Franco  The Undecidability
MONIAGNA of the First-order Theory
of Diagonalizable Algebras

Abstract. The undecidability of the first-order theory of diagonalizable algebras
is shown here.

Introduction

A diagonalizable algebra is a pair { <, 7), where o is a Boolean algebra,
and 7 is a unary operation on o satisfying the following properties:

1 =1, t(wy) =1y, (z0->0) =121

The diagonalizable algebras constitute an equational class, which we call

DA. An important aspect of the diagonalizable algebras is the following:
Let ¢ = {p,},c. be a sequence of sentences of Peano Arithmetic PA;

let us define a mapping ¢* from the set of the polynomials of D4 into the

set of PA sentences in the following inductive manner:

P*0 =0 =1%  ¢*1 =70 =07  g*s =p; ¢*(f+9) =" fvery;

p*(of) = Tlo*f;  ¢*tf = Theor ¢f.

Then, if f =1 isvalidin DA, for every ¢ as above, ¢*fis a theorem of

PA. (See R. MAGARI, [3]).

In [6], R. SoLovAY shows that, conversely, if, for every ¢, ¢*f is a the-
orem of PA, then f = 1 is valid in DA.

In [5], F. MoNTAGNA extends MAGARI’S result to the first-order theory
" of the diagonalizable algebras. More precisely, the author defines, for
every g as above, a mapping ¢° from the set of the formulas of 4 into the
set of the sentences of PA, and shows that, if 4 is a theorem of 7, then,
for every ¢, ¢° 4 is a theorem of PA.

It is known (see C. BERNARDI, [1]) that DA (that, is, the set of the
equations which are valid in all diagonalizable algebras) is decidable, there-
fore, the set of the polynomials f such that, for every ¢, p*f is a theorem
of DA, is decidable.

In this paper, we show that, on the contrary, the first-order theory 4
of diagonalizable algebras is undecidable. The decision problem remains

1 In the following, +, -, » denote the operations of join, meet, and complementa.-
tion; #-»y is an abbreviation for ww 4 y.



356 F. Montagna

open for the set of the formulas 4 of 7~ such that, for every ¢, ¢° 4 is a theo-
rem of PA.

By [7], in order to show the claim it suffices to find a model o = (4, 7}
of DA, and formulas F(z), v(x, y), d(2, ¥, 2), &;(®, ¥, 2) of the signature
of o/, so that, putting # = {r e A: k, F (@)}, m={{w, y) € A2: F, p(x, y)}
+ ={@,y,d edd: k0 (w,y,2)} and X = {{w,y,2> € A%k, 04(z,
Y, #)}, the following conditions hold:

1) = is a congruence relation in the structure § = (&, +, X>.

2) The quotient /s it isomorphic to the standard model 9 =
(N, -+, .> of the natural numbers.

Now, let us define o ag follows:
Let X be the set wU{({i,j},n>:4,j,new, ¢ #j,1,j <n}. Let R be
the binary relation on X defined by: Ry itf Fi,j,n:i #j;i,j <n, o
={{i,j},n>andy =iory =jory>n Letus define the mapping =
from #(X) into #(X) by vA = {we X:V 2 e X, if Rz, then 2z € A}.

Now, let & be the algebra {(2(X), U, n, ¢, X, @, 7). Since R is
a trangitive and reverse well-founded relation on X, o is a diagonalizable
algebra (see R. MAGARI, [4]). It is easily seen that 10 = w, 2@ = X.
Now, we define

Ip = “g-”

Opx = “Ip = a”

Cnw = “VYuVo[OpuarOpvau-+v > cAw-02 = 0>u-2 = 0 vo
. o 0]77

Aty = “"o = 0AVu(u < o—>u = 0)”
Omp (x, y) = “Cnone < yaAVulCnusu < y—> "o < u).”

It is easily seen that the set {Bs X: k, Op B} constitutes a topology
on X. We denote this topology by T. Of course, for every B, 0 < X, k, CnB
iff B is connected, F Cmp(B, 0) iff B iy a connected component of C;
finally B ¢ X is open iff for each z,y € X, if # € B, and aRy, then y € B.

DerFINITION 1. Let B be a non-empty subset of X. We define T4
={0 < B: 3D X[0p DAC = XnDJ}.

Of course, 7,5 is a topology on B; moreover, it is easily seen that for
every 0 c B, C is open in T, iff, for every #,y € B, if # e C and 2Ry,
then y e C.

DerFiNTIioN 2. Let Y be a subset of X, and let a, b be elements of

Y; we define @ Ryb iff there is a finite sequence w, ... x, of elements of ¥
such that @, = a, ®, = b, and, for every ¢, either xR, , or ;. ,Ruw,.

R, is an equivalence relation on Y.

LevMmA 1. Let Y be a subset of X. Then, Y is connected iff for every
a,beY aRyb.
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Proor. Suppose that Y is connected; let # be an arbitrary element
of ¥, and let ¥ be the set {y e Y: xR ¥} Then, Y is open in the topology
T,y. Moreover, ¥ —7Y is also open in T,y; in fact, if ae Y—Y, beY
and aRb, then b € ¥ — Y. Otherwise, we would have xRy b, and then zRya,
@€Y, a contradiction, Since (¥Y—~7Y)UY =Y and Y is non-empty,
we can conclude that ¥ —Y is empty and that ¥ = Y. Therefore, for
every y € ¥, 2Ry y.

On the other hand, suppose that, for every «,y € ¥ xRpy. Let 4, B
be non-empty subsets of ¥ such that AUB = Y; suppose that both A
and B are open in T,y,. Liet a € A, b € B; since a RI—,b, there is a sequence
@g ... x, of elements of Y such that 2, = a,®», = b, and, for every ¢,
either B, ., or #;,, Ro;. Let #;,, be the first element of the sequence,
which belongs to Bj; then #; € 4; since B is closed under R, if ;1 By,
z;, € ANB; since A is also closed under R, if By By 21y @40 € ANB;
in both cases, ANB is non-empty. Then, Y is connected. Q.E.D.

By Lemma 1, we can easily deduce that, if ¥ < X, the connected
components of ¥ are exactly the equivalence classes determined by the
relation Ry.

Drrinrtion 3. We define oz = yovw; Fr = 2 << 104 Tow = ol;

= {wed:F, Fr}.

Levva 2. Let Y be a subset of X; then FY is true iff Y is a finite
subsel of w.

ProOF. WehaveoY = weX: dyeY xRy}, cX = %0 = {{i, j},
ny: i,j, "€ w, ¢ F#3J,4,J <mn} Suppose that Y is a finite subset of w;
then ¥ © o = v@; moreover, ¢¥ 3 ol; in fact, let » = max ¥, and let
z = ({n+1,n+2}, n+3); by the definition of R, 2Rw iff # > n+1; there-
fore, for every w € ¥, 2Ry; s0 2 € 61 —0cY, and FY is true.

On the other hand, if #Y is true, then ¥ < 70 = w; moreover Y is
a finite set; indeed suppose, by contradiction, that Y is infinite; let {{i, j},
n > be an arbitrary element of ol. Since Y is infinite, there is an m e ¥,
such that » < m; then ({i,j}, n> Rm therefore {{i,j},n)> e c¥. So, we
would conclude oY = o1, which contradicts our hypothesis. Q.E.D.

DeriNirioN 4. We define p(u,v) to be the formula FuaFoa [u
== ov IeVw (Cmp (w, 2) > At (u-w) A At (v-w)]; moreover, we put s = {{z,
y>ed?: Fyp(@, y)h

Leyvwma 3. For every v,y € o, we have v & y iff x, y are finite subsels
of w, and T = ¥.

Proor. If A s B, then both 4 and B are finite subsets of w: moreover,
cither 4 = B, or there is a Z < X such that, for every connected compo-
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nent W of Z, both Wn(4—B)and Wn(B—A) have exactly one element;
if A =B, then A = B; otherwise, let us. consider an arbitrary a e 4;
there is a unique connected component W, of Z such that W ,n(4 — B)
= {a}; furthermore W,N(B —A) has exactly one element, say b,; now
let us define for every a € A — B, fa = b,; it is easily seen that f is a one-
to-one funection from A —B onto B—4; then 4 —B = B— 4, therefore
A = B.

Conversely, let A and B be finite subsets of o such that 4=B 5 if
A = B, then the claim is obvious; otherwise, let A —B = {a,... a,},
B—A ={b;...b,}, and let h = max{a,...a,,b,...b,}. Let Z be the
set {ay...a,,by...b,, ({01, b:}, B+1) ... ({a,, b,}, h-+1)}. By Lemma 1,
it is easily seen that the connected component of Z are W, = {al, by,
({as, b3}, B4+1), oo, W, = {ay,, by, ({8, 8,}, R +1)}, therefore for every
W,y W;n(4 —B) and W,Nn(B —A) have exactly one element. Therefore
A ~ B, Q.E.D.

DEFINITION 5. We define (2, y,2) = “FoanFyarFzadu(Fury
(wy y)au-w = 0A y(z,c+u))” and + = {(z,y,2) e &% kG (2,y,2)}

It is easily seen that, if », y, # are finite subsets of w, then we have
+(z,y,2) itf 8-y =2

DeFINITION 6. We define 9, (u, v, w)= “FurFvAr Fwrdzdyly(z, u)
Ap(y 10, wyAy = e Az (Cmp (2, y)—>At(z-2) A p(20-2,0)" and X = {(z,y,4}
€ % k9 (2, 9,2)].

LevMA 4. For every A, B,C < X, we have ¥ (4,B,0) iff A, B,C
are finite subsels of w, and A - B =C.

Proor. If X (A, B, 0), then, by Lemma 2, A, B, ¢ are finite subsets
of w; moreover, there are D, B < X such that D = A I =2 D and for
every connected component F of H, Frt0 = B and FnD has exactly
one element; therefore, I/ has exactly D=4 componénts; now, let Z = n,

and let F,... F, be the components of H; then ¢ =HBnid = Z‘Fnr@
~3B-iB -

On the other hand, suppose that A, B, C are finite subsets of o, and
A4-B =0. Let A =n,B =m. Let D = {0,m, 2m, ..., (R —1)m}, Fi
= fim,im+1,...,(+-Dm~1} (4 =0...0-1), F; = {({h, k), mm): h,
keF},F, = F,UF;, E:nf): F,. By Lemma 1, it is easily seen that the

connected components of E are ¥, ... F,_,; moreover, Hnt@ = mn = C )
E =2 D, and for every i, F,nD = {i}, F;n70 =m = B, therefore we can
conclude % (4,B,C). QE.D.
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Now, we are able to show the following theorem:
THEOREM 1. J s undecidable.

Proor. From Lemmas 1 —4, it follows that, putting § = (#, +, X,
& |me is isomorphie to the standard model ¥ = {N, 4, -} of natural num-
bers, therefore the claim follows. Q.E.D.

REMARK. Let 7" be 7 4 {z"0 = 1}. Since for » > 2 < is also a model
of 7", the above argument shows that, if » > 2, 7™ is undecidable.
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