
~ONTAG~A 
The Undecidability 
of the First-order Theory 
of Diagonalizable Algebras 

Abstraet. The ~mdeeidability o~ the first-order theory of diagonalizable algebras 
is shown here. 

Introduetion 

A diagonalizable algebra is a pair < d ,  v}, where d is a Boolean algebra, 
,%nd v is a una ry  operation on d satisfying the  following properties:  

~1 = 1, ~(x.y)  = ~x.~y~ ~(~x->x) = rx. ~ 

The diagonalizable algebras const i tute an equational class, which w e  call 
DA. An impor tan t  aspect of the diagonalizable algebras is the  following: 

I~et ~ ~ {p~}~ be a sequence of sentences of Peano Ari thmet ic  P A ;  
let us define a mapping ~* f rom the  set of the  polynomials of DA into the 
set of P A  sentences in the  following inductive manner :  

~*0 = ~0 = 1~; ~'1  = ~0 = 0~ ~*x~ =p~; ~*(f+g) = ~*fv~*g;  

~* (vf) = -']qD*f; ~* vf ---- Theor ~*f. 

Then, :if f = 1 is w l i d  in DA, for every  9 as above, 9*f  is ~ theorem of 
PA.  (See R. MAO~a~I, [3]). 

In  [6], 1~. SOLOVAu shows that ,  conversely, if, for every  9, 9*f  is a the- 
orem of PA,  then  f = 1 is valid in DA. 

In  [5], F. MO~TAG~A extends MAGARI'S result  to the first-order theory  
~" of the  diagonalizable ulgebras. More precisely, the  author  defines, for 
every  9 as above, a mapping ~~ from the  set of the  formulas of ~- into the  
set of the  sentences of PA,  and shows that ,  if A is a theorem of 3-, then, 
for every  9, 9~ is a theorem of PA.  

I t  is known (see C. BEn~A~DI, [ 1 ] ) t h a t  DA (that,  is, the  set of the  
equations which are valid in all diagonalizable ~lgebras) is decidable, there- 
fore, the  set of the  polynomials f such that ,  for every ~, ~*f  is a theorem 
of DA, is decidable. 

In  this paper~ we show that ,  on the  contrary,  the  first-order theory  3- 
of diagonalizable algebras is undecidable.  The decision problem remains 

1 In the following, + , . ,  v denote ~he operations of join, meet, an4 eomplemen~- 
1.ion; x->y is an abbreviation for ~x§ y. 
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open for the  set of the  formulas A of f such that ,  for every % ?OA is a theo- 
rem of /~A.  

B y  [7], in order to show the  claim it suffices to find a model  ~r = <A, T) 
of D A ,  and formulas ~(x) ,  ~(x,  y),  #o(X7 Y, z)7 #l (x ,  y ,  z) of the  signature 
of d ,  so that ,  pu t t ing  ~ = {x e A:  ~ ~V(x)}, ~ = { ( x ,  y> e As:  ~z  ~(x ,  y)} 
+ = {<xTy, z > e A ~ :  ~ o ( X ~ y , z ) }  and X = { < x , y , z > e A 3 :  ~ l ( x ,  
y,  z)}7 the following conditions hold:  

1) ~ is a congruence relation in the  s t ructure  ~ = ( Y ,  + ,  •  

2) The quotien~ ~ ] ~  is isomorphic t o  the  s tandard model 9l = 
<-~, +~ .> of the  na tura l  numbers .  

~ow7 let  us define ~r as follows: 
Le t  X be the  set o ~ w { < { i , j } T n ) : i T j ,  n e o  h i =/=j, i 7 j < n } .  Let, R be 
the  b inary  relation on X defined by :  xRy  iff I f ,  J7 n : i  # J i i7 j < n, x 
= <{i 7 J} 7 n )  and y = i or y = j or y > n. I~et us define the  mapping 

from ~ ( X )  into ~ ( X )  b y  7:A = {x e X :  V z e X 7 if t R z  7 then z e A}. 
~ow~ let d be  the  algebra <~(X) ,  w~ r~ 7 ~d7 X~ O, v). Since R is 

a t ransi t ive and reverse well-founded relat ion on X7 d is a diagonMizable 
algebra (see 1~. ~IA~AgI, [4]). I t  is easily seen tha t  v O -  co 7 z~O = X. 
~ow~ we define 

Opx  = " Ix  = x"  
C~x = " V u V v [ O p u ^ O p v A u + v  >~ XAU.V .x  = O-~u.x = 0 v v . x  

= 0]" 
A t x  = " ~ x  = O ^ V u ( u  < x ~ u  = 0) 77 

Cmp(x~ y) = "CnXAX ~ y A VU[CnuA u ~ y ~ - ] x  < u]. '7 

I t  is easily seen t ha t  the  set {B~_ X :  ~ Op B} consti tutes a topology 
on X. We  denote this topology b y  T. Of course, for every B7 C ~ X7 ~ C~,B 
iff B is connected,  ~ C m p ( B ,  C) iff B is a connected component  of C; 
finally B ~ X is open i~f for each x7 y e X~ if x e B~ and xthd7 then  y e B. 

DEFINITIOI~ 1. Le t  B be ~ non-empty  subset  of X.  We define T~n 
= {C ~_ B:  ~D ~_ X [ O p D ^ C  = X n D ] } .  

Of course, TI~ is a topology on B~ moreover~ it is easily seen tha t  for 
every  C ~_ B,  C is open in T~B iff7 for every  x 7 y eB~ if w e C and xRy,  
~ h e n y  e C. 

D ~ i ~ i ~ i o ~  2. Let  Y be a subset  of X7 ~nd let a7 b be elements of 
Y; we define a R~.b iff there is a finite sequence x0 ...  x~ of elements of Y 
such tha t  xo ~ a~ x n ~ b~ ~nd, for every  i~ either x~Rx~+~ or x~+~Rx~. 

R v is ~n equivalence relat ion on :Y. 

I m ~ _ A  1. .Let  ~ be a subset of X .  The~ b ~ is connected i f f  for every 
a~ b e :Y aRv b. 
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PImo~ ~. Suppose t ha t  Y. is connected; let x be an arbi t rary  element 
of Y, and let ]7 be the set {y e Y: xR~y}. Then, ]7 is open in the  topology 
T~. ~Ioreover, IT-- y is also open in T~r; in fact, if a e IZ-- Y, b ~ Y 
and aRb~ then b e 1 z- Y. Otherwise~ we would h~ve xRyb, and then x/~ya~ 
a e Y, a contradiction. Since (Y--]7)t)]7 = I r and ]7 is non-empty, 
we c~n conclude that Y--Y is empty and that Y = Y. Therefor% for 

every y e ]77 xRyy. 
On the other hund,  suppose that ,  for every x,  y e Y x R r y .  Let  A ,  B 

be non-empty  subsets of Y such tha t  A w B  ---- Y; suppose t h a t  both  A 
and B are open in T~y. Let  a e A, b e B;  since a Rpb,  there is a sequence 
x 0 . . . x .  of elements of Y such tha t  x o - - - a , x , ~ - - b ,  ~nd, for every i, 
either xiRxi+ ~ or x~+~Rx~. Let  x%+~ be the first element of the sequence, 
which belongs to B;  then x% c A ;  since B is closed under  R, if xio+~Rxio 
x% e A ~ B ;  since A is also closed under  R, if xioRx%+~, x%+~ e A n B ;  
in both  eases, A n B  is non-empty.  Then, Y is connected. Q.E.D. 

By  Lemma 1, we can easily deduce tha t ,  if I z _ X ,  the connected 
components of I z are exact ly  the equivalence classes determined by the  
relation RF.  

DEFINITION 3. We define ox ---- uzvx; _Fx ---- x ~< 30A -]ox = al; 

= {x e l :  ~ , / ~ x } .  

LE~:B~A 2. Let Y be a subset of X ;  then ~>Y is true i f f  I T is a f ini te 
subset ,of a,. 

PnooF. W e h a v e a Y  = (x e X :  3 y  e Y x R y } ,  o X  = ~ 3 0  = { i { i , j } ,  
n}: i ,  j ,  n e m, i -~ j ,  i, j < ~}. Suppose t h a t  IT is a finite subset of co; 
then  I z = co ---- 30;  moreover, o I  z r o l ;  in fact,  let n = maxY~ and let  
z = < { n + l ,  ~+2} ,  n + 3 } ;  by  the definition of R, zRx  iff x >~ n + l ;  Olere- 
fore, for every x e Y, zRy;  so z e a l  - - a i  r, and ~ Y  is true. 

On 'the other hand,  if ~17  is true, then  I z c 30 ---- co; moreover Y is 
a finite set; indeed suppose, by  contradiction~ tha t  Y is infinite;  let <{i ~ j}, 
n > be an arb i t ra ry  element of al .  Since 1 ~ is infinite, there is an m e Y~ 
such t h a t  n < m; then  <{i,j},  n> R m  therefore <{i , j} ,  n}  e oY .  So, we 
would conclude aiY = a l ,  which contradicts our hypothesis.  Q.E.D. 

D~FI~ITIO~ ~. We define V(u, v) to be the formula HuA.EVA [u 
-- vv  3 zVw(Cmp(w ,  z ) - + A t ( u . w ) A A t ( v . w ) ] ;  moreover, we put  ~ -- {<x, 

Y > e~/'2 : ~z  iv( x ,  Y)}- 

L ~ , [ A  3. For every x,  y e o/, we have x ~ y i f f  x ,  y are f ini te  subsets 

P~ooF. I f  A ~ B, then both A and B are finite subsets of co: moreover, 
either A ---- B, or there is ~ Z c X such thut ,  for every connected compo- 

3 -  S t u d i a  L o g i c a  39/4 
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nent  W of Z, both  W n (A - B) and W n (B - A) have exactly one element;  

if A = B, then _4--= B;  otherwise, let u s  consider an arb i t rary  a ~ A;  
there  is a unique connected component  Wa of Z such tha t  W a n ( A - - B )  
= (a}; fur thermore  W a n ( B - A  ) has e x a c t l y  one element,  say ba; now 
let us define for every a e A - - B ,  fa = ba; it is easily seen tha t  f is a one- 

to-one funct ion f rom A - - B  onto B - - A ;  then  A - - B  = B--A~ therefore 
~ = ~ .  

Conversely, let A and B be finite subsets of co such tha t  2~ = / ~ ;  if 
A = B, then  the  claim is obvious; otherwise, let  A--B-- - -{a l  ... a~}, 

J 

B - - A  = {b~...b~}, and let  h = m a x { a l . . . a ~ , b ~  .b~}. Let  Z be the  
set {a~ ... an, 51 ... bn, ({a~, b~}, h ~ - l ) . . .  ({an, bn} , h-bl)}. ]~y Lemma 1, 
it is easily seen tha t  the  connected component  o~ Z are W~ = {a~ b~, 
((a~, b~}, h §  . . . ,  W~ = {a~, b~, ({a~, b.}, h §  therefore for every 
W i, Wi(~ (A -- B) and W i n  (B --A) have exact ly one element.  Therefore 
A ~ B. Q.E.D. 

DEFINITION 5. W e  define ~8o(x, y,  Z) -~- "FXA~yA~ZA~U(.FZ~A~ 
(u, y )Au ' x  = 0A F(z, x §  and + = {(x, y,  z} e ~/~: ~r ~0(x, y,  z)}. 

I t  is easily seen that ,  if x, y,  z are finite subsets of o~ then  we have 
-i-(x, y, z) iif ~ §  = ~. 

DnFINI~IO~ 6. We define ~ ( u ,  v, w ) =  "FUAFVA FWA3X3y[~o(x~ u) 
~ ~f(y'zO, w) A y >~ x~ Vz(Cmp(z, y )~A t ( z . x ) ^  ~(~O.z, v)" a n d •  = ((x,y~z} 
e ~1~: ~ ~ (x, y, z)}. 

L ~ i ~  4. For every A , B , C ~ _  X, we have ~ ( A , B , C )  iff  A , B , C  

are finite subsets of ~o, and A .  t~ = C. 

P~ooF. If  R (A~ B~ C)~ then~ by  L e m m a  2, A,  B, C are finite subsets 

of ~o; moreover,  there  are D~ E _  X such tha t  /~ = A--, B ~ D and fc~r 

every connected component  ~ of E,  ~ - ~ v 0 - - - B  and I ~ D  has exact ly  

one e lement ;  therefore, E has exact ly  D = A components;  now, let  A ----- n, 

and let  F~ . . . / ~  be the  components  el E ;  then  C = E ( ~ - ~  = ~ / ~ ( ~ 0  

i~l 
On the  other  hand,  suppose tha t  A,  B,  C are l inite subsets of o~, and 

] . ~  = ~  ~ e t  ~ = n ,  ~ = ~ .  = e t  D = {0, ~, ~,~, ..., (n-~)~}, ~=, 
= { i ~ ,  i ~ + ~ ,  . . . .  , ( ~ + ~ ) ~ - ~ }  (i  = o . . .  ~-~), ~ : { ( {h ,  ~ ) } ,  ~ ) :  h ,  

k e ~i}, i~  F ~ u F ~  E : U F~. By Lemma  i~ it is easily seen tha t  the  
i=0 

connected components  of E are ~ o . . .  s moreover,  EnvO = m n  = C, 
E ~_ D~ and for every i ,  I~(~D = { i } ~ / v ~ 0  = m ---- B~ therefore we can 
conclude g (A, B,  C). Q.e.D. 
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Now, we a,re able to show the following theorem:  

T ~ o n ~ ) ~  t .  3- is undeeidable. 

Pnoos .  F r o m  Lemmas 1 --4, it follows that ,  pu t t ing  ~ = (-~, + ,  • }, 
~ - / ~  is isomorphic to the  s tandard  model N = {5 r, §  .} of naturM num- 
bers, therefore the  claim follows. Q.:~.D. 

I~v,J.~A~K. I~et 3-n be 3- g- {z~0 = 1}. Since for n ~ 2 a / i s  Mso n model 
of 3-n, the  a, bove argument  shows tha.t~ if n ~ 2, 3 -~ is undecidable. 
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