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Abstract 
Kizrmh-type nonlinear large deflectio,l equations are derived according to the 

Redc$S higher-order shear deformation plate theor and used in tke themal 

postbucklitlg ana(vsi~. The eJfects of irlitial geotlletric hperj>ctiow of rhe plate are 

included irt the presettt stuciv wlziclt also includes rite thermal e[fecrr. Smp~v supported, 

sywnetric cross-p!v lan~inated plates subjected to uniform or ~~onu~~~form parabolic 

temperature distributiort are considered. The arlalysis uses o nhed Galerkin- 

perturbation techique to deternlirle therwai buckling loads and postbucklitlg 

equilibriurv paths. The effects played bj. transverse shear d~fornlatiorl, plate aspect 

ratio, total number of plie.7, tlwrmal load ratio and irritial geouwtrw imperfections are 

also studied. 

Key words composite laminated plate, higher-order shear deformation plate 

theory. thermal postbuckling. Galerkin-perturbation technique 

I. Introduction 

Composite laminated plates are widely used in the nuclear. petrochemical and a~~spa~c 

industries. These plates may have significant and unavoidable initial geometric imperfections. 
Due to boundary constraints. varying temperature environments typically induce stresses, with 
ensuing buckling. Therefore. there is a need to understand the thermal buckling and 
postbuckling behavior of imperfect composite laminated plates. 

Following the assumptions of von Kirmin. Stavsky (1963)“’ derived a pair of 
simultaneous 4th-order differential equations for the deflection W and the stress function F, 
governing the large deformation behavior of thin composite laminated plates. The formulation 
was based on the classical laminated plate theory and includin, @ ‘thermal effects. This work was 
extended to study the thermal postbuckling of perfect and imperfect. thin composite laminated 
plates subjected to a uniform or nonuniform temperature distribution by Shen and Lin (1995)“], 
using a mixed Galerkin-perturbation technique. 

Recent developments in the analysis of composite laminated plates point out that plate 
thickness has more pronounced effects on the behavior of composite plates than on the 
isotropic laminates. Also, due to low transverse shear moduli relative to the in-plane Young’s 
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moduli, transverse shear deformations are even more pronounced in composite laminates. Thus 
the analysis of laminated plates requires the use of shear deformation plate theory. 

In the present work the Karmin-type nonlinear large deflection equations are derived 
according to the Reddy’s higher-order shear deformation plate theory’and including thermal 
effects. To illustrate the accuracy of the present theory, a thermal postbuckling analysis is 
presented for simply supported, perfect and imperfect, symmetric cross-ply laminated plates 
subjected to a uniform or nonuniform parabolic temperature distribution. The analysis uses a 
mixed Galerkin-perturbation technique to determine the required thermal buckling loads and 
postbuckling equilibrium paths. The material properties are assumed to be independent of 
temperature. The initial geometric imperfection of the plate is taken into account but, for 
simplicity, its form is assumed to be identical to the buckling mode of the plate. 

II. Khrmin-Type Equations 

Consider a rectangular plate of length 01 width b and thickness t which consists of N plies 
of any kind, is subjected to mechanical or thermal loads. Let 0, P and tp be the plate 
displacements parallel to a right-hand set of axes (X, Y, 2) , where X is longitudinal and Z 
is perpendicular to the plate. @*and @, are the mid-plane rotations of the normals about the 
Y and X axes, respectively. Denoting the initial deflection by W*(X, Y), let W(X, Y) 
be the additional deflection and a(X, Y) be the stress function for the stress resultants, so 
that 

Ip1=F&, R2=P,zz, ms= -L (2.1) 

Following the Reddy’s higher-order shear deformation plate theory (see Reddy (.1984t’1), 
ae have the displacement field 

u,=ti+z[~.-4(Z/t:!~(~1)2+aW/ax)/31 

u?=r;i+z[CP,-4(z/fi2(~~+aW/aY)/3]., u2=w > (2.2) 

The von K&man strains associated with the displacelnent field in Eq. (2.2) are 

cl=cl ’ +Z(K; +z*K: ), C,=t,o+Z(K;+z2K;), ty=O 

C,=C:+z’K:, CF=f;+z2K;, f,=f:+Z(K:+z2K;) 

where 

“=a~/ax+(a~/ax)2/.)G~aWlax)(aW*iax! ( I 

K;=a&/a& K:=- (4/3fy (a@t/ax+a2W/ax2) 
c p =aV/au+ (aW/aY) z/t! + (aW/aY) (aW*/aY) 
KZ “=abi,/aY, K; = -(4/352) (af,/aY +a2W/al-y 
f :=f&-aw/aY, K:=-(4/f2)(@+?W/aq 

co=t,+aW/ax, K:=-(44/t2@s+aW/aX~ 

r p=a~/aI’-tar/ax+i,a~/aX!(aW’/ak’) 
+(a~lax)(aw*/al/!+(awiau)(att’*/ax) 

tijl=a@,/al/ +a@Jax 

h’j, = - (4/3t~gaPJav +a@i,/aX+2a2W/axaY~ 

(2.3) 

(2.4) 
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The constitutive relationships between the stress resultants IV+, Xi, Pi, Qi and Ai and 
the middle surface strains and curvatures are 

where the stress resultants Ri, xi, pi, Qj and Ri are defined by 

(IV,, Hi, P,)=l~t~2Uf(l, 2, Z3)dz ji=i, 2. 6j 

(Q2, Rz) =\i’2 ,mt,L~~,,(~.2z)dZ, (Q,,R~)=!~~~p,i,!l.Z~)dz 

i2 .wb) 

(2,6a-c) 

and Aij, &j etc.. are the plate stiffnesses, defined by 

k=l ‘fk-I 

where Qij are the transformed elastic constants, defined by 

= 

! 

r4 “(Z$ S4 ilCZS2 

: “*%L C4fS4 c2s2 - 4c2sz 

s-4 2c2s2 c4 4 c2s2 

2.S cs3- 2s - cs3 --zcs(c’-9) 

,:s” C3S - cs” - 2s 2cs(cZ-s”; 

(.2$ -zc2$ ( zs2 ((.‘-s?)? 

and 

i2.8a) 

where 

Q 
F - 11 E22 %iEl! 

“=i! -1’121’21) ’ Qz2= (1 -lJ121’21) ’ Q1z= (1 -).‘121’21) (2.8~) 

Q e=Gza, Q,,=G,,, Qas=Glz 

and 

~=cosO, s=sinP (2 .sd) 

where O= lamination angle \\ith respect to th.e plate X-axis. 
In Eq. (2.5~) rh.e thermal forces, moments and higher-order moments are defined b\ 
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I 
N:, .M$, P: 
NT, Mf, Pf 

1 
T(X,Y,Z)dZ 

Nf,, MT,, E, 

and 

in Eq. (2.9a) 

in which alItand a22 are thermal expansion coefficients for a single ply. 
Eq. (2Sa) can be written in the alternative form 

I 

(0 
MY = -(B*}T D* 

P” 1 I 

A” B* E” N” 

[F*j T 
c(E*)T F” H* II 1 

ID 

K2 

where 

N*=iiJ+, M*,&#, psc=p -PT 

and the reduced stiffness matrices are defined by 

A*=A-‘, B*= -A-‘& D*=D-BA-‘B, E*,,A-‘E 

F*=F-EA-IB, H*=H-EA-‘E > 

WW 

(2.W 

(2.10) 

(2.11: 

(2.W 

(2.W 

It is noted that, whereas A*, D* and H* are symmetric matrices, B*, E* and F* are not 
necessarily so. 

Substituting Eqs. (2.1) and (2.11) into equilibrium equations 

-+a”e aM, --Q,+$R,-+[g+t$-j-0 ax aY 

- --Q,+$R,-- +[$+$]=O ah +aM2 
ax aI7 



Kirman Equations of Plate and Applications 

In addition, use is made of the compatibility relationship 

1141 

a2c O a260 LS& aY2 
-&+[&] aW* 2 -g gg+z[m 

I 
aV av* 

-aX" ayz 

aZW* a2tt --- ax2 aY2 (2.14) 

then K&m&-type nonlinear large deflection equations can be written as 

LII(W) -LIZ(&) -Ll.@‘,)+Llr(F) -L1,(Wj -L,,(Wj 
=L(ZtitW*, F) 4-q * 

(2.15) 
Lz,(F) +LnzWz) SL23(P,) -L2*(W) -Les(NT)= -L(Tft+2y+, W)/Z 

La8(W)+L z(@~)+L~~(@~)+L ,(a) -L ,(W)-L 6(STj=o 

L41(W) +LIL@kj +L4My) +Ld4(P) -L45(N*) -L,,(m =O 

in which the operators are as follow: 

(2.16) 

(2.17) 

(2.18) 

t-4F’:, ) a4 
t 

axw- 
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(2.19) 

It is noted that these plate equations show thermal coupling as well as the interactive of 
stretching and bending. 

III. Thermal Postbuckling of Symmetric Cross-ply Plates 

Here we consider the thermal postbuckling of simply supported, symmetric cross-ply shear- 
deformable laminated plates subjected to uniform or nonuniform parabolic temperature 
loading. For such plates the following plate stiffnesses are identically zero: 
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Rij=E<j=O, ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

A 46=D45=Fns=~ 
and the out-of plane loads Q is taken to be zero. 

The in-plane temperature variation is assumed as 

(3.1) 

(X, Y, Z)--T,fT;[? --((~:J7-bj/b)21 (3 .2;r 

In Eq. (3.2) when T,=O, it denotes the uniform temperature field, and when T,=O, it denotes 
the parabolic temperature distribution. From Eqs. (2.9a) Bnd (3.2) it is noted that the thermal 
force Nzy 1 the thermal mohents A{:, MT, M$,. and the higher-order moments PT , .p?; 
and P& are zero. 

Let the thermal expansion,coefficients for each ply be 

all =aljaat, iei22=-a22up 

where CZ~ is an arbitrary reference value, and let 

f 3 . 3) 

(3.4) 

Let A T=n;Ti, where i=O for a uniform temperature distribution and i= 1 otherwise, I. e. 
Tl# 0 . Then introducing the dimensionless quantities 

x=J7X/a, Iis nE’/b, e=a/b, i?~~“, w’)=iW~, wa/rD:iD~,A:,d:*]“’ \ 
F=F/[D;,D;J”2, 4,!P,, IPy)= (85.. Q,)a/n[D~ID~2d:,d:L]“’ 
y,4=~D:z/D:,:i1’p, yz,=[A:l/A;P, y5= --~;.z/A:z 

(yl,o, y1123 y,?4!=(4/3t2! [F:!, ~F:,+F:*+~F~~)/z, F:zl/D:* 

(Y ,:c, y122‘l= co:1 - 417:,/3t2, iD:,+zD:& -4(f~:2+2F2,!/3t2!/D:~ 
(JQ~~, ylsaj=I:(D:2+2~~e) -~(F;,--F~$‘~~~/~P, D;2-4F:z/stL]/D:1 

(yPt2, y21’ >= (A:2+&$2, d:,j/d;: 

(~~1, yrl) = (a”/2) (d65-~D55/f2+ 1 BF,JP, d,, -8DL,/t2+ 16F,,/P)/D~~ 

(7, &,I&, 3’tl2)= (4/3f2) fiql-- 4H:1/31::, (‘F;,S2F:,) -4(H:2+‘iH:,)/sf2]/Dfi 

(Yi 2 G , y ? 2 2 i 
:=(DTj- U:~/W+~6H:,/~P, D~,-81;‘:813t2+16H:s/9t4)!D:, 

yt:sl=;:(D:z+D:e) -4(F:zfF:1+2~:,)/3t2+16(H:z+H:1)/9t43/D:, 

(ym, yasj= (4/3f’)[ (F:2+2FTd ---4(H:2+2H:8)/‘3t2, F:,-4H:z/3t2]/D:1 

(Y ,?I), y4:2.7 ‘=(D:s- 8F:J3?2-t16H:g/9tJ, D:,-8F:,/3t2+1~H:2/9t4)/D:, 

(YTI, YTd = (-4, d5)a2/n,~z[D:,D:,1”” 

(M,, M,, I’,, Py)=(B,, li5,, UP&, 4P,/3t2)a’/JC2D:i[D:ID:Ld:,d:*11’ 
(a,, 4,) = (&/cc, A,/b!b2/4j12rD:1D:2A:1A:23”2 

enables Eqs. (2.15)-(2.18) to be ivritten in dimensionless form as 

L,l(W) -L*2(Y*) -Lj,(~F/,!=,,14p2L(w+w*, F) 
Lz,(F) --c*= -]~~J?2L(w+2w*, WI/2 

(3.5) 

(3.6) 

(X.7) 
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L,I(W) +L3*(K) --L3dW=o (3 59 
L,l(W) -L.eWy.) -kLs(~,b=o (3.9) 

where 

Lll( > =Yllrr a.#, -%l12P2~ +Y,l4P$ 

Lt( )“Yml axJ ~+y,,,P$- 

LL?( > =Y13*8 -&+YI33P$ 

L21( )=---i- ;; +2y2t2s2 a4 --+y*14P~ iway2 

&I( )‘YSl ax -%y. 1 2 6 -&+Ys12b2& 

L”2( )=m-ysto 5 -Y;22B’+, Lf 1 =Yd& 

La* ( 1 =YaP $+Ym8 & +Y.rsS3+, LL( I-Lw( ) 

a2 L?( )'YII -Y13" ax2 -. .- Y4?2B2-$ 

I;( )=x@ z&L L+x@ A& 
ikay axay 

All the edges are assumed to be simply supported and to be restrained against expansion in the 
in-plane directions, so the boundary conditions are 

&=W=Y,=O, 
y=o, =I 

d,=W=Y==O, 
the unit end-shortening relationships are 

F ,*,=M*=P*=O Cvoa,b) 

F ,g,=MpP,=o (3.m,d) 

Note that in Eqs. (2.7) and (3.1 l), for the uniform thermal loading case, C,‘LO,IJ, 
cp= 1 .o and &==LIJ’~. whereas for the nonuniform parabolic thermal loading case, 
C,=T@?~,&(Y:~‘J~~ -;j5;p~2) .T‘, C:Z=..~‘; !-1‘1-l-4(~/‘;r-1~~,~.-r~) ] and 2, =cz~T,. 

Applying Eqs. (3.6)-(3.11). the thermal postbuckling behavior of a simply supported. 
symmetric cross-ply laminated plate is now determined by a mixed Galerkin-perturbation 
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technique. The essence of this procedure. in the present case, is to assume that 

(3. lza-d) 
Qw-9 YY 4=Ce’$*,(x, Y), ~u,(x, y, +=CE’$#,(X, y) 

1-l J-1 I 

where E is a small perturbation parameter ‘and tne first term of wJ(x, y) is assumed to have 
the form 

w1 (x, y ) = Al?sigkwrsinny 
The initial geometric imperfection is assumed to have a similar form 

(3.13) 

W*(x, y, e) ~ea:lsinmxsinny=-ECIAif)sinmxsinn~, (3.14) 6 
where pu=a:~/Al(f) is the imperfection parameter. 

Substituting Eq. (3.12) into Eqs. (3.6)-(3.9) gives a system of perturbation equations 
which can be solved step by step. At each step the amplitudes of the terms zuJ(x, y) , 
Irb, Y:: , 4.r (x, AYi and Il’lYj(x, y) can be determined by the Galerkin procedure. 
As a result, the asymptotic solutions can be obtained as 

-?- B~:‘cos2mxcosi/ny~~~4) c 4o COSMZX + B~:‘cos4ny+B~:l,‘cos3mxcos4ny 

+ Bfi’cos4mxcosthzy 1 +0(P) (3.16) 

w ==c[ CPcosmxsinnyl +E3[Cl~‘costnxsin3,1!! +C~~‘cos3mxsinny] +O(e”) (3.17) 

Y ,=e[D{Psinmxcosny]+2[ Dl(~~sinrnxcos3~~~~+~~~~~sin3~~~.~cosn~~~O~jc~) (3.18) 

Note that, for the uniform thermal loading case it is just necessary to take CI=O in Eq. 
(3.16). so that the asymptotic solutions ha\-e a similar form. 

Ail the coeftici&ts in Eqs. (3. Ii)-(3.18) are related and can be written as functions of 
Al’:’ as has being illustrated in the Appendix. 

Next, substituting Eqs. (3.15) and (3.16) into boundary conditions :JI ’ E ,2 and 
8,=0, ;he thermal postbuckling equilibrium path can be written as 

&=/$J’+/2g’ w:+a$w,:+*- (3.10) 

in which IV,,, is the dimensionless form of the maximum deflection of the plate,, which is 
assumed to be at the point (x, .J)\= [z/,m, .7/2n) and ap), $,z) and dg) are given in 
detail in the Appendix. 

Eq. (3.19) can be employed to obtain numerical results for the thermal postbuckling load- 
deflection’ curves of symmetric cross-ply laminated plates under a uniform or nonuniform 
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parabolic temperature distribution, from which results for isotropic and orthotropic thick 
plates follow as a limiting case, From the Appendix, the solution for the initial thermal 

buckling load for a perfect plate is exact and can readily be obtained numerically, by setting 
p=O (or F*/t=O), while taking JVm=tr (or W/t=O). In all the cases, the minimum 

initial buckling load is determined by applying Eq. (3.19) for values of various the buckling 

mode (m? n), i. e. for different numbers of half-waves in the X- a?d Y-directions, respectively. 

IV. Numerical Examples and Discussion 

Thermal postbuckling induced by uniform and 3 
nonuniform parabolic temperature distributions has (O/90), 

been studied by a mixed Galerkin-perturbation b/t=40.0 

method presented. A number of examples. were 
solved to illustrate the performance of perfect and 2- 

(m,n)=(l.l) 

imperfect. symmetric cross-ply laminated plates. c 1 

Typical results are presented in dimensionless 2 
graphical form in which A,*= 12 (nll+v21a22)b2AT 

/c.!,3w. For all of the.examples all plies were 

of equal thickness and the material properties used 
- Present 

were (except Table 1 and Fig. 1): EH/Ezz= Q---g---@ Singh et al. (1994) 

13.8937, G,z/Ezz =GIJE~~=Q .4801, GzdEzz 
=0*1:;3x, V1.z =3,33, cx11/cr,=o.i39 and &2/% 

o 
0 0.5 

^ _ t/t 
=y.u, 

As part of the validation of the present Fig. 1 Comparisons of thermal postbuck. 

method, the thermal buckling loads, ~T=noT, x ling load-deflection curves of 

i0 3 for perfect, simply supported, isotropic and (O/90). square plate under a uni- 

lo-layer (O)?, composite laminated square plate form temperature rise 

subjected to a uniform temperature rise with different thickness ratio are compared in 
Table 1 with results of 3-dimensional solutions given by Noor and Burton (1992)‘“1. using their 
material properties, i. e. En/Ez= 15 , . Gr2/Ea2=G,:/Ezz=9 .5, Cu/Ezz=!: .33E6, 

v~~==O. 3, all/a ,,=O .015 and azJa,=l -0; and of classical plate theory (CP’T’) obtained 
from [?J. Clearly. the results obtained from the present method and the j-dimensional elasticity 
theory are in good agreement. but CPT gives higher buckling temperature for moderately thick 
and thick plates. In addition, the thermal pistbuckling load-detlection curves for perfect 4-ply 
(0.,90), symmetric cross-ply laminated square plates with 11 /=40 subjected to uniform 
temperature rise are compared in Fig. 1 with results of Singh et al. (1994)‘“j, using their 
material properties, i. e. (ElI/E2t= 25, G,z/E 2 =G,JEzz=0.5, Gs,‘Ezz=0.2, 1.‘12= 

0.25, and azz/clll=10 . They show that the results from the method presented agree 
well with the comparator solutions when W/t< 0.4, whereas further into the postbuckling 
rcpion change of buckling mode is shown in Ref. [5]. 

rig. 2 gives the thermal postbuckling load-deflection cur\.es of 4-ply (0,90), symmetric 
CIX>SS-\>~~ I;m~inatsd SQUAW ~~\ates under uniform or nonuniform parabolic temperature loading 
wilh diffcrenl thickness ratio /j /(e 10.0, 5.0) and are compared with their classical counter- 
patrs. The IXZSU~~S fXlcul>~ted SIIOW that the thermal buckling load of (0,,90)S plate u,ith /I/[= IO.0 
is ;1hl11 99’1’0 lower lhan that of CPT in both uniform and nol~uniforln temperature loading 
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Table 1 Comparisons of various theories on the thermal buckling h&l &=a$& 

103 for perfect square piates 

Layer-up wt Noor Q Bwton” 

100 0.1264 
iWITOpiC 20 3.109 

10 11.83 
5 39.90 

--- 
100 0,1463 

m.a 20 17.39 
10 57.82 
5 $43.6 

‘Calculated using classical plate theory given in 121. 

Present CPT” 

0,126s 0.1265 
3.1194 3.1633 

11.9782 12.6633 
41.3175 60.6134 

0.7466 0.7486 
17.5202 18.7160 
59.1271 74.8639 

149.9049 299.4556 

I: CPT 

,$: HSDPT Wt=lo.O? 

1: HSDPT (6/!+.0) 

(a) uniform temperature rise 

(O/90), 
T,/Tl=O.O 
p--1.0 
(m.n)=(l.l) 

0p 
0 0.5 1 

w/t 

1: CPT 
2: HSDPT (b/i=-1o.oi 

3: HSDPT (6/t=5 .o) 

(b) nonuniform temperature rise 

Fig. 2 Effect of plate thickness ratio b/t on thermal postbuckling of (O/90). plates under 

uniform or nonuniform parabolic temperature distribution 

cases. It is found that the tflermal buckling loads are decreased by decreasing the plate 
thickness ratio b/t, but in the deep postbuckling range the thick plate will has a higher 
postbuckfing load than does a thin plate. It can also be seen that the laminated plate under 
nonuniform parabolic temperature loading has a higher initial buckling load and a higher 
postbuckling load tfran does a plate under uniform thermal loading. 

Fig. 3 shows the effect of the plate aspect’ratio /f(= I .O. I .5) on the thermal post- 
buckling response of the same laminated plates under uniform or nonuniform parabolic 
temperature loading. Then Fig. 4 shows the effect of the total unmber of plies N(=4. 8) on the 
thermal postbuckling response of symmetric cross-ply laminated square ifates under uniform 
or nonuniform parabolic temperature loading. As expected. these results show that the thermal 



Kdrmim Equations of’Plate and Applications 

(O/90), 
T,=O.O 
b/t=lO.O 

0.5 1 
W/r 

I: fl= 1.0 2: /I= 1.5 

(a) uniform temperature rise 

0 
0 0.5 1 

w/t 
1: jl= 1.0 2: p= 1.5 

(b) nonuniform temperature rise 

Fig. 3 Effect of plate aspect ratio /? on thermal postbuckling of (O/90). plates under 

uniform or nonuniform parabolic temperature distribution 

T1=0.0 

b/t-10.0 
/I=l.O 
(m, n)=(l,l) 4’ 

__...-I 

0.5 1 
w/t 

I: (0 90~ .V=d 2: (0 YO),. X=8 

(a) uniform temperature rise 

c 

Ta/Tl=O.O 
, 

,' 
b/t=lO.0 

l<;,‘-’ jv= o.Oo- 
2 
: t I 0.05 . . . . . . 

0.5 1 
W/t 

I: (0,901,. h’=d 2: (0 9O)z.. N= 8 

(b) nonuniform temperature rise 

Fig, 4 Effect of total number of plies N on thermal postbuckling of symmetric laminated 
plates under uniform or nonuniform parabolic temperature ioading 

buckling load and postbuckling strength are increased by decreasing the plate aspect ratio j3 or 
by increasing the total number of plies N with N havis rather less effect. 

Fig. 5 shows the effect of thermal load ratio T,/T, (~0.0, 0.25, OS) on the post- 
buckling responses of the same laminated plates under nonuniform parabolic temperature 
loading. It can be seen that the thermal buckling load is decreased by increasing the thermal 
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load ratio To/T1 and that the thermal postbuckling equilibrium path becomes significantly 
lower as the thermal load ratio T,/TL increases. In Figs. 3-5 the plate thickness ratio is b/t= 
10.0. 

Thermal postbuckling load-deflection curves for imperfect as well as perfect plates are 
plotted in each of Figs. 2-5. The imperfect curves show that the effect of an initial geometric 
imperfection on the thermal postbuckling response is substantial. This conclusion is valid for 
both classical and shear-deformable composite laminated plates. 

--- _-... _-_ 

(O/90), 
b/r=lO.O 

-- _..- i.._-- 
0.5 1 

w/t 

I: r,, r,=o.o 2: T- r:=o.25 3: T- r:=oso 
Fig. 5 Effect of thermal load ratio TO/T: on the postbuckling of (o/M), plates under 

nonuniform parabolic temperature distribution 

V. Concluding Remarks 

The essence of this paper lies in the development of the Reddy’s higher-order shear 
deformation theory to study the thermal postbuckling of imperfect shear-deformable laminated 
plates under a uniform or nonuniform parabolic temperature distribution.. The numerical 
examples presented relate to the performance of perfect and imperfect, symmetric cross-ply 
laminated plates. They show that the characteristics of thermal postbuckling are significantly 
influenced by the transverse shear deformation. plate aspect ratio, thermal load ratio and 
initial geometric imperfections, whereas the total number of plies has rather less effect. The 
results presented do not cover” all possible cases. however we believe some interesting and 
noteworthy effects can be studied with the present equations. 
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Appendix 

In Eqs. (3.1.5)-(3.18), the coefficients are related. Illustrative examples are 



1152 Shen Huishen 
, t  , . t  , _ _ , , ,  , , ,  

-- ?aatm2( Y~t--?3~om ~-- l" ~l :gn : f l  2 ) 

9 m = (  ~,41+ y43om2..l- Y4329n~ fl~ )(  Y3t-- ?alom ~- ",.'~ :9n-' fl~ ) 

- -  Y3319tlz,~- (~'41-- Y411tn 2-- Ya 139 n : f l  2 ) 

931o=(Y~t+ Y~2o9m~ + Y~z~n'-flz)(Y~1+ ?,~or~m: + 743:n'-f12 )--~J319mZn~f12 
93xa= (Y31 + Y3,oOm: + 732 ~. :~ :) (Y.~l-- I"4 xtgm-~-- ?..~n-'fl 2) 

--Y:3xOm-(Y~t--Y~logm --Y~t~P fl ) 
fl~u= (Y 4t + Y.3o9m: + Y 4~n2 ~z )( Y3~-- Yslo9m:--'/3t2~-,6 ; ) 

__ y351nzf lz (y41_ y4119m2_ y~ 13n2flz) • 

JI;=61$CII(lJc/~)- ffllCla, ~r~l= ~'31ClI( 1 ~P)-- ~11~$I 

in above equations, for uniform thermal loading case 

C~= (gYr~m ~ + Yr~"~,8~), C~= 0 

and for nonuniform parabolic thermal loading case 

)r L To ~ ~ ..... .,~ -TT+T J+ ~-~',~-~-., 
Cuf(ynm=+gy~,,~)( To 3 .~L 2. m' 

C., : < ' ~ T [ .  J + ' . . .  J~ } ) (  r ' I ' ' ) +  ,,,,,,m2, 
~-T"T 


