the Growth of 
Nocturnal Inversions', Bull. Amer. Meteorol. Soc. 38, 283-290. 

Brost, R. A. and Wyngaard, J. C.: 1978, 'A Model Study of the Stably Stratified Planetary Boundary 
Layer', J. Atmos. Sci. 35, 1427-1440. 

Burk, S. D.: 1979, 'Refractive Index Structure Parameters: Time-Dependent Calculations Using a 
Numerical Boundary-Layer Model', J. Appl. Meteorol. 19, 562-576. 

Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, 'Flux-Profile Relationships 
in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 181-189. 

Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, Turbulence in the Evolving Stable 
Boundary Layer', J. Atmos. Sci. 36, 1041-1052. 

Clarke, R. H.: 1970, 'Observational Studies in the Atmospheric Boundary Layer', Quart. J. Roy. 
Meteorol. Soc. 96, 91-114. 

Coleman, G. N., Ferziger, J. H., and Spalart, P. R.: 1992, 'Direct Simulation of the Stably Stratified 
Turbulent Ekman Layer', J. Fluid Mech. 244, 667-690. 

Coulter, R. L.: 1990, 'A Case Study of Turbulence in the Stable Nocturnal Boundary Layer', 
Boundary-Layer Meteorol. 52, 75-91. 

Cuijpers, J. W. M. and Koshiek, W.: 1989, 'Vertical Profiles of the Structure Parameter of Tem- 
perature in the Stable, Nocturnal Boundary Layer', Boundary-Layer Meteorol. 47, 111-129. 

Deardorff, J. W.: 1972, 'Rate of Growth of the Nocturnal Boundary Layer', in H. W. Church and 
R. E. Luna (eds.), Proceeding of the Symposium on Air Pollution, Turbulence and Diffusion, 
December, 1971, Sandia Laboratories, Albuquerque, NM. 

de Baas, A. F. and Driedonks, A. G. M.: 1985, 'Internal Gravity Waves in a Stably Stratified 
Boundary Layer', Boundary-Layer Meteorol. 31, 303-323. 

Delage, Y.: 1974, 'A Numerical Study of the Nocturnal Atmospheric Boundary Layer', Quart. J. 
Roy. Meteorol. Soc. 100, 351-364. 

Derbyshire, S. H.: 1990, 'Nieuwstadt's Stable Boundary Layer Revisited', Quart. J. Roy. Meteorol. 
Soc. 116, 127-158. 



296 J. WYNGAARD AND B. KOSOVIC 

EinaudL F. and Finnigan. J. J.: 1981, 'The Interaction between an Internal Gravity Wave and the 
Planetary Boundary Layer. Part I: The Linear Analysis', Quart. J. Roy. Meteorol. Soc. 107, 
793-806. 

Finnigan. J. J. and Einaudi. E: 1981. 'The Interaction between an Internal Gravity Wave and the 
Planetary Boundary Layer. Part II: Effect of the Wave on the Turbulence Structure', Quart. J. 
Roy Meteorol. Soc. 107. 807-832. 

Foken. T. and Kretschmer, D.: 1990. 'Stability Dependence of the Temperature Structure Parame- 
ter . Boundary-Layer Meteorol. 53. 185-189. 

Gossard. E. E.: 1988, 'Measuring Gradients of Meteorological Properties in Elevated Layers with 
a Surface-Based Doppler Radar'. Radio Science 23, 625-639. 

Gossard, E. E.: [992. 'Relationship of Height Gradients of Passive Atmospheric Properties to their 
Variances: Applications to the Ground-Based Remote Sensing of Profiles, NOAA Technical 
Report ERL 448-WPL 64'. Available from NTIS. 

Kaimal, J. C.: 1973. 'Turbulence Spectra, Length Scales and Structure Parameters in the Stable 
Surface Laver ~. Boundary-Layer Meteorol. 4, 289-309. 

Kondo, J.. Kanechika, O.. and Yasuda. N.: 1978, 'Heat and Momentum Transfers under Strong 
Stability in the Atmospheric Surface Layer', J. Atmos. Sci. 35, 1012-1021. 

Lumley, J. Lo= and Panofsky, H. A.: 1964. The Structure of Atmospheric Turbulence, Interscience, 
New York. 239 pp. 

Mason, P. L, and Derbyshire, S. H." 1990. 'Large-Eddy Simulation of the Stably Stratified Atmo- 
spheric Boundary Layer'. Boundary-Layer Meteorol. 53, 117-162. 

McAllister. L. G.. Pollard. L R.. Mahoney, A. R., and Shaw, P. J. R.: 1969, 'Acoustic Sounding - 
A New Approach to the Study of Atmospheric Structure', Proc. IEEE 57, 579-587. 

Neff. W. D.. and Coulter. R. L.: 1986. 'Acoustic Remote Sensing', in D. H. Lenschow (ed.), 
Probing the Atmospheric Boundary Layer, Amer. Meteorol. Soc., Boston, pp. 201-239. 

Nieuwstadt. E T. M.: 1984. ~ Turbulent Structure of the Stable, Nocturnal Boundary Layer', 
J. Atmos. Sci. 41. 2202-2216. 

Nieuwstadt. F. T. M.: 1985. 'A Model for the Stationary, Stable Boundary Layer', in J. C. R. 
Hunt (ed.) Turbulence and Diffusion in Stable Environments, Clarendon Press, Oxford, pp. 
149-t79. 

Panofsky, H. A. and Dutton. J. A.: 1984. Atmopheric Turbulence, Wiley, New York, 397 pp. 
Sorbjan, Z.: 1986. 'On Similarity in the Atmospheric Boundary Layer', Boundary-Layer Meteorol. 

34. 2430-2432. 
Tatarskii. V. I.: 1971. The Effect of the Turbulent Atmosphere on Wave Propagation, Kefer Press, 

Jerusalem, 472 pp. [NTIS TT 68-50464]. 
Tennekes, H. and Lumley, J= L.: 1972, A First Course in Turbulence, MIT Press, Cambridge, 300 

PP. 
W-yngaard, J. C.: 1973, 'On Surface-Layer Turbulence', in D. A. Haugen (ed.), Workshop on 

Micrometeorology, Amer. Meteornl. Soc., Boston, 392 pp. 
Wyngaard, J. C.: 1975, 'Modeling the Planetary Boundary Layer - Extension to the Stable Case', 

Boundary-Layer Meteorol. 9, 441-460. 
Wyngaard, J. C.: 1988, 'Structure of the PBL', in A. Venkatram and J. Wyngaard (eds.), Lectures 

on Air Pollution Modeling, Amer. Meteorol. Soc., Boston, 390 pp. 
Wyngaard, J. C.: 1992, 'Atmospheric Turbulence', Ann. Rev. Fluid Mech. 24, 205-233. 
Wyngaard, J. C. and Cot6, O. R.: 1971, 'The Budgets of Turbulent Kinetic Energy and Temperature 

Variance in the Atmospheric Surface Layer', J. Atmos. Sci. 28, 190-201. 
Wyngaard, J. C., Izumi, Y., and Collins, S. A. Jr.: 1971, 'Behavior of the Refractive Index Structure 

Parameter Near the Ground', J. Opt. Soc. Amer. 61, 1646-1650. 
Wyngaard, J. C., Pennell, W. T., Lenschow, D. H., and LeMone, M. A.: 1978, 'The Temperature- 

Humidity Covariance Budget in the Convective Boundary Layer', J. Atmos. Sci. 35, 47-58. 


