
THE MATHEMATICAL MODELLING OF 

TUMOUR ANGIOGENESIS AND INVASION 

M.A.J.Chaplain 

School of  Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, 
U.K. Tel: +(44) 01225 826242 FAX: +(44) 01225 826492 e-mail: majc@maths.bath.ac.uk 

ABSTRACT 

In order to accomplish the transition from avascular to vascular growth, solid tumours secrete a 
diffusible substance known as tumour angiogenesis factor (TAF) into the surrounding tissue. 
Endothelial ceils which form the lining of neighbouring blood vessels respond to this ehemotactic 
stimulus in a well-ordered sequence of events comprising, at minimum, of a degradation of their 
basement membrane, migration and proliferation. Capillary sprouts are formed which migrate towards 
the tumour eventually penelrating it and permitting vascular growth to take place. It is during this stage 
of growth that the insidious process of invasion of surrounding tissues can and does take place. A 
model mechanism for angiogenesis is presented which includes the diffusion of the TAF into the 
surrounding host tissue and the response of the endothelial cells to the chemotactie stimulus. Numerical 
simulations of the model are shown to compare very well with experimental observations. The 
subsequent vascular growth of the tumour is discussed with regard to a classical reaction-diffusion 
pre-pattem model. 

1. INTRODUCTION 

Solid tumours are known to progress through two distinct phases of growth - the 
avascular phase and the vascular phase (Folkman 1974, 1976). The initial avascular growth 
phase can be studied in the laboratory by culturing cancer cells in the form of 
three-dimensional multicell spheroids (Durand, 1990; Sutherland, 1988). It is well known 
that these spheroids, whether grown from established tumour call lines or actual in vivo 
tumour specimens, possess growth kinetics which are very similar to /n vivo turnouts. 
Typically, these avascular nodules grow to a few millimetres in diameter. Cells towards the 
centre, being deprived of vital nutrients, die and give rise to a necrotic core. Proliferating 
cells can be found in the outer three to five cell layers. Lying between these two regions 
is a layer of  quiescent cells, a proportion of which can be recruited into the outer layer of 
proliferating cells. Much experimental data has been gathered on the internal architecture 
of spheroids, and studies regarding the distribution of vital nutrients (e.g. oxygen) and 
metabolites within the spheroids have been carried out. 

The transition from the dormant avascular state to the vascular state, wherein the turnout 
possesses the ability to invade surrounding tissue and metastasise to distant parts of  the 
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body, depends upon its ability to induce new blood vessels from the surrounding tissue to 
sprout towards and then gradually penetrate the tumour, thus providing it with an adequate 
blood supply and microcirculation. Once vascularized the turnouts grow rapidly as 
exophytic masses. In certain types of cancer, e.g. carcinoma arising within an organ, this 
process typically consists of columns of cells projecting from the central mass of cells and 
extending into the surrounding tissue area. The local spread of these carcinoma often 
assume an irregular jagged shape. 

In order to accomplish this vascularization, it is now a well-established fact that tumours 
secrete a diffusible chemical compound known as tumour angiogenesis factor (TAF) into 
the surrounding tissue and extracellular matrix. Much work has been carried out into the 
nature of TAF and its effect on endothelial cells (EC) since initial research began in the 
early 1970's with Folkman, culminating quite recently in the purification of several 
angiogenic factors, the determination of their amino acid sequences and the cloning of their 
genes (Folkman & Klagsbrun, 1987). The extensive current literature on the subject is 
testimony to its importance in our understanding of the mechanisms by which solid tumours 
develop and grow (see, for example, the reviews of Folkrnan & Klagsbrun, 1987, and 
Paweletz & Knierim, 1989). 

The first events of angiogenesis are rearrangements and migration of EC situated in 
nearby vessels. The main function of EC is in the lining of the different types of vessels 
such as venules and veins, arterioles and arteries, small lymphatic vessels and the thoracic 
duct. They form a single layer of flattened and extended cells and the intercellular contacts 
are very tight. Large intercellular spaces are not visible and any easy penetration of the 
established layer of cells is impossible. Special processes must take place for the intra- and 
extravasation of different cellular elements of the blood or the lymphatic fluids and tumour 
cells. Even intravascular tumour cells have to induce the formation of gaps in the single 
layer of EC in order to leave the respective vessels. These cells are the principal characters 
in the drama of angiogenesis and are always centre stage (Paweletz & Knierim, 1989). 

In response to the angiogenic stimulus, EC in the neighbouring normal capillaries which 
do not possess a muscular sheath are activated to stimulate proteases and collagenases. The 
endothelial cells destroy their own basal lamina and start to migrate into the extracellular 
matrix. Small capillary sprouts are formed by accumulation of EC which are recruited from 
the parent vessel. The sprouts grow in length by migration of the endothelial ceils (Sholley 
et al., 1984). The experimental results of Sholley et al. (1984) demonstrated that EC are 
continually redistributed among sprouts, moving from one sprout to another. This permits 
the significant outgrowth of a network of sprouts even when cell proliferation is prevented 
(Sholley et al., 1984). At some distance from the tip of the sprout the EC divide and 
proliferate to contribute to the number of migrating EC. The mitotic figures are only 
observed once the sprout is already growing out and cell division is largely confined to a 
region just behind the sprout tip. Solid strands of EC are formed in the extracellular matrix. 
Lumina develop within these strands and mitosis continues. 

Initially the sprouts arising from the parent vessel grow in a more or less parallel way 
to each other. They tend to incline toward each other at a definite distance from the origin 
when neighbouring sprouts run into one another and fuse to form loops or anastomoses. 
Both tip-tip and tip-branch anastomosis occur and the first signs of circulation can be 
recognised. From the primary loops, new buds and sprouts emerge and the process 
continues until the turnout is eventually penetrated. 

In the first half of this paper we develop and extend a model developed by Chaplain and 
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Stuart (1993) which describes the response of the EC to the chemotactic stimulus of tumour 
angiogenesis factor. In the second half of the paper we discuss the vascular, exophytic 
growth of certain cancers vis-a-vis reaction-diffusion pre-pattern theory. 

2. A M A T H E M A T I C A L  M O D E L  F O R  T U M O U R  A N G I O G E N E S I S  

Chaplain & Stuart (1993) develop a model for the response of the EC to the chemotactic 
stimulus of the TAF which consists of two equations, one for the endothelial cell density 
per unit area of capillary sprout (n) and the other for the concentration (c) of TAF in the 
host tissue. Using conservation principles, the system of equations considered takes on the 
general form 

rate of increase diffusion loss due to decay of 
of TAF of TAF cells chemical 

rate of increase cell mitotic cell 
of cell density migration generation loss 

We now briefly discuss each of the above equations in turn, deriving the mathematical 
representation of each term. A fuller description can be found in Chaplain & Stuart (1993). 

2.1. T u m o u r  Ang iogenes i s  Factor  

We assume that the TAF diffuses throughout the neighbouring tissue until it reaches any 
neighbouring EC which are then stimulated and begin migration. Once the capillary sprouts 
are formed, EC near the sprout tips begin to proliferate. Ausprunk & Folkman (1977) 
hypothesised that the reason for this proliferation was that these cells or vessels at the 
sprout tips were act ing as  s inks  for the TAF. Following Chaplain & Stuart (1991, 1993), 
we thus incorporate a sink term, f(c), say, for the TAF in addition to a natural decay term 
for the TAF and we assume that the local rate of uptake of TAF by the EC is governed by 
Michaelis-Menten kinetics (cf. Chaplain & Stuart, 1991, 1993). We also assume that this 
uptake rate depends on the cell density through some function g(n), say, i.e. the greater the 
density of EC, the more TAF will be removed by the cells acting as sinks (cf. Ausprunk 
& Folkman, 1977; Chaplain & Stuart, 1991, 1993). We also assume that the decay of TAF 
with time is governed by first-order kinetics, a standard assumption (cf. Sherratt & Murray, 
1990), hence a term - d c  is included. This leads to the following equation for the TAF in 
the external tissue 

Oc Q c n  
m -- D c V 2 C  - - d c  (2.1) 
a t  ( K m * c ) n  0 

The initial condition is given by 
c(x,O) = Co(X), (2.2) 

where Co(X ) is a prescribed function chosen to describe qualitatively the profile of TAF in 
the external tissue when it reaches the limbal vessels (cf. Chaplain & Stuart, 1991, 1993). 
The TAF is assumed to have a constant value c b on the boundary of the turnout (Og2tu,nour) 
and to have decayed to zero at the other boundaries (Os of the domain (cf. Chaplain & 
Stuart, 1991, 1993) giving the boundary conditions as 

c(x,t) = Cb, X E O~tumour, c(x,t) = O, X E O~'~ i. (2.3) 
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2.2.  E n d o t h e l i a l  Cel l  P o p u l a t i o n  B a l a n c e  E q u a t i o n  

The main events we model are the migration and the proliferation of the EC and the 
important processes of  anastomosis and secondary budding~sprouting. The latter two 
processes will be incorporated explicitly representing an extension of the model of Chaplain 
& Smart (1993). We note that the migration and replication of EC are not linked together. 
Different types of stimuli are necessary for these two processes and we take this important 
fact into account in our model. The general conservation equation for the endothelial cell 
density n(x,t) may be written (cf. Chaplain & Stuart, 1993) 

On + V . J  -- F(n)G(c)  + H(n,x) ,  (2.4) 
Ot 

where J is the cell flux, F(n) and H(n,x) are functions representing a normalised growth 
term and a loss term respectively for the EC. We assume that mitosis is governed by 
logistic type growth and that natural cell loss is a first order process (cf. Stokes & 
Lauffenburger, 1991). The function H(n,x) must also incorporate a term which models cell 
loss due to secondary sprouting of tips from an existing capillary and at the same time 
model the effect of  anastomosis (tip-tip or tip-branch) on a capillary. It is assumed that the 
net effect of anastomosis will be to increase the cell density at that particular location of 
the capillary where fusion takes place. Thus 

F ( n )  = rn  1 - . ~ .  

H(n,~)  -- - k ~  - s(x)n, (2.6) 

where r is a positive constant related to the maximum mitotic rate and kt, is the proliferation 
rate constant which is taken to be the reciprocal of the endothelial cell doubling time (cf. 
Sherratt & Murray, 1990; Stokes & Lauffenburger, 1991). The function s(x) will be taken 
to be some appropriate periodic function of the spatial variable x, (e.g. cos (anx)) whose 
average value over a period is zero. Such a function will thus represent the effect of 
anastomosis for half its period (net increase in cell density due to cell gain) and the effect 
of  secondary budding for the other half period (net reduction in cell density due to cell 
loss). This means that we assume secondary budding and anastomosis occur in a 
consecutive, periodic manner and is a reasonable approximation to what are essentially two 
random processes. 

As stated previously, the initial response of EC to the angiogenic stimulus is one of  
migration (Paweletz & Knierim, 1989). Proliferation is a crucial but secondary response. 
In order to account for this through the function G(c) we assume that there is a threshold 
concentration level of TAF below which proliferation does not occur. Thus in the present 
model we chose G(c) to be of the form 

t 0, c < c* 
(2.7) 

G ( c )  -- c - c *  c* < c 

[ cb 
where c* ": %. 

We assume that the flux J of EC consists of two parts, one representing random motion 
and the other chemotactic motion of the cells. We also assume that the diffusion of the EC 
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is density dependent which generalises the model of Chaplain & Stuart (1993). The flux J 
can be written 

J -- - D .  V n  + n X o V c  n (2.8) 

th where D ,  is the diffusion coefficient of e and Z0 (constant) chemotactic coefficient. 
Simple Fickian diffusion is recovered on taking o = 0. With the above assumptions we thus 
have the following population diffusion-chemotaxis equation for the EC 

On 1 -  n __ =D V. __" Vn - XoV.(nW) + r, G(c) -k,n - s(x)n, 
O t n o (2.9) 

where G(c) is given by (2.7). Suitable initial and boundary conditions for the EC are 
prescribed depending upon the precise domain in which the above equations (2.1) (2.9) are 
to be solved. 

However, we note that the numerical simulations of the model of Chaplain & Stuart 
(1993) indicate that the concentration profile for c rapidly reaches a steady state profile. 
This is not entirely unexpected since the TAF diffuses much faster than the endothelial 
cells. Thus a reasonable approximation to the TAF concentration profile may be obtained 
by solving 

V2c - kc = 0 ,  (2.10) 

subject to c = 1 at tumour boundary, c = 0 at all other boundaries. This simplification 
means that now our model is reduced to a single partial differential equation, which after 
a suitable normalization (of. Chaplain & Stuart, 1993) is 

On D n V . ( n ~ V n )  l f V . ( n V c )  + I z n ( 1 - n ) G ( c ( x ) )  f$n - s ( x ) n ,  (2.11) 
Ot 

with appropriate initial and boundary conditions for n. This equation is solved numerically 
and the results are presented in the following section where the exact form of the boundary 
and initial conditions will also be given. As far as possible parameter values are chosen to 
correspond to available experimental data (see Chaplain & Stuart, 1993, for details). 

3. N U M E R I C A L  S I M U L A T I O N S  

3.1 S i m u l a t i o n s  in O n e  Spa t ia l  D i m e n s i o n  

We firstly solve our equation in a one dimensional domain, normalized to be [0,1]. We 
assume the tumour implant is situated at x = 0 and the EC at x = 1. The solution to (2.10) 
(in one space dimension) is given by 

c ( x )  -- sinh[(1-x)V~-l/sinh~/-f. 

It can be shown that a good approximation to the TAF concentration profile with s = 1 can 
be obtained on taking c = 1 - x. The equation to be solved is thus 

q = + J i _ _  + l * ( 1 - x ) n ( 1 - n )  - [Jn - s ( x ) n  , (3.1) 
o t  Ox ~, O x )  Ox 
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Fig.L Profile of the endothelial cell density in the host tissue at a time corresponding to 12 days. 
Profile (a) (-  - -) corresponds to regular anastomosis/side-branching with s(x) = 5 cos 
(10me), profile (b) (--) corresponds to more frequent anastomosis/side-branching with s(x) 
= 5 cos (2.25;~x). Parameter values: D= 0.001, o = 4, n = 0.65, ~ = 75, 13 = 5. 

with initial conditions 

1, x -- i (3.2) 
n(x~O) 

t 0, elsewhere 

and boundary conditions n(1,t) = 1, n(O,t) = 0. Figure 1 shows the endothelial cell density 
profile in the external tissue for two different functions s(x). As can clearly be seen in each 
case, the results capture qualitatively both the effects of anastomosis (local maxima) and 
the formation of side branches (local minima) as the capillary sprout migrates towards the 
tumour. For profile (a) (hatched line - - - )  we chose s(x) -- 5 cos (10~)  representing a 
regular spatial occurrence of both anastomosis and side-branching. However in profile (b) 
(solid line --) s(x) = 5 cos (2.25it/x) which represents more faithfully the fact that as the 
capillary network progresses, anastomosis and side-branching occur more frequently. This 
captures more faithfully the so-called brush-border effect reported by Muthukkaruppan et 
al. (1982). 
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Fig.2. Profile of the steady state TAF concentration profile given by (3.3) used in the 2 dimensional 
simulations. White = high concentration, black = low. 

3 .2  S i m u l a t i o n s  in T w o  Spat ia l  D i m e n s i o n s  

Experiments are often carried out in very thin regions (< 50~tm) of the cornea or ear 
chamber of test animals (Stokes & Lauffenburger, 1991) and so a two dimensional domain 
is a good approximation of the sprout growth. Using normalized variables, we work on the 
unit square [0,1] x [0,1] and assume that the tumour implant occupies the region (x-0.5) 2 
+ y2 < 0.1. We assume that the TAF diffuses in a radially symmetric manner and it can 
easily be seen that the corresponding solution to (2.10) (in polar coordinates with radial 
symmetry) is given in terms of Bessel functions but once again we find that a very good 
approximation is given by 

1, r ~ 1 (3.3) 

c ( x , y )  --- c ( r )  -- ( l - r )  2/0-81, r > 1 

where r 2 = (x-0-5) 2 + y2. This profile is illustrated in figure (2). The single equation we now 
have to solve is given by 
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Fig.3. Profile of the initial conditions used for the endothelial cell density simulating the formation 
of several capillary sprouts. White = high density, black = low. 

o,,  -_ o__ f , ,oO, , l§  o__ f,,o l - ~ o__ 
O'-'t Ox k Ox) Oy ~ Oy ) K.~.~ ~ Ox) Oy k Oy ) (3.4) 

+ ~ c ( x , y ) . ( 1 - . )  - ~ .  - s(x,y)n, 
We assume that the initial phase of capillary sprout growth has taken place i.e. the cells 
have secreted enzymes which degrade their basement membrane permitting the formation 
of  small buds (cf. Paweletz \& Knierim, 1990). Indeed, Muthukkaruppan et aL (1982) do 
not consider tumour-induced angiogenesis to be initiated until 2 days after implant and only 
designate a stage I of  angiogenesis after 4 days recognising that there may well be some 
limbal response to the actual preparation of the implant site. Initially then we assume that 
there are several buds formed and we focus attention exclusively upon those endothelial 
cells which are close to the sprout tips since only these cells proliferate. Here the 
endothelial cell density is initially a constant n o = 1 and zero elsewhere, giving initial 
conditions 
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Fig.4. Profile of the endothelial cell density after the capillary network has been established and 
anastomosis has taken place corresponding to a real time of 7-8 days after initial sprouts have 
formed as per figure 3. Brush-border effect is dearly visible at the vascular front. Parameter 
values: D = 0.001, o = 1, • = 0.65, ~t =75, 13 = 0.5. 

f 
n o -- 1, x near sprout tip 

n(3r 
0, x elsewhere 

(3.5) 

The initial profile chosen for the EC is illustrated in figure (3). Since we are attempting to 
focus attention on the EC near to the sprout tips (since these are the cells which proliferate) 
and also since all the EC are confined to within the capillary sprouts, we take the EC 
density to be  zero (n = 0) on all boundaries. 

Figure (4) shows the EC density profile within the capillary sprouts as they migrate 
towards the tumour.  In  this case we chose s(x,y) = 10 cos6(25~rx), y < 0.65; s(x,y) = O, 
y > 0.65, representing explicitly the effect of  the brush-border once the initial sprouts/loops 
have all anastomosed (cf. Muthukkaruppan et aL, 1982). 
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4. T H E  V A S C U L A R  G R O W T H  P H A S E  

While the process of angiogenesis is taking place, the avascular tumour although 
dormant (or quasi-dormant) with regard to its growth is still in a dynamic state. In this 
section we consider the possibility of the development of a heterogeneous cellular 
pre-pattern which takes place prior to successful angiogenesis and which then facilitates 
the vascular, invasive growth. Experimental results have demonstrated that tumour cells 
secrete both growth-activating and growth-inhibiting chemicals. Several recent papers, 
Chaplain & Britton (1993), Chaplain et  aL,  (1994) (and references therein) have focused 
attention on the chemical inhibition of mitosis within multicell spheroids, the main 
assumption of the modelling being that a growth inhibitory factor (GIF) is produced within 
the spheroid in some prescribed spatially-dependent manner to reflect the observed cellular 
heterogeneity within spheroids. The existence and properties of chemicals which inhibit 
mitosis are very well documented, e.g. Harel e t  al. (1984), Iverson (1991), Parkinson & 
Balmain (1990). However, there is also much evidence to demonstrate that tumour cells also 
secrete growth-promoting factors, e.g. Chen e t  al. (1993), Kawase et  al. (1994), Wu e t  al. 

(1993). 
We consider then the production of growth promoting factors (GPF) and growth 

inhibitory factors (G1F) by tumour ceils during the avascular phase of growth. The theory 
will be presented for solid spherical tumours, but the analysis goes over equally well to 
other similar geometries e.g. oblate spheroid, prolate spheroid, ellipsoid etc. It is known, 
for example, that carcinoma arising in the breast tend to be ellipsoidal in shape. We 
consider the case whereby the growth factors are produced throughout the interior of the 
tumour and also the case whereby production of the factors is restricted to the thin layer of 
live, proliferating cells at the tumour surface. We will discuss the relevance of the resulting 
spatially inhomogeneous patterns to the experimentally observed cellular heterogeneity 
within carcinoma and multicell spheroids and also to the well known invasion 
characteristics of carcinoma. 

The system we study is the set of nonlinear partial differential equations which we write 
in the general form familiar fxom the theory of reaction-diffusion equations: 

Oc (4.1) m -- f ( e )  + D V 2 c  
Ot 

where c is the vector of growth factor concentrations, f represents the reaction kinetics of 
the chemicals and D is the diagonal matrix of positive constant diffusion coefficients cf. 
Dillon e t  al. (1994), Hunding (1980), Murray (1982). If we denote the permeability of the 
tumour tissue at the tumour surface by P then appropriate boundary conditions for the above 
system are of the form 

D(n.V)c = - Pc, r on O~ (4.2) 

where O~ is the closed boundary of the domain i.e. the tumour surface and n is the outward 
unit normal. A derivation of these boundary conditions may be found in Chaplain & Britton 
(1993), Chaplain e t  al. (1994) and references therein. Appropriate initial conditions will also 
be prescribed. For our purposes we consider only two chemical species whose 
concentrations are c 1 and c2, say, representing some growth-promoting factor (GPF) and 
some growth-inhibiting factor (GIF) respectively. The reaction kinetics governing the system 
may either be a pure or cross activator-inhibitor mechanism (Dillon et  al. ,  1994, Murray, 
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1982). The distinction between these two types of kinetics lies in whether the self-activating 
chemical either activates (pure) or inhibits (cross) the second species. There is experimental 
evidence which suggests both mechanisms may be applicable in the case of growth factors 
secreted by tumour cells (Michelson & Leith, 1991). For our purposes throughout this paper 
we shall assume that the kinetics are a cross activator-inhibitor mechanism e.g. the 
prototypical Schnakenberg system (Murray, 1982). Under appropriate scaling, it can be 
shown (Dillon et  aL, 1994; Murray, 1982) that the above system of equations then reduces 
to the following: 

Ou (4.3) -- y f ( u , v )  + V2u, 0 < r < 1, 
Ot 

Ov (4.4) m -- y g (u ,v )  + d V 2 v ,  0 s r < 1, 
Ot 

where, with R an appropriate tumour radius, k an appropriate reaction parameter and D p  
D 2 the diffusion coefficients of the GPF and GIF respectively, y = R2k/D1 and d = D2/D 1. 
The boundary conditions for the above system are then given by 

Ou (4.5) = - p l u ,  on r = 1 

Or 

OV 
m = - p2 v, on r = 1 ( 4 . 6 )  

Or 

where Pi = RP[Di" The homogeneous steady-state (u0,v0) of the above equation is the 
positive solution of 

f(u,v) = O, g(u,v) = 0. (4.7) 

Using standard linear stability theory (Dillon et al., 1994; Hunding, 1980), it can be shown 
that the stability of  the above steady state is governed by the nature of the eigenvalues L 
satisfying the following characteristic equation: 

2 4 2 y2 
~2 + ~ [ K n l ( l + d )  , ~ ( fu+gv)  ] + [dKn l_~  (dfu+gv)Kn t + (fugv-fvgu)] = O. 

(4.8) 

The steady state will be unstable with respect to spatial disturbances if Re(X) > 0. The 
parameters ~nl are such that they satisfy the eigenvalue problem 

V2ap + K2ap = O, r E s (4.9) 

subject to 

oap 
+ pap -- O, r on O g2. (4.10) 

On 

Since we are considering the production of the GPF and GIF within a sphere, then the 
eigenfunctions ap are given by 

ap,~,(r,O,r ) = j . (~ . . f  )Y.m( e,r ) (4.11) 
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where jn(r,n~') are the spherical bessel functions and Ynm(O,O) are the (surface) spherical 
harmonics. From the boundary condition at r = 1 the wavenumbers ~:nt satisfy 

K,tj'(Knt ) + oj,(~r = 0. (4.12) 

It is well known that for certain conditions on the reaction kinetics and d > 1 (Dillon et aL, 
1994; Murray, 1982) there exists a range of unstable wavenumbers K12 < K 2 < K22 for which 
Re(k) > 0. Within this unstable range Re(k) will have a maximum which indicates a fastest 
growing mode which will eventually dominate over time. This will give rise to a spatially 
heterogeneous pattern. 

5. R E S U L T S  

From the results of the previous section we assume that all conditions necessary for 
diffusion driven instability to occur are satisfied and that there exists a dominant, fastest 
growing mode. As stated previously we also assume that the reaction kinetics are of  a cross 

Fig.5.  A cross section of  a solid turnout showing the prepattern generated when the dominant mode 
is j4(K42r)Y42(O,~), with K42 = 9.84. The light regions are those where the local concentration 
of a growth promoting factor is high. It is from these regions that recruitment of the quiescent 
cells into the proliferating compartment is proposed to take place. 
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activator-inhibitor mechanism i.e. regions of high concentration of GPF correspond to 
regions of low concentration of GIF and vice versa (Dillon et aL, 1994). The following 
figures illustrate what relevance this could have for the growth of solid tumours. We denote 
the wavenumber of the fastest growing mode by K~l where from (4.12) we have 

K.~j~(K~) + ojn(~.t) = o (5.1) 

We now give an estimate for the variable p = RP/D. In Chaplain & Britton (1993), 
Chaplain et al., (1994) (and references therein) it was demonstrated that reasonable 
estimates for a range of  values for the diffusion coefficient D and the permeability P were 
10-6-10 -8 Cln2s -1 and lO-5-10-6cms -1 respectively. The radius of an avascular 

multicell spheroid is at most a few millimetres i.e. of the order 10-1-10-Zcm. Hence 
within th is range of parameters we can choose p = 1 enabling us to use standard tables to 
estimate Knl. For illustrative purposes only, figure 5 shows a cross-section of a solid 
tumour in which the dominant mode prepattem is ja(Ka2r)Y42(0,~), with K42 = 9.84. This 
situation is illustrative of growth factors being produced througlmut the tumour. As is 
clearly seen from the figure, there are regions in the interior of the tumour where the 
concentration of the GPF is high and the GIF low (the light regions). These regions are 
situated in the area of the interior of the tumour where the quiescent cells are likely to be 
situated. It is known that these quiescent cells can be recruited to repopulate, the 
proliferating compartment (Durand, 1990; Sutherland, 1988; Wibe et al., 1981). From figure 

rag.~. Prepattern observed on the surface of a solid tumour when the dominantmode is Y63(0,~). 
Once again the light regions are those in which the concentration of a growth promoting factor 
is high. It is from these regions that the columns of invading cells are expected to emerge 
when exophytie growth is taking place. These regions are also expected to influence the local 
environment through their secretion of growth factors. 
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5 we suggest that a possible mechanism for this is that the quiescent cells are firstly 
stimulated into proliferating in those regions of high GPF and are then recruited into the 
proliferating compartment. 

I f  we now consider growth factors being produced only by the live cells at the surface 
of the tumour, then the problem is essentially a 2-dimensional one in the variables 0 and 
g. The eigenfunctions are simply the surface harmonics Ynm(O,~) and the wavenumbers 
in this case are given by ~:2 = n(n+l). In this case zero flux boundary conditions are 
assumed. Figure 6 illustrates the case when the dominant mode is given by Y63(0,~). As 
can clearly be seen once again there are regions on the surface of the tumour where the 
concentration of the GPF is locally high (dark regions). It is a well-known feature of 
carcinomas that they invade the surrounding local tissue with columns of cells projecting 
from the central mass (Gimbrone et al., 1974). We suggest that while in its avascular 
dormant state a pre-pattern such as is illustrated in figure 6 is set up. Once vascularized the 
cells which are in regions of high GPF will begin to invade the local tissues. A prepattern 
of  this type is also consistent with the observation that tumours can manipulate the local 
environment by secretion of growth factors. Thus this prepattern will not only prime the 
tumour cells but will be affecting the local surrounding tissue as well thus facilitating 
invasion (Keski-Oja et al., 1988). 

6. D I S C U S S I O N  

In this paper we have considered two mathematical models which describe different 
aspects of  solid tumour growth and development - angiogenesis and vascular growth. In the 
first part of  the paper the model of Chaplain & Stuart (1993) was modified, and improved 
qualitative results were obtained with simulations in 1 spatial dimension. The model was 
then extended to 2 spatial dimensions in order to take into account explicitly the key 
features of angiogenesis of  anastomosis and secondary sprout formation (branching). The 
simulations show that the basic assumptions of the original model can capture most of the 
salient features in 2 spatial dimensions with only slight modifications necessary. However 
some further points of clarification remain. It was found difficult to simulate two capillary 
sprout tips moving towards each other (in opposite directions) and fusing together. The 
features captured by the model are on a rather coarser level. This is perhaps to be expected 
since certain simplifying assumptions have been made and certain biological details omitted. 
It is known for instance that the EC secrete chemicals which may give rise to haptotaxis 
(motion up a gradient of  increased adhesiveness). Including haptotaxis within the model 
would not be difficult to do from a modelling point of view but would increase the 
computational time for the simulations drastically since several chemicals would perhaps 
need to be considered. Also we note that in simulating the brush-border effect, we have not 
prescribed the precise mechanism which gives rise to this event, only assumed that it occurs 
and incorporated appropriate term in the equation which accounts for this. Investigation of 
precise mechanisms which give rise to the brush-border and also to the side-branching is 
a possible line of further research. It  may be that a combination of deterministic and 
stochastic modelling is necessary. 

In the second part of the paper we applied standard reaction-diffusion theory 
(Turing-type models) to a novel situation - that of  the growth of solid tumours e.g. 
carcinoma. We have shown that the spatially heterogeneous patterns which arise in the case 
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of  a spherical geometry may play a part and help to explain certain observed phenomenon 
in carcinoma and multicell spheroids i.e. the characteristic invasive pattern and the 
recruitment of  quiescent cells into the proliferating population. We note that similar results 
can be obtained for other quasi-spherical geometries which may also be appropriate for solid 
tumours e.g. oblate spheroid, prolate spheroid, ellipsoid (cf. Hunding, 1983; Hunding, 
1984). Of course there are many other factors which are involved in tumour growth of this 
type e.g. nutrient supply, and which are also very important. We certainly do not claim that 
Turing systems can provide a complete answer in this particular case, but rather may be an 
important part of the complex overall mechanisms governing solid tumour growth. 

We note that there are several features of solid tumour growth which lend themselves 
naturally to the consideration of a Turing-type model. There are actually present in this 
system chemicals which both promote and inhibit growth of cells. The time scale for the 
growth of  a solid tumour is very slow in comparison to the time needed for a diffusing 
substance to reach steady state concentration hence there will be a genuine pre-pattern. 
There also appears to be a natural critical domain size in this system i.e. the size of 
carcinoma in its diffusion-limited, avascular state. While in this state no invasion can take 
place but once vascularized rapid exophytic growth does occur. 

We also note that many of  the standard problems inherent in Turing models regarding 
robustness i.e. the same pattern must be repeated faithfully time and time again with the 
requirement that only a small number of patterns are selected in a robust and controlled 
manner, are not present for solid tumour growth. The observed 'invasion patterns' o f /n  vivo 
carcinoma vary greatly from individual to individual. It is also well known that cellular 
heterogeneity is not only observed within an individual tumour/multicell spheroid 
(Sutherland, 1988; Wibe et al., 1981) but also varies from tumour to tumour. Also it is 
worth pointing out that the complex process of invasion is dependent upon many factors 
such as the actual make up of the surrounding tissue. In view of the latter point regarding 
the surrounding tissue this may well necessitate a reconsideration of the boundary conditions 
involved which may lead to even more complex patterning (Dillon et aL, 1994). 
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