FRANCO MONTAGNA **The Undecidability** of the First-order Theory of Diagonalizable Algebras

Abstract. The undecidability of the first-order theory of diagonalizable algebras is shown here.

Introduction

A diagonalizable algebra is a pair $\langle \mathcal{A}, \tau \rangle$, where \mathcal{A} is a Boolean algebra, and τ is a unary operation on \mathcal{A} satisfying the following properties:

$$\tau 1 = 1, \quad \tau(x \cdot y) = \tau x \cdot \tau y, \quad \tau(\tau x \rightarrow x) = \tau x.^{1}$$

The diagonalizable algebras constitute an equational class, which we call DA. An important aspect of the diagonalizable algebras is the following:

Let $\varphi \equiv \{p_n\}_{n\in\omega}$ be a sequence of sentences of Peano Arithmetic PA; let us define a mapping φ^* from the set of the polynomials of DA into the set of PA sentences in the following inductive manner:

Then, if f = 1 is valid in *DA*, for every φ as above, $\varphi^* f$ is a theorem of *PA*. (See R. MAGARI, [3]).

In [6], R. SOLOVAY shows that, conversely, if, for every φ , $\varphi^* f$ is a theorem of PA, then f = 1 is valid in DA.

In [5], F. MONTAGNA extends MAGARI's result to the first-order theory \mathscr{T} of the diagonalizable algebras. More precisely, the author defines, for every φ as above, a mapping φ° from the set of the formulas of \mathscr{T} into the set of the sentences of PA, and shows that, if A is a theorem of \mathscr{T} , then, for every φ , $\varphi^{\circ}A$ is a theorem of PA.

It is known (see C. BERNARDI, [1]) that DA (that, is, the set of the equations which are valid in all diagonalizable algebras) is decidable, therefore, the set of the polynomials f such that, for every φ , φ^*f is a theorem of DA, is decidable.

In this paper, we show that, on the contrary, the first-order theory \mathcal{T} of diagonalizable algebras is undecidable. The decision problem remains

¹ In the following, $+, \cdot, v$ denote the operations of join, meet, and complementation; $x \rightarrow y$ is an abbreviation for vx + y.

open for the set of the formulas A of \mathscr{T} such that, for every φ , $\varphi^{\circ}A$ is a theorem of PA.

By [7], in order to show the claim it suffices to find a model $\mathscr{A} = \langle A, \tau \rangle$ of DA, and formulas F(x), $\psi(x, y)$, $\vartheta_0(x, y, z)$, $\vartheta_1(x, y, z)$ of the signature of \mathscr{A} , so that, putting $\mathscr{F} = \{x \in A : \models_{\mathscr{A}} F(x)\}, \approx =\{\langle x, y \rangle \in A^2 : \models_{\mathscr{A}} \psi(x, y)\}$ $+ = \{\langle x, y, z \rangle \in A^3 : \models_{\mathscr{A}} \vartheta_0(x, y, z)\}$ and $\mathbf{X} = \{\langle x, y, z \rangle \in A^3 : \models_{\mathscr{A}} \vartheta_1(x, y, z)\}$, the following conditions hold:

1) \approx is a congruence relation in the structure $\mathfrak{F} = \langle \mathscr{F}, +, \times \rangle$.

2) The quotient \mathfrak{F}/\approx is isomorphic to the standard model $\mathfrak{N} = \langle N, +, . \rangle$ of the natural numbers.

Now, let us define \mathscr{A} as follows:

Let X be the set $\omega \cup \{\langle \{i, j\}, n \rangle : i, j, n \in \omega, i \neq j, i, j < n\}$. Let R be the binary relation on X defined by: xRy iff $\exists i, j, n : i \neq j; i, j < n, x$ $= \langle \{i, j\}, n \rangle$ and y = i or y = j or y > n. Let us define the mapping τ from $\mathscr{P}(X)$ into $\mathscr{P}(X)$ by $\tau A = \{x \in X : \forall z \in X, \text{ if } xRz, \text{ then } z \in A\}.$

Now, let \mathscr{A} be the algebra $\langle \mathscr{P}(X), \cup, \cap, \mathscr{C}, X, \emptyset, \tau \rangle$. Since R is a transitive and reverse well-founded relation on X, \mathscr{A} is a diagonalizable algebra (see R. MAGARI, [4]). It is easily seen that $\tau \emptyset = \omega, \tau^2 \emptyset = X$. Now, we define

$$Ix = "x \cdot \tau x"$$

$$Op x = "Ix = x"$$

$$Cn x = "\forall u \forall v [Op u \land Op v \land u + v \ge x \land u \cdot v \cdot x = 0 \rightarrow u \cdot x = 0 \lor v \cdot x$$

$$= 0]"$$

$$Atx = " \exists x = 0 \land \forall u (u < x \rightarrow u = 0)"$$

$$Cmp(x, y) = "Cnx \land x \le y \land \forall u [Cn u \land u \le y \rightarrow \exists x < u]."$$

It is easily seen that the set $\{B \subseteq X : \models_{\mathscr{A}} Op B\}$ constitutes a topology on X. We denote this topology by T. Of course, for every $B, C \subseteq X, \models_{\mathscr{A}} CnB$ iff B is connected, $\models Cmp(B, C)$ iff B is a connected component of C; finally $B \subseteq X$ is open iff for each $x, y \in X$, if $x \in B$, and xRy, then $y \in B$.

DEFINITION 1. Let B be a non-empty subset of X. We define $T_{1B} = \{C \subseteq B: \exists D \subseteq X [Op \ D \land C = X \cap D]\}.$

Of course, T_{1B} is a topology on B; moreover, it is easily seen that for every $C \subseteq B$, C is open in T_{1B} iff, for every $x, y \in B$, if $x \in C$ and xRy, then $y \in C$.

DEFINITION 2. Let Y be a subset of X, and let a, b be elements of Y; we define a $R_Y b$ iff there is a finite sequence $x_0 \ldots x_n$ of elements of Y such that $x_0 \equiv a, x_n \equiv b$, and, for every *i*, either $x_i R x_{i+1}$ or $x_{i+1} R x_i$.

 R_{y} is an equivalence relation on Y.

LEMMA 1. Let Y be a subset of X. Then, Y is connected iff for every $a, b \in Y$ aR_yb .

PROOF. Suppose that Y is connected; let x be an arbitrary element of Y, and let \overline{Y} be the set $\{y \in Y : xR_y y\}$. Then, \overline{Y} is open in the topology T_{1Y} . Moreover, $Y - \overline{Y}$ is also open in T_{1Y} ; in fact, if $a \in Y - \overline{Y}$, $b \in Y$ and aRb, then $b \in Y - \overline{Y}$. Otherwise, we would have $xR_Y b$, and then $xR_Y a$, $a \in \overline{Y}$, a contradiction. Since $(Y - \overline{Y}) \cup \overline{Y} = Y$ and \overline{Y} is non-empty, we can conclude that $Y - \overline{Y}$ is empty and that $Y = \overline{Y}$. Therefore, for every $y \in \overline{Y}$, $xR_Y y$.

On the other hand, suppose that, for every $x, y \in Y x R_F y$. Let A, B be non-empty subsets of Y such that $A \cup B = Y$; suppose that both A and B are open in T_{1F} . Let $a \in A, b \in B$; since a $R_F b$, there is a sequence $x_0 \ldots x_n$ of elements of Y such that $x_0 = a, x_n = b$, and, for every i, either $x_i R x_{i+1}$ or $x_{i+1} R x_i$. Let x_{i_0+1} be the first element of the sequence, which belongs to B; then $x_{i_0} \in A$; since B is closed under R, if $x_{i_0+1} R x_{i_0}$ and $x_{i_0} \in A \cap B$; since A is also closed under R, if $x_{i_0+1}, x_{i_0+1} \in A \cap B$; in both cases, $A \cap B$ is non-empty. Then, Y is connected. Q.E.D.

By Lemma 1, we can easily deduce that, if $Y \subseteq X$, the connected components of Y are exactly the equivalence classes determined by the relation R_Y .

DEFINITION 3. We define $\sigma x = \nu \tau \nu x$; $Fx = x \leq \tau 0 \land \neg \sigma x = \sigma 1$; $\mathscr{F} = \{x \in A : \models_{\mathscr{F}} Fx\}.$

LEMMA 2. Let Y be a subset of X; then $\mathscr{F}Y$ is true iff Y is a finite subset of ω .

PROOF. We have $\sigma Y = \{x \in X : \exists y \in Y \ xRy\}, \sigma X = \mathscr{C}\tau \emptyset = \{\langle \{i, j\}, n \rangle : i, j, n \in \omega, i \neq j, i, j < n\}$. Suppose that Y is a finite subset of ω ; then $Y \subseteq \omega = \tau \emptyset$; moreover, $\sigma Y \neq \sigma 1$; in fact, let $n = \max Y$, and let $z = \langle \{n+1, n+2\}, n+3 \rangle$; by the definition of R, zRx iff $x \ge n+1$; therefore, for every $x \in Y$, zRy; so $z \in \sigma 1 - \sigma Y$, and $\mathscr{F}Y$ is true.

On the other hand, if $\mathscr{F}Y$ is true, then $Y \subseteq \tau 0 = \omega$; moreover Y is a finite set; indeed suppose, by contradiction, that Y is infinite; let $\langle \{i, j\}, n \rangle$ be an arbitrary element of $\sigma 1$. Since Y is infinite, there is an $m \in Y$, such that n < m; then $\langle \{i, j\}, n \rangle Rm$ therefore $\langle \{i, j\}, n \rangle \in \sigma Y$. So, we would conclude $\sigma Y = \sigma 1$, which contradicts our hypothesis. Q.E.D.

DEFINITION 4. We define $\psi(u, v)$ to be the formula $Fu \wedge Fv \wedge [u = v \vee \exists z \forall w (Cmp(w, z) \rightarrow At(u \cdot w) \wedge At(v \cdot w)]$; moreover, we put $\boldsymbol{\approx} = \{\langle x, y \rangle \in \mathscr{A}^2 : \models_{\mathscr{A}} \psi(x, y)\}.$

LEMMA 3. For every $x, y \in \mathcal{A}$, we have $x \approx y$ iff x, y are finite subsets of ω , and $\overline{x} = \overline{y}$.

PROOF. If $A \approx B$, then both A and B are finite subsets of ω : moreover, either A = B, or there is a $Z \subseteq X$ such that, for every connected compo-

nent W of Z, both $W \cap (A - B)$ and $W \cap (B - A)$ have exactly one element; if A = B, then $\overline{A} = \overline{B}$; otherwise, let us consider an arbitrary $a \in A$; there is a unique connected component W_a of Z such that $W_a \cap (A - B)$ $= \{a\}$; furthermore $W_a \cap (B - A)$ has exactly one element, say b_a ; now let us define for every $a \in A - B$, $fa = b_a$; it is easily seen that f is a oneto-one function from A - B onto B - A; then $\overline{A - B} = \overline{B - A}$, therefore $\overline{A} = \overline{B}$.

Conversely, let A and B be finite subsets of ω such that $\overline{A} = \overline{B}$; if A = B, then the claim is obvious; otherwise, let $A - B = \{a_1 \dots a_n\}$, $B - A = \{b_1 \dots b_n\}$, and let $h = \max\{a_1 \dots a_n, b_1 \dots b_n\}$. Let Z be the set $\{a_1 \dots a_n, b_1 \dots b_n, (\{a_1, b_1\}, h+1) \dots (\{a_n, b_n\}, h+1)\}$. By Lemma 1, it is easily seen that the connected component of Z are $W_1 = \{a_1, b_1, (\{a_1, b_1\}, h+1)\}, \dots, W_n = \{a_n, b_n, (\{a_n, b_n\}, h+1)\}$, therefore for every $W_i, W_i \cap (A - B)$ and $W_i \cap (B - A)$ have exactly one element. Therefore $A \approx B$. Q.E.D.

DEFINITION 5. We define $\vartheta_0(x, y, z) = "Fx \wedge Fy \wedge Fz \wedge \exists u (Fu \wedge \psi (u, y) \wedge u \cdot x = 0 \wedge \psi(z, x+u))"$ and $+ = \{\langle x, y, z \rangle \in \mathscr{A}^3 \colon \models_{\mathscr{A}} \vartheta_0(x, y, z)\}.$

It is easily seen that, if x, y, z are finite subsets of ω , then we have +(x, y, z) iff $\overline{x} + \overline{y} = \overline{z}$.

DEFINITION 6. We define $\vartheta_1(u, v, w) = "Fu \wedge Fv \wedge Fw \wedge \exists x \exists y [\psi(x, u) \land \psi(y \cdot \tau 0, w) \land y \ge x \land \forall z (Cmp(z, y) \rightarrow At(z \cdot x) \land \psi(\tau 0 \cdot z, v))" \text{ and } \mathbf{x} = \{\langle x, y, z \} \in \mathscr{A}^3: \models_{\mathscr{A}} \vartheta_1(x, y, z) \}.$

LEMMA 4. For every $A, B, C \subseteq X$, we have $\mathbf{x}(A, B, C)$ iff A, B, C are finite subsets of ω , and $\overline{\overline{A}} \cdot \overline{\overline{B}} = \overline{\overline{C}}$.

PROOF. If $\mathbf{x}(A, B, C)$, then, by Lemma 2, A, B, C are finite subsets of ω ; moreover, there are $D, E \subseteq X$ such that $\overline{D} = \overline{A}, E \supseteq D$ and for every connected component F of E, $\overline{F \cap \tau 0} = \overline{B}$ and $F \cap D$ has exactly one element; therefore, E has exactly $\overline{D} = \overline{A}$ components; now, let $\overline{A} = n$, and let $F_1 \dots F_n$ be the components of E; then $\overline{C} = \overline{E \cap \tau \Theta} = \sum_{i=1}^n \overline{F \cap \tau \Theta}$ $= \sum_{i=1}^n \overline{B} = \overline{A} \cdot B.$

On the other hand, suppose that A, B, C are finite subsets of ω , and $\overline{A} \cdot \overline{B} = \overline{C}$. Let $\overline{A} = n$, $\overline{B} = m$. Let $D = \{0, m, 2m, \dots, (n-1)m\}$, \overline{F}_i $= \{im, im+1, \dots, (i+1)m-1\}$ $(i = 0 \dots n-1)$, $\overline{F}_i^1 = \{(\{h, k\}\}, nm): h, k \in \overline{F}_i\}$, $F_i = \overline{F}_i \cup F_i^1$, $E = \bigcup_{i=0}^{n-1} F_i$. By Lemma 1, it is easily seen that the connected components of E are $F_0 \dots F_{n-1}$; moreover, $\overline{E \cap \tau \mathcal{Q}} = mn = \overline{C}$, $E \supseteq D$, and for every $i, F_i \cap D = \{i\}, \overline{F_i \cap \tau 0} = m = \overline{B}$, therefore we can conclude $\mathbf{x} (A, B, C)$. Q.E.D. Now, we are able to show the following theorem:

THEOREM 1. \mathcal{T} is undecidable.

PROOF. From Lemmas 1-4, it follows that, putting $\mathfrak{F} = \langle \mathscr{F}, +, \times \rangle$, $\mathscr{F}/\boldsymbol{\approx}$ is isomorphic to the standard model $N = \{N, +, \cdot\}$ of natural numbers, therefore the claim follows. Q.E.D.

REMARK. Let \mathscr{T}^n be $\mathscr{T} + \{\tau^n 0 = 1\}$. Since for $n \ge 2$ \mathscr{A} is also a model of \mathscr{T}^n , the above argument shows that, if $n \ge 2$, \mathscr{T}^n is undecidable.

References

- [1] C. BERNARDI, On the equational class of diagonalizable algebras (The algebraization of theories which express Theor; VI), Studia Logica 36 (1975), pp. 321-331.
- [2] A. GRZEGORCZYK, Undecidability of some topological theories, Fundamenta Mathematicae 38 (1951), pp. 137-152.
- [3] R. MAGARI, The diagonalizable algebras (The algebraization of theories which express Theor:, II), Bolletino della Unione Mathematica Italiana (4), 12, Suppl. fasc. 3 (1975), pp. 117-125.
- [4] -, Representation and duality theory for diagonalizable algebras (The algebraization of theories which express Theor; IV), Studia Logica 34 (1975), pp. 305-313.
- [5] F. MONTAGNA, Interpretations of the first-order theory of diagonalizable algebras in Peano Arithmetic, Studia Logica, this issue.
- [6] R. SOLOVAY, Provability interpretations of modal logic, Israel Journal of Mathematic 25 (1976), pp. 287-304.
- [7] L. SZCZERBA, Interpretability of elementary theories, in: Logic and Foundations of Mathematics and Computability Theory pp. 129-145, Dordrecht, Holland, 1977.

INSTITUTE OF MATHEMATICS SIENA UNIVERSITY, ITALY

Received February 16, 1979.