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Abstract

Karman-type nonlinear large deflection equations are derived according 1o the
Reddy’s higher-order shear deformation plate theory and used in the thermal
postbuckling analysis. The effects of initial geometric imperfections of the plate are
included in the present study which also includes the thermal effects. Simply supported,
symmetric cross-plv laminated plates subjected to uniform or nonuniform parabolic
temperature distribution are considered. The analysis uses « mixed Galerkin-
perturbation technique tfo determine thermal buckling loads and postbuckling
equilibrium paths. The effects plaved by transverse shear deformation, plate aspect
ratio, total mumber of plies, thermal load ratio and initial geometric imperfections are

also studied.

Key words composite laminated plate, higher-order shear deformation plate

theory. thermal postbuckling. Galerkin-perturbation technique

I. Introduction

Composite laminated plates are widely used in the nuclear. petrochemical and aciuspace
industries. These plates may have significant and unavoidable initial geometric imperfections.
Due to boundary constraints. varying temperature environments typically induce stresses, with
ensuing buckling. Therefore, there is a need to understand the thermal buckling and
postbuckling behavior of imperfect composite laminated plates.

Following the assumptions of von Karman. Stavsky (1963)" derived a pair of
simultaneous 4th-order differential equations for the deflection W and the stress function F,
governing the large deformation behavior of thin composite laminated plates. The formulation
was based on the classical laminated plate theory and including thermal effects. This work was
extended to study the thermal postbuckling of perfect and imperfect. thin composite laminated
plates subjected to a uniform or nonuniform temperature distribution by Shen and Lin (1995)™,
using a mixed Galerkin-perturbation technique.

Recent developments in the analysis of composite laminated plates point out that plate
thickness has more pronounced effects on the behavior of composite plates than on the
isotrovpic laminates. Also, due to low transverse shear moduli relative to the in-plane Young’s
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moduli, transverse shear deformations are even more pronounced in composite laminates. Thus
the analysis of laminated plates requires the use of shear deformation piate théory.

In the present work the Karman-type nonlinear large deflection equations are derived
according to the Reddy’s higher-order shear deformation plate theory and including thermal
effects. To illustrate the accuracy of the present theory, a thermal postbuckling analysis is
presented for simply supported, perfect and imperfect, symmetrié cross-ply laminated plates
subjected to a uniform or nonuniform parabolic temperatﬁre distribution. The analysis uses a
mixed Galerkin-perturbation technique to determine the required thermal buckling loads and
postbuckling equilibrium paths. The material properties are assumed to be independent of
temperature. The initial geometric imperfection of the plate is taken into account but, for
simplicity, its form is assumed to be identical to the buckling mode of the plate.

II. Karman-Type Equations

Consider a rectangular plate of length @, width b and thickness ¢ which consists of N plies
of any kind, is subjeéted to mechanical or thermal loads. Let 7, ¥ and W be the plate
displacements parallel to a right-hand set of axes (X, ¥, Z), where X is longitudinal and Z
is perpendicular to the plate. @, and @, are the mid-plane rotations of the normals about the
Y and X axes, respectively. Denoting the initial deflection by W*(X, V), let W(X, V)
be the additional deflection and F(X, V) be the stress function for the stress resultants, so
that

N1=ans Nz=ﬁ,=,, Nﬁ—__—F!ﬂ (2-1)

Following the Reddy's higher-order shear deformation plate theory (see Reddy (1984%),
we have the displacement field

m=U0+Z(@.—4(Z/1)*(P.+oW/0X)/3’
n=F+Z2(Q,—a(Z/ty2(F,+0W/3Y ) /3], uy=W } .2

The von Kérman strains associated with the displacement field in Eq. (2.2) are
a=el+Z(k}+2%%), o= +Z(k]+2%}), =0

} (2.3)
er=elH 2%, (=84 2%, =i+ Z (k) +2%%)

where

=30 /aX + (W /08X )?/24 9W /80X ) (8W*/8X)
=0, /0X, ki=—(4/3*)(8@./0X +0*W /3 X*)
0 =3V /aY 4 (8W /Y )/ 24 (8W /3Y ) (3W*/3Y )
wi=al,/aY , ki=—(4/3t*)(8F,/0Y +0*W /3Y?)
S=F,+oW /oY, wi=—(4/1*)(W,+oW/3Y) g
o=, oW /oX, «i=—(a/12) (T, +oW /0 X) (2.4)
=30 /8Y +8V /0 X +(3W /0.X ) (aW /9Y )

+(8W /80X ) (9W*/3Y ) + (W /8Y ) (aW*/aX )
xS=0W 0V +a,/0X
o= —(4/32)(8W./0Y +o,/0 X +20°W /aXoY)




Karman Equatjons of Plate and Applications 1139

The constitutive relationships between the stress resultants ¥,, M;, P;, Q, and R; and
the middle surface strains and curvatures are

N A B E e° N7 Q A D (0
) ] =|B D F| [« |+ |W = { ] (2.5a,b)
p EF Hi lw pr ) (R DF) %]
where the stress resultants N,, M,, P;, Q; and R:are defined by
ts2
(N:, M., F,):S o1, Z, Z9dZ  (i=1, 2. 6)
e (2.6a~¢)

tr ts2
(QZ’ R:’-) =>\72_L;4(1’Zz)d25 (Ql’Rl)—__S-uz(}s(l'aZZ)dZ

and Aqj, By etc., are the plate stiffnesses, defined by

(Ai./s B‘J” D4j$ Eii’ F"J’: HU)

tk = ;. .
=ZSf (foh‘(l’ Z, Z*, Z%, Z¢, Z%)dZ (i, j==1, 2, 6)
k=1 k-1 : (2_7a,b)
fk 3 N . 9 s . . 3
(Aiss Dy, F!j,‘=28 (Qi)e(1, 2%, Z*)dZ (1,j=4,5)
k=1 "fpx
where §,; are the transformed elastic constants, defined by
rQ“ \ r T 925t 5t 1cs? | rQ -
~ y s , 1
o (rgt st c2st ~4c2s?
Q. st 20%8? ct 4cts? Q1 . )
— = L (2.8a
Q16 %5 es¥—c3s =—cst —2cs{c*—s?) Q. '
Q:6 rst pls—cs? —c%s 2¢5(ct—s*) 0
Q“‘ [ c2s? L 9c2st c2g? (cr=sH? A\ 88 )
and
A 2 2
Que © Qi
Qs | = —cs cs (2.8b)
gud Ls )10
where
El . Eq _ vk
Q“-—_(l"ﬁz?"zx) » Qu= (1=vuaver) Quz (1 ==11701) (2.8¢)
Qu=GC1ry Qse=GCG1zy Qee=0G1z
and

c=co0sf, s=sinf (2.8d)

where = lamination angle with respect to the plate X-axis.
In Eq. (2.5a) the thermal forces, moments and higher-order moments are defined by
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NI, MI, PI t 4 |
NT, M1, P} ]:2&" . 2, zs>[A T(X,Y,2)dZ
N,,, M?,,, ng k=1 "fps A,, '
and
ST Mz PT
ST, MT, Pz,
in Eqg. (2.9a)
A, Qu G Qu ¢t 5
4 - - — Q1
1y ] == 1@z @iz Qs ] [ 52 c* } [ ]
Ay Q16 QZF- Qoo 28 =2C§ G2

in which a1 and a,. are thermal expansion coefficients for a single ply.
Eq. (2.5a) can be written in the alternative form

e® Ax* B* E* N*
‘M*] = { —{B%)T D* (F¥)T } {K”J
p* —(E*y? F* H* K2

N*=N—N7, M*=M—M?,

and the reduced stiffness matrices are defined by

where
p*=P —PT
A*=A-",

B*=—A"'B, D¥*=D~BA"'B, E¥*=—A"'E

F*=F—EA-'B, H*=H—EA"'E }

(2.9a)

(2.9b)

(2.10)

(2,11}

(2.12a)

(2,12b)

It is noted that, whereas A%, D* and H* are symmetric matrices, B%, E* and F* are not

necessarily so.
Substituting Egs. (2.1) and (2. 11) into equilibrium equations

?.IY_‘_ _6_‘7!3_ ON +aN2
X % Bx
8Q, , 0Q, 4J08RK:  OR, 4 [0:P, 0% P,
ax Ty B [ ax tar |t [GX” 25557 Tave.
0
+ax[ o (W) N, (W+W*)]

;
= 7 [N[, 3% —(W+W* 4+ N,

aM[ aMG
ax T

M, aMz

GX e

4 [8Py 3P,
~Qut Ri— | g+ o =

_fi—‘ GPB aP: .
Q2+ T s laX +W]_

o7 (W47 |+g=0

a Pz]

(2.13a~c¢€)



Karman Equations of Plate and Applications 1141

In addition, use is made of the compatibility relationship

6261 +az€g 626?, —[ W -]z oW 62W+ [az‘W* ]2 3w LAl

av® "8X* 9XaY. LaXov | Toxr ave ' laxev | "3xT oyt
_ W W
IXT 3Y* (2.14)

then Karman-type nonlinear large deflection equations can be written as

Li(W)=Ly(@) =Ly (F)) + L1(F) = Lig(NT) = L1 (M7}

=L(W+W*, F)+q - (2.15)
Lot(F) + Lool @) + Loy (@) — Lo (W) — ~L:(NT)=—L(W+2W*, W)/2 (2.16)
La(W)+L (@) +Ly(@,)+L ((F) —L ((NT)—L o(ST)=0 (2.17)
L4;(W)+L4z(§l'=)+L43(W,)+L44(F) —L45(A71)—L45(ST):—;0 (2,18)

in which the operators are as follow:
Ln( d=—] F1:5 A (FYA4FY, b FadaFe, )2 )
11 / e ”aX" 6 )_6')_(_3_6—17 ( 2+ 1+4 ‘5/ 3X23Y?
+2 (F?8+F 2)6X6Y3+F“ 5‘}”]
Lin( )=| D}, —2 px x, 9°
() [ TS F‘-‘JaX* +[ 3D ‘;t” T2 sy

4 * * 9° * 4 * }——-—as
+[\D o 2D%) ——— P (F12+2Faa)_-‘.5)?6?2+[0”1——3~ﬁ‘ ¢ lov3

Ll )=[ L F;‘,,]aX3 [(D —‘—SD?B}—*FJ,%T(F 1 F2F ¥ S)JGXSGV

+ :aD§6~T?;—(F*§z-'rzch) svaT+

.t - g - p
L )=B?1w+(233‘e—/¥551)G—XC‘%T;'?“(B‘H‘FB%—?I}% Syvizve

o' 5"
(2 Bu"‘Bsz WT B, * 377

Lt N7 )=§§?“\B* '\/T~~B:"1NT~'-B,.:]V:;/ (B*s/\’g A KE \’€+B'fsf\’§y)

v aX ’2
+ 7 \B}’oNT+B JNTEBE,NTH
Liat M7y =0 (M ) i (M) 4 (M)
Loy ( )=.A;*25%-2A§‘.;——0%?—1—(2A,, Afe)ax{”j} —nA7 M""V
+dr, L

ave
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4 nr'y sl * 4 * * 6.3
La( )=[ Bti=—g=F ]aw'*[tBn-B-ﬂ-—gfﬂEﬂ'E”) 8X79Y

+[ (B¥i—B%) —~§%§“(E'f1”Er°>]_(3—_}_(a'§_lﬁ+[ e 1 ]8?/33

L ( ):[ BYe——rs- ‘31‘2 415]?9%(“““'[ se)" E3s Eaa)] 532
+{ (st—viz)‘“Ej‘z‘(‘tﬂfv‘Efzj’]W(aaiPT'k[ g B }aﬁy—

4

‘ 4 T e 8 - 9 - K
Loy )=v—37“‘[ QLBTT(Zli?s—BfI)anaY ~(E%i+E ,z—ZEfs)W

e 8 g O
+(2b fa“"jtrl,\’ aXayls +}‘"f2 i—)‘y"‘]

L:y (N7 )~-—;(——(A* NT4 A%NT+.4%,NT, ) — axw 0 AZ NI+ ANT

“Atevzy + (,—1 1.: A‘\'gszTA Ngy)

Laré ?=[A=«-“Du L st =Dt LF |2y
T_{ {F?l;ﬁf'm"’a;%'k[(}? ) g ']a‘(a;a}’

., VN 83
"IL'[ (—F ;1+2P tﬂ‘ r)t?b(HT"-*—jH“" )] OXGYZ

. 8 JGF ’ * * b >
Lo ,?'—'—‘[Ass_t'TDss""F' 5517 Hi1T g = Fht 914 “]aXZ
4 o
—_[ S UM Pl + rf‘ Tﬁ}axa}’ :
e _ S e, 16 A
—[D"ﬁ_ e LT i"é“]a-‘/z

J 16 + * ‘ * n * -——az
ng( )=[14.15_;%‘DH+‘L1—[‘5.!_[ 16 ’F16J—]4 61)+ 0[4 18]aX2

82
~[ (D4 D)~ (FtitFikaFe + G (H ot H ) [y

af{

[ Dtm e FrAFr) i H L ]
Lay( }5422€: )

La N = R — St N TR = REINTH OB
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¥ 4 7
B ’z‘z FiONT ] a}’[(}} "_[' N+ (B —ar Bl NT
4
+( Blo=—tEtONT, |
Loa(S7) =% (ST) +=~(ST,)
0 9X \°* aY -
La V=] A= 2Dt BF oo+ A= FDut 7P |55
3t2[(F18 —St—zﬂlﬁ)aXs I:(FI/I-A )
4 ¥ 4 ofrx 4 a°
—'Eiz_( +7HM)] axzay [(F26+21’52) 72 fu} axXave
* 4 * 63
+(Fzz"' 22 H z)é‘?‘s‘]
L Y=La( )
« 8 N 16 9*
LM( )=[Au Du“l‘ Fu] [ 66—"_3?2_ ‘n*+FH§B]W
* * 62
| Dte=gr (F1etF1) e Hi o
PE
[ D Pt |
Lo Y=L, {
Lo(NTy =53] (Blo=—tr E1ONT+(Bly—E 1) V]
3 _— 4
+1 Blem—r F)NT |57 S| Bri— s ELINT
F(Bli= g BN ( Brom B2 VT, |
Lip(ST)= (S ) T ay sH
L \,—_-_al__ or ., @& 3% +6’ 8*
" /T aX* 8T T T3XaY aXav av® ox’ )
(2.19)

It is noted that these plate equations show thermal coupling as well as the interactive of

stretching and bending.

HHI. Thermal Postbuckling of Symmetric Cross-ply Plates

Here we consider the thermal postbuckling of simply supported, symmetric cross-ply shear-

deformable laminated plates subjected to uniform or nonuniform parabolic temperature

loading. For such plates the following plate stiffnesses are identically zero:
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Byj=F;=0, Ap=Aiy=Dyy=D,;=F\=F ;=H= st-o} 51
(3.1
A45~D45 Fie=0

and the out-of plane loads g is taken to be zero.
The in-plane temperature variation is assumed as

(X, VYV, Z)=T,+T;1 - (2 =b)/b)?] (3.2)

In Eq. (3.2) when T;=0, it denotes the uniform temperature field, and when T;,=0, it denotes
the parabolic temperature distribution. From Egs. (2.9a) and (3.2) it is noted that the thermal
force N7,, the thermal moments A{ T, M%7, MZ, and the higher-order moments PT , P7
and PL, are zero.

Let the thermal expansion coefficients for each ply be

a11=011Q,, 1'1222;'(?22(,?Q {3-3)

where o, is an arbitrary reference value, and let

AT t, | 4.
= dZ {3.4)
AT 2 ka-n A, .

k

Let 4, =« T;, where (=0 for a uniform temperature distribution and /=1 otherwise, 1. e.
T# 0. Then introducing the dimensionless quantities

x=nX/a, V=a¥/b, P=a/b, (W*, W)= (W%, W)/[D5:D% A% ALY
F=F/[D#D%. 12, (W, V)=, @,)e/a[D}D A% A%
pu=[D%2/ D512, pa=[ A} /A1, po=— A% ] A%,

(P11os P112s Y1) = {4/ (F¥,, (F5L+F3+4F%) /2, F$.1/D%,

(‘}’uc, pra)=[D% —~4F1/3t%, (D}.+2D%) —4(Ft+2F te \/"f”/D*'
(Vis1s P1sa) =[ (D% 2D%) ~4(F%;-+2F %)V /%2, D, —aF§,/3*)/D

(va1zs pers) = (Af:+Afe/2, AT1)/ AL

(va15 ya)=(0*/71*) (Aes— 8D /it 16 F s /t*, A, —8D./1*416F . /t*) /D%, . {
(P10 Vero)={&/¥) [ Fh—¢H% /3%, (F3+eF%) —4(H%+2HY,) /321/D5,

(Pia0s peaz = (Dh—=8F1/30H16H L /50, Dig =81 4/38 +16H 3, /0t /D1,
pra={ (Dl D) ~4(F {2+ F 142 3) /3 + 16 (H Y+ H ) /911 /Dy

(vars par) = (4/38°) [(Fiot2F %) —a(HH2HE) /38, Fi~4HY:/3']/Dty
(usor Pacs)=(D¥~8F 8o/38+ 16Hs/5t', DY, —8F 52/3t*+16H 3,/9t*) /D,
(yrs yr2)= (4L, ALYya*)a,w?[ D¥ D%, 1'%

(M., My, P, P’)—(M" My, 4P’/3t2’ 4P, /3t*)a*/x* DY, [ D} D zAnA* 1174
(85, 8y)=(As/a, D,/6Yb/4x* D41 D%, A% A%,

(3.5)

enables Eqs. (2.15)~(2.18) to be written in dimensionless form as
Lu(W)—=Lp(#) = Liy(¥ ) =pufiL(W+W*, F) (3.8)
Lz;(F) ‘*C]‘:—‘-—‘})“BZL(I/V-{-ZI/V*, H/)/Z (3-7>
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L:'.!(W) +L32(qj:) '—LSS(WI) =0 (3 .8)
Lu(W) —Lu (W:) +L4S(q71)=0 (3,9)

where

64 . a4 . al
Ln( )=‘Y1m'a-x~r+2vmﬂ W‘H’mﬁ B
9t a8
Laa( )=?llaa-x:§‘+?lnﬁ2W
Ll-’)( ) VI-JB axzay +'})133ﬁ at[

ot , 0* 9t
Lay( )=~a—:-cr+2?zyzﬂ“w+?mﬁ‘*a'§r

63
LL—‘I( )=pa ax+'y 10 "33 axs +‘PSIZB axay

3
Lo )2?31-'?5:0 ax ?vzzﬁ ayzs Lsa( )-Pmﬁ——

9 o , 8
Ly ( )=r41/35{]‘+’}’mﬁw+?mﬁ@;, Lis( )=Lul )

9° 9°
Li:( )=yu—vsn—>3=z axz —peafia 3y*
9 h az az 82 62
LC )= ax’ ay'2 xdy Oxdy T3, By’ ox®
All the edges are assumed to be snmply supported and to be restrained against expansion in the
in-plane directions, so the boundary conditions are

x=0, my

6’._._W___.l}l'=0’ F931=M8=P’=0 (3,10&,1))

y=0, my
Sy=W=V,=0, F,.,,=M,=P,=0 (3.10c,d)

the unit end-shortening relationships are

0, == 415314 n {[P ﬁ Bu- “ax _]"—_V”

+(vivn—veye:) 2Ce }dxdy (3.112)

Ly ] 3 W W W*
dy= *zﬁé%:rﬁo{[%% if 665] =g v’ [%J]z ~rul ay aay

+ (P22~ psyr1) A2Cs }dxdy (3.11h)

Note that in Eqgs. (3.7) and (3.11). for the uniform thermal loading case, C,=0,0,

Cy=1.,0 and /p=«,T,. whereas for the nonuniform parabolic thermal loading case,
Cy=88r (piiyri—ysyr:) . %, Co== T, Ti4+14 ('y,/:r--yz,':t"')j and /iy =u,T,,

Applying Eqgs. (3.6)~(3.11), the thermal postbuckling behavior of a simply supported.

symmetric cross-ply laminated plate is now determined by a mixed Galerkin-perturbation

W, W
?24 ax ax
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technique. The essence of this procedure. in the present case, is to assume that

W (x, Y 8)=2£jwj(xsb y)s F(x, v, 8)=Ze"f.i(x’ y)
=1 f=0

(3.12a~d)
v (%, y, &)= 28’%0:;(96, y), ¥ (% Yy, €)= 28’1(’:/(96, y)

f=l

where ¢ is a small perturbation parameter and tne first term of w, (x, y) is assumed to have
the form

wy(x, y)=APsinmxsinny (3.13)
. The initial geometric imperfection is assumed to have a similar form
W*(x, y, e)=eatsinmxsinny=epA{Vsinmxsinny (3.14)

where ;1=a‘{;/AH) is the imperfection parameter.

Substituting Eq. (3.12) into Egs. (3.6)~(3.9) gives a system of perturbation equations
which can be solved step by step. At each step the amplitudes of the terms w;(x, y),
fi(%, y), ¥e5(x, -y} and ¢,;(x, y) can be determined by the Galerkin procedure.
As a result, the asymptotic solutions can be obtained as

W=e[ Aﬂ’smmxsmny]—l—as[A}%’ sinmxsininy+ A sinsmxsinay ;4+0(e®)  (3.15)

v x?
— __B(o)(y .C, 94) — b +e[ B(“(—-———Cu) b.,é”f) + B cos2mx
, ol yt
+ B{¥cosany ]+6‘[ “Béé’(% ~C.;;/, béﬁ”f,-!— B cos2mx+ B cosany

+ B{# cos2mxcoszny+ B cossmx + Bi¥cosany+B{) cos2mxcosiny

+ Bifcosamxcosiny ]+.O(35) (3.16)
W,=¢[ C{Pcosmxsinny ]+ [C{Pcosmasininy +CHcosdmxsinny]+0()  (3.17)
W, =¢[ DY sinmxcosny] -!'-83[ D sinmxcos 3ny+ DY sin 3mxcosnyl4+0(e*) (3.18)

Note that, for the uniform thermal loading case it is just necessary to take C+=0 in Eq.
(3.16). so that the asymptotic solutions have a similar form.

All the coefficients in Egs. (3.15')‘*(3.18) are related and can be written as functions of
Aﬂ) as has being illustrated in the Appendix.

Next, substituting Egs. (3.15) and (3.16) into boundary conditions &,=¢  and
d;=0, the thermal postbuckling equilibrium path can be written as
hp == AR WA AW A (3.19)

in which W, is the dimensionless form of the maximum deflection of the plate, which is
assumed to be at the point (X, Y ={x/2m, x/2n) and A, A» and Ay are given in
detail in the Appendix.

Eq. (3.19) can be employed to obtain numerical results for the thermal postbuckling load-
deflection’ curves of symmetric cross-ply laminated plates under a uniform or nonuniform
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parabolic temperature distribution, from which results for isotropic and orthotropic thick
plates follow as a limiting case, From the Appendix, the solution for the initial thermal
buckling load for a perfect plate is exact and can readily be obtained numerically, by setting
p=0 (or. W*/t=0), while taking W ,=0 (or W/t=0). In all the cases, the minimum
initial buckling load is determined by applying Eq.(3.19) for values of various the buckling
mode {(m, n), 1. e. for different numbers of half-waves in the X- and Y-directions, respectively.

1V. Numerical Examples and Discussion

Thermal postbuckling induced by uniform and 3

nonuniform parabolic temperature distributions has (0/90),

been studied by a mixed Galerkin-perturbation b/1=40.0
B=1.0
(m,2)=Q,1)

method presented. A number of examples. were.
solved to illustrate the performance of perfect and 2t

imperfect, symmetric cross-ply laminated plates. &

Typical results are presented in dimensionless :_c

graphical form in which Af=12(a1+v31a22) 6%z -
1g—a"

Ja,att. For all of the-examples all plies were
of equal thickness and the material properties used

Present
were (except Table 1 and Fig. 1): E1/E= @---3---O Singh et al. (1994)
13,8957, GuafEw =G\/E:,=0,4801, Gu/Eqn o '
=0,1638, »12==0.33, an/¢,=0,139 and /o, 0 0.5 1
9.0 Wi

o Fig.1 C i
As part of the validation of the present xg ‘omparlsons o thermal postbuck
ling load-deflection curves of

method, the thermal buckling loads, Jp=a,T X%
(0/90), square plate under a unj-

10° for perfect, simply supported, isotropic and
10-layer (0)s composite laminated square plate form temperature rise
subjected to a uniform temperature rise with different thickness ratio are compared in
Table 1 with results of 3-dimensional solutions given by Noor and Burton (1992)", using their
material properties, i e Ey/Ean=15,  Gu/E1=GC1/En=0.5, Gu/FE=0C 336,
r1:7=0,3, an/a,;=0,015 and az/a;=1,0; and of classical plate theory (CPT) obtained
from [2]. Clearly, the results obtained from the present method and the 3-dimensional elasticity
theory are in good agreement. but CPT gives higher buckling temperature for moderately thick
and thick plates. In addition. the thermal p;)stbuckling.load-deﬂection curves for perfect 4-ply
(0:90), symmetric cross-ply laminated square plates with 5 =40 subjected to uniform
temperature rise are compared in Fig. 1 with results of Singh et al. (1994), using their
material properties, i. e. (F;/E=25, Gn/E, =G/Ey=05, Gu3/E2=0,2, viy=
0.25, and ay/an=10 . They show that the results from the method presented agree
well with the comparator solutions when W/t 0.4, whereas further into the postbuckling
region change of buckling mode is shown in Ref. [5].

Fig. 2 gives the thermal postbuckling load-deflection curves of 4-ply (0/90)s symmetric
cross-ply laminated square plates under uniform or nonuniform parabolic temperature loading
with different thickness ratio b;7(=10.0, 5.0) and are compared with their classical counter-
patrs. The results calculated show that the thermal buckling load of (0:90)s plate with b/t=10.0
is about 29% lower than that of CPT in both uniform and nonuniform temperature loading
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Table 1 Comparisons of various theories on the thermal buckling load Ar=a;ToX

105 for perfect square plates

Layer-up b/ l‘v Noor & Burton® Present cpTi
100 0.1264 0.1266 0.1265
sotropic 20 3.109 3.1194 3.1633
10 11.83 11.9782 12.6533
5 39.90 41,3175 50.6134
100 0.7463 0.7466 0.7436
oM 20 17,39 17.5202 18.7160
10 67.82 §9.1271 14.8639
5 143.6 149.9049 299.4555
2 Calculated using classical plate theory given in [2].
2 2 3
(0/90), :
T =0.0 (0/90), / ;
A To/T1=0.0 v/,
£=1.0 73 p=1.0
(‘h;ﬂ)-"—(l;l) _«',',(54'1 (m,n)=(l.l)
A

1: CPT 1: CPT
: HSDPT (b/t=10.0) 2 HSDPT (b/¢=10.0)
: HSDPT (b/i=5.0) 3. HSDPT (b/t==5.0)
(a) uniform temperature rise
Fig. 2 Effect of plate thickness ratio 5/t on thermal postbuckling of (0/90). plates under
uniform or nonuniform parabolic temperature distribution

o

ad

(b) nonuniform temperature rise

cases. It is found that the thermal buckling loads are decreased by decreasing the plate
thickness ratio b/1, but in the deep postbuckling range the thick plate will has a higher
postbuckling load than does a thin plate. It can also bé seen that the laminated plate under
nonuniform parabolic temperature loading has a higher initial buckling load and a higher
postbuckling load than does a plate under uniform thermal-loading.

Fig. 3 shows the effect of the plate aspecloratio f(=1.0. 1.5) on the thermal post-
buckling response of the same laminated plates under uniform or nonuniform parabolic
temperature loading. Then Fig. 4 shows the effect of the total unmber of plies N(=4. 8) on the
thermal post_buckling' response of symmetric cross-ply laminated square plates under uniform
or nonuniform parabolic temperature loading. As expected. these results show that the thermal
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2 » 2
(0/90), (0/90), 1
T:=0.0 Ty/T1=0.0 :
b/t=10.0 . b/t=10.0 S
(m,n)=(1,1) 71 (m,a)=(1,1) .

1

t {o.os ------
A
ol : N
0 0.5 1
Wit
1:=10 2p=LS5 1: g=1.0 2 =15
(a) uniform temperature rise (b) nonuniform temperature rise

Fig. 3 Effect of plate aspect ratio § on thermal postbuckling of (0/90). plates under
uniform or nonuniform parabolic temperature distribution

2 - - 2
T:=0.0 | To/T1=0.0
b/t=10.0 b/t=10.0
B=1.0 ' B=1.0
(m,n)=(1,1) . (m,n)=(1,1)

1: (0 90).. N=4 ;: (0 90),. N=8 1: {0,90).. N=4 2: (090).. N=8
(a) uniform temperature rise (b) nonuniform temperature rise
Fig. 4 Effect of total number of plies N on thermal postbuckling of symmetric laminated
plates under uniform or nonuniform parabolic temperature loading

buckling load and postbuckling strength are increased by decreasing the plate aspect ratio por
by increasing the total number of plies N with N having rather less effect.

Fig. 5 shows the effect of thermal load ratio T,/7T, (=0.0, 0.25, 0.5) on the post-
buckling responses of the same laminated plates under nonuniform parabolic temperature
loading. It can be seen that the thermal buckling load ‘is decreased by increasing the thermal
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load ratio T,/T; and that the thermal postbuckling equilibrium path becomes significantly
lower as the thermal load ratio 7,/T'; increases. In Figs. 3~5 the plate thickness ratio is b/r=
10.0.

Thermal postbuckling load-deflection curves for imperfect as well as perfect plates are
plotted in each of Figs. 2~35. The imperfect curves show that the effect of an initial geometric
imperfection on the thermal postbuckling response is substantial. This conclusion is valid for
both classical and shear-deformable composite laminated plates.

2 T

(0/90), A
b/t=10.0

p=1.0
(m,n)=(1,1)

L Teh=00 27 T:=025 X:T T:=0.50
Fig. 5 Effect of thermal load ratio 7,/7:. on the postbuckling of (0/90), plates under
nonuniform parabolic temperature distribution

V. Concluding Remarks

The essence of this paper lies in the development of the Reddy’s higher-order shear
deformation theory to study the thermal postbuckling of imperfect shear-deformable laminated
plates under a uniform or nonuniform parabolic temperature distribution.” The numerical
examples presented relate to the performance of perfect and imperfect, symmetric cross-ply
laminated plates. They show that the characteristics of thermal postbuckling are significantly
influenced by the transverse shear deformation. plate aspect ratio, thermal load ratio and
initial geometric imperfections, whereas the total number of plies has rather less effect. The
results presented do not cove‘rp all possible cases, however we believe some interesting and
noteworthy effects can be studied with the present equations.

References

{1] Y. Stavsky, Thermoelasticity of heterogeneous aeolotropic plates, ASCE. J. Eng. Mech.,
89, 2 (1963), 88~105. _

(2] H.S. Shen and Z. Q. Lin, Thermal post-buckling analysis of imperfect laminated plates,

Computers and Structures, 87, 3 (1995). 533~ 540.
[3} J. N. Reddy, A refined nonlinear theory of plates with transverse shear deformation, Inr.



Karman Equations of Plate and Applications 1151
J. Solids Structures, 20, 9/10 (1984), 881 ~896.
{41 A. K. Noor and W. S. Burton, Three-dimensional solutions for thermal buckling of
multilayered anisotropic plates, ASCE. J. Eng. Mech., 118, 4 (1992), 683~701.

[5]1 G. Singh, G. V. Rao and N. G. R. Iyengar, Thermal postbuckling behavior of laminated
composite plates, ATAA4 J., 82, 6 (1994), 1336~1338.

Appendix
In Egs. (3.15)~(3.18), the coefficients are related. Illustrative examples are

C“’ = T8 4D D“’—- np-9v_ 4
gu i’ gm U

BE = 1 2y (AP 2, B =y i (L 2 (AP
A= -‘—’ji -——(1+u)3(1+2#)( APy
k13
A= 116%"ﬂ(1+#>2(1+2mu“’>3
2
G Qm €} C(” -3 g3 4@
Ch g, =S A3, ™ g0 4

D;g) Sntm AL D(”—~ "ﬂg;:: Agz)

i3
1 VYyun 1 m ¢
B =~ A  ha QA 45, B =—15 W(l+u)A,{’Ag’

Finally, in Eq. (3.19)

(P AP 19y~ (So, Sa, SO/71Co
where

Sy= —Z_i%gﬂ—j—' S,= 115 3;:4 8,1+ 21), Si= 256 ;;‘Cn(cz ~Ci)+Csy

B =(Vypumt+ 2V ,mint o+ Yy ntf?)
AV ot V1,12 82) Gog+ 2B Piam- Visan2B) g3}/ doe
B, [(372, — V1) (msk Pont B Y+ 473 PsminB2/( ¥, — Vo)
By= (Vyomi-+ 187 ,m2n2 247, S1ne f4)
+ [ m2(Vy30m24 V15,902 82) gy, + 902 B2V iami+ 43391282 9133 )/ G130
O31== (81V1q0mi+ 18V (1, m2n2 f24 ¥y ! B4 )
+ [ 9mE(V1509m2+ V:zzﬂzﬁz)g:u‘l' n2B2( V15 2mi 4V 133120%) 03031/ 9310

Cy= z(1+u>2(1+zu>=a[ +l2;3i:@fj'

Goo=(V314V3,0m2+ 'ym,ﬁﬂz) (Yot Pyamis Yy m2f2)— y:zwl’rz"z’b :
Go3= (Pag+ Vapom2+ V3 n2f2)(¥ y— V1 ym2—V 1302 f2)

— P332 V3 —Vagem2—V31,n2h%)
Gos=(Pay+VYiaom2+ P 3,2 B2)(V 3~ V39m2—V3y,n2 f2)

~ V332 (Y 1~V um2— P, 1302 f2)
Grae=(VYar+Pyom?+ V5,902 82)(V g+ ¥ 5umi+ V5,902 02 ) — V1, 9m2n2 B2
9133= (Va1 +Va20m* V3,902 B2 )(V i1 Pyyym?— ¥ 13902 87)
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~Vaagm?(Vsg—Vsyom?— Y3y 807 8%)
Gisi= (Vg + P 30m?+ P39 B2 ) (Pay— Vagonit =~ 731,90 8°)
Va2 BV =V qum?P—~Y 1Sn1 )
Goio=(Pagt Vapo9m? V50 n2 B1) (Vas ¥ soSm? 5750282 ) — P2, Om2n1 82
G313=(Pag+ Py 09m 4 V35,02 02) (V=P Im -V 502 02)
— V33, 9m(V3y~V3109m2 ~V3y,n282) .
O3 (Vo1 +Via0m? 4P 3,02 B2 )(Vay = Pygo@m? = 730,02 %)
~Paa 2Py~ 9mi -V, un?f?) °
Jp=EuCu(1+p)—8uCn, Tn=EuCn(1+p)—61Cy

in above equations, for uniform thermal loading case

Cyu=(Prm?*+Pr,n2f82), Cu=(Yr,m?+¥,n18?)
Cyy= (971 ym? 4 V,n38%), Cs3=0

and for nonuniform parabolic thermal loading case
cxi=(?1‘iﬂ?=+??‘1"zﬂz )( "T""*""‘ )'*‘ 2?312,32

2 \ mz
Cus=(Yrym*+ 9V, B )( ~—+2 J+ Sxin?

Cy=(9Ppm?+Pp,n28? )( %:— )‘!- 137’3,‘;"1

‘y z 4
Cu=355 256 ?,"(1+a)(1+2a)2r~ [ y‘n’n’ }"u}

Vo= (V] Pri~Vs¥r) /Y],



