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Abstract. The spatial resolution of meteorological observations of scalars (such as concentrations or
temperature) and scalar fluxes (e.g., water-vapour flux, sensible heat flux) above inhomogeneous
surfaces is in general not known. It is determined by the surface area of influence or source area of
the sensor, which for sensors of quantities that are subject to turbulent diffusion, depends on the flow
and turbulence conditions.

Functions describing the relationship between the spatial distribution of surface sources (or sinks)
and a measured signal at height in the surface layer have been termed the foorprint function or the
source weight function. In this paper, the source area of level P is defined as the integral of the source
weight function over the smallest possible domain comprising the fraction P of the total surface
influence reflected in the measured signal. Source area models for scalar concentration and for passive
scalar fluxes are presented. The resulfs of the models are presented as characteristic dimensions of the
P =50% source areas (i.e., the area responsible for 50% of the surface influence): the maximum
source location (i.e., the upwind distance of the surface element with the maximum-weight influence),
the near and the far end of the source area, and its maximal lateral extension. These numerical model
results are related directly to non-dimensional surface-layer scaling variables by a non-linear least
squares method in a parameterized model which provides a user-friendly estimate of the surface area
responsible for measured concentrations or fluxes. The source area models presented here allow
conclusions to be made about the spatial representativeness and the localness (these terms are defined
in the text) of flux and concentration measurements.

1. Introduction

In recent years the interests and efforts of boundary-layer meteorologists have
increasingly been directed towards problems of surface-atmosphere interaction
over spatially inhomogeneous regions. At the base of most such problems lies
the fundamental difficulty that the well-established homogeneous surface-layer
relationships used to describe turbulent exchange of heat, mass and momentum
collapse in regions of inhomogeneity. Clearly, however, the atmospheric impli-
cations of surface inhomogeneity are primarily a problem of scale and resolution:
relatively large-scale (and geometrically simple) surface inhomogeneities can often
be resolved well by models or observation networks, and thus the varying regimes
of exchange processes over different surface patches can be described and mod-
elled relatively accurately. As a result, our physical understanding of phenomena
such as sea-breeze systems, the urban heat island or the development of internal
boundary layers is quite advanced and for many purposes sufficient.

The detailed resolution of individual patches comprising an inhomogeneous
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surface of a fine texture (e.g., urban areas, agricultural patchwork, etc.) on the
other hand is in most cases impractical, or even impossible. The spatial resolution
of observations is in general not known at all or only vaguely guessed at. It is
determined by the “field of view” or the surface area of influence of the sensor.
Whereas the effective field of view of surface radiation sensors can (to first order)
easily be evaluated by geometrical considerations (see Schmid ef al., 1991), the
problem is not so simple for sensors of quantities that are subject to turbulent
diffusion: the surface-““field of view” (in a figurative sense) is determined by
turbulent diffusion itself and is constantly changing in size and position, depending
on wind direction and speed and on other characteristics of the flow.

Due to these difficulties (and the need to obtain and interpret observations
nevertheless), a number of studies have recently emerged that address the relation-
ship between the spatial distribution of surface sources (or sinks) and a measured
signal at height in the surface layer (e.g., Gash, 1986; Schmid and Oke, 1988,
1990; Schuepp et al., 1990; Leclerc and Thurtell, 1990; Wilson and Swaters, 1991;
Horst and Weil, 1992a,b; Leclerc et al., 1992). These studies focus on a common
problem (originally discussed by Pasquill, 1972), but their separate approaches
lead to different instruments of solution that are not applicable interchangeably.
For clarity, these may be divided into two classes: the source weight function or
footprint (e.g. Schuepp et al., 1990; Leclerc and Thurtell, 1990; Horst and Weil,
1992a,b; Leclerc et al., 1992) and the “effective fetch” or source area (Gash,
1986; Schmid and Oke, 1990; Horst and Weil, 1992a,b). The source area can be
interpreted as the integral of the source weight function over a specified domain
(both these terms are defined rigorously in Section 2). Wilson and Swaters (1991)
introduce the ““distribution of contact distance” which is roughly similar to the
source weight, but contains mixed-layer as well as surface-layer diffusion effects.
Among these studies, both Eulerian and Lagrangian frameworks are used, but
Horst and Weil (1992a) show that they are equivalent for source weight calcu-
lations that are confined to the surface layer.

Some of these papers refer to the diffusion of scalars (such as heat, water vapour
or other atmospheric admixtures) and their concentration, others to the fluxes
of scalars or to both, and Schmid and Oke (1990) do not distinguish between
concentrations and fluxes with sufficient emphasis (as has been pointed out by
Horst and Weil, 1992a). In addition, it is felt that the terms footprint and source
area are used rather loosely and inconsistently in this group of papers, which can
easily lead to misconceptions and confusion. At the 10th Symposium on Turbulence
and Diffusion (AMS, 1992; Portland, Oregon), the validity of the term “footprint”
was questioned, since it suggests an incorrect causal relationship (M. Roth, 1992;
personal communication). In the following, the term source weight function
(Schmid and Oke, 1988) will be used instead of fooprint function, due to its more
descriptive quality.

The purpose of the present work is to extend the concepts presented in the
above contributions and to offer a clear terminology and notation.
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2. Source Weight Functions and Source Areas

The distribution of a diffusing quantity in the atmosphere can be described by the
integral equation of diffusion (Pasquill and Smith, 1983):

n(r) = L 0,() - fx — 1) — dr’, W

where 7 is the value of the quantity at point r, originating from the source with
strength Q,, at r', fis the probability transfer function between r and r’ and the
convolution is performed over domain #. If the source strength distribution is
confined to the surface (z = z,) and diffusion parallel to the mean wind direction
(i.e., along the x-axis) is neglected, (1) may be written for an observation point
at (0,0, z,,):

10,0, z,n) = J J Oy(x,y,2=20) f(=%, =y, Zm — 20) - dx - dy .

@)

In this case, f(—x, —y, 2, — zo) relates the value of 5 at (0,0, z,,,) to the source
distribution on the ground and will henceforth be referred to as the source weight
function. The functional value of the source weight can be interpreted as the
relative weight of a given source (at xs, ys, 29, Say) to contribute to the value of
0 at an observation or reference point. The source weight is thus dependent on
the separation distance between the source and the reference point. Its functional
form, however, is determined by the diffusion and transport properties relevant
for the distribution of 7, and on the nature of 7 itself, as can easily be seen by
considering a point source of unit strength at (xs, ys, zo), such that

Qn(xa s ZO) = Qn,u : 6(x5 - x) : 5(ys - y) : (3)

Here, Q.. is a constant of unit source strength to ensure dimensional consistency
and m is the Dirac-delta distribution function. Thus, if the convolution (2) is
performed with (3), the value 5(0,0, z,,,) is proportional to the source weight
function f:

17(07 01 Zm) = Qn‘u " f(_xsa “Vss Zlm T ZO) . (4)

Here n may be any diffusing quantity, but whether it is a scalar or (e.g.) a scalar
flux must be reflected in the functional form of f. If the diffusion of 7 is passive
and individual sources are independent of each other, it thus suffices to compute
the distribution of 7 at level z,, due to a surface point source with horizontal
separation (x, y), in order to evaluate its source weight function. In an advective
situation, most of the output from sources close-by will not have enough time to
be diffused up to z,, before being advected past the reference point. Thus, the
source weight is small for small separation distances. It will rise to a maximum
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Fig. 1. The source area and its relation to the source weight function. The source weight is small for

small separation distances. It will rise to a maximum with increasing distance and then fall off again

to all sides as the separation is further increased. The total volume under the source weight function

is @ior. P is the fraction of this volume bounded by the isopleth fp, and the cylinder surface below it

(hatched). The source area of level P, Qp, is the area bounded by the normal projection of the isopleth

f» on the x-y-plane. Horizontally homogeneous turbulence is assumed, with the mean wind direction
parallel but counter to the x-axis direction.

with increasing distance and then fall off again to all sides as the separation is
further increased (see Figure 1 for a schematic illustration). Here, and in the
following, horizontally homogeneous turbulence is assumed, with the mean wind
direction parallel but counter to the x-axis direction. The latter assumption is
equivalent to a reflection of the coordinate system relative to the z-axis and
simplifies the notation by placing upwind sources in the x =0 semiplane (no
negative signs in (4)).

The source weight function provides information about the relative weights of
individual point sources. In practice, however, it is often desirable to obtain an
estimate of what region of the surface is most efficiently influencing the value of
1 at height z,,,. In other words, one might ask: what is the smallest possible area
to be responsible for a given contribution P (half, say: P = 0.5) to the value of 7
at height z,,? (Note that only the specific source weight, i.e. the influence of a
given source relative to its source strength, is considered here. In effect, this
assumes that the surface is made up of an infinite array of unit point sources of
possibly different species).

The smallest such area, (), was termed the source area of level P by Schmid
and Oke (1988). 1t is defined as the area bounded by a source weight function-
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Fig. 2. Schematic illustration of the bounding isopleth for the source area Qp. The integration limits

for the area bounded by the isopleth are defined in the y-direction by the range —ypn <y < +ypn,

where *yp,, is the maximal width of the isopleth in positive and negative y-direction respectively; and

in the x-direction by the two curves y = g1(x) and y = g»(x), defined in the ranges xp; < x < xp,, and

Xpm < X < Xp, respectively. The inverse of these curves x = gi5(y). If lateral diffusion is Gaussian,
symmetry relative to the x-axis can be assumed.

isopleth f(x,y, z. — zo) = fp, such that P is the fraction of the total integrated
source weight function, ¢, contained in Qp:

+o0 +ox
P:&'ZJ Jf(x:y’Zm_ZO).dx.dy/‘( J f(x’y’zm—z())‘
Prot Qp = /0

where ¢p is the integral of the source weight function over Q. The source area
and its relation to the source weight function is illustrated schematically in Figure
1. The source area fraction P is equivalent to the volume under the source weight
function, bounded by the isopleth fp, and the cylinder surface below it.

With (4), Equation (5) reduces to:

P:’QD_PZJ fﬂ(x,y,Zm)'dX'dy/J J U(X,yzzm)'dx'dY7
Prot Qp —= /0

and Qp is bounded by 7(x, y, z,,) = np, where the vertical separation (z,, — zo).is
denoted in simplified form as z,,,.

Figure 2 is a schematic representation of an oval-shaped (p, illustrating the
integration limits used to compute ¢p, which can thus be written:

(6)
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(FYpm) (=25 ON
| 7%, ¥, ) - it - dy )

=)
Pp =
Qn,u (—ypPm)

(r=g1 " ()

(see Figure 2 for an explanation of the boundaries).

In this form, the definitions of the source weight function {Equations (2) and
(4)) and of the source area (Equations (5) and (6)) appear simple. However, as
with all applications of the integral equation of diffusion, to give these equations
teeth, the nature of the transfer function, in this case of f, or rather of 7, needs
to be determined, and therein lies the problem. In the following sections, the
source weight and the source area for the concentration of a passive scalar (Section
3) and for the flux of a passive scalar (Section 4) will be presented. If a concentra-
tion-source area is considered, the notation of the foregoing equations is adjusted
so that n becomes the scalar concentration, C, and the unit point source, Q. .,
becomes Q¢ . In case of a flux-source area, n becomes the vertical flux, F, and
the unit point source becomes simply F,. The approach chosen here is based on
K-theory and an analytical solution of the advection-diffusion equation by van
Ulden (1978). However, the validity of Equations (4) and (6) is not confined to
this particular method.

If K-theory is used, the core of any model for the source weight function or the
source area (be it for a scalar concentration or a scalar flux) is formed by the
scalar concentration distribution C(x, y, z). Depending on the choice of the func-
tional form of the concentration distribution, and of the shape of the wind-
profile, ii(z), analytical solutions for the source areas of scalars and scalar fluxes,
respectively, may be possible. However, the present study employs a surface-layer
dispersion model presented by Gryning et al. (1987), which by itself cannot be
solved analytically, but has the advantage of including thermal stratification and
a realistic wind profile. This dispersion model is the same as that used for the
scalar source area model (SAM) by Schmid and Oke (1988, 1990), but is extended
to include stable stratification here. The determination of C(x, y, z,,,) is strongly
dependent on the reference height z,, and is further affected by the familiar
surface-layer scaling parameters: the Obukhov length, L; the surface roughness
length, z,; the friction velocity, u,; and the standard deviation of lateral wind
speed fluctuations o ..

The steps undertaken in the computer implementation of the source area models
for scalar concentrations (Scalar source Area Model, SAM) and for scalar fluxes
(scalar Flux-Source Area Model, FSAM) are similar. In principle, the distribution
of scalar concentration, C(x, y, z,,), (in case of SAM) or of the flux, F(x,y, z,),
for FSAM, due to a unit surface point source, is given for any downwind location
(x, y) by a suitable diffusion model. However, due to numerical limitations, these
distributions can be computed only for x = X,,;,. This minimum separation distance
needs to be determined in a preliminary step. The remaining steps to compute
the source areas for several values of P can be summarised as follows (again, 7
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Fig. 3. Characteristic dimensions of the source area. x,,: maximum source location (upwind distance

of the surface element with the maximal influence on a given sensor); a: near end; e: far end; and d:

maximum lateral half-width of the source area (from Schmid et a/., 1991). The size of the area bounded

by the isopleth is denoted as Ar, and the upwind distance of the maximum width (d) as x,. Wherever

applicable, the SAM dimensions for a scalar concentration are provided with an index ‘¢, to distinguish
them from the FSAM dimensions of the flux-source area (index ‘f’).

is equivalent to the source weight distribution and stands for C or for F, as the
case may be):

1. The maximum value of the distribution function and its location, Mmax and
X, 18 determined by a numerical search.

2. A number of n-values are defined as fractions of np.: m;, fori=1,...,n.

3. The isopleths corresponding to 7; are determined by root-finders and the
source weight functions are integrated incrementally between each two suc-
cessive isopleths to give the P-levels, P;, corresponding to each isopleth level
1:. The pairs (P;, n;) are considered as nodes of a continuous function n =
n(P).

4. The isopleth values corresponding to round decadal-fraction values of P
are determined by cubic spline interpolation of the function n = n(P). The
characteristic dimensions of these isopleths are then determined by numerical
search methods. Apart from the upwind distance of the maximum source
location (x,.), which is computed in step 1 and is independent of P, these
dimensions are (see Figure 3): the upwind distance to the near end of the
isopleth (@) and to the far end of the isopleth (e), and the maximum lateral
half-width of the isopleth (d). In addition, the size of the area bounded by
the isopleth is determined (Ar).
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3. The Source Area for a Passive Scalar

3.1. SAM-2: THEORY

Following Horst and Weil (1992a), the concentration distribution, C(x, y, z,,),
downwind of a unit surface point source of a passively diffusing scalar can be
described as:

. Dy(xa y) i Dz(x’ zm)
U(x)

C(xa ¥, Zm) = QC,u s (8)

where Q¢ is the unit point source strength, D, and D, are the crosswind and
vertical concentration distribution functions, respectively and U(x) is the effective
speed of plume advection (i.e., the vertical integration, from z, to =, of the local
windspeed times D ; see e.g., Horst and Weil, 1992a). In (8) and in the following,
streamwise diffusion is neglected and the x-axis is chosen to be parallel to the
mean wind direction. As indicated by (8), lateral crosswind diffusion and vertical
diffusion can be treated independently. Equation (8) is the equivalent of (4) for
a passive scalar, so that the scalar concentration-source weight for a reference
point at z = z,,,, and sources at z = z, and horizontal separation (x, y) is:

C(xa Y, Zm) _ Dy(x’ y) i Dz(xa zm)
Qc. U(x) '

fC(xsy’ Zm_ZO)z (9)

Gryning et al. (1987) provided a closed set of equations for D,(x, y), D,(x, z) and
U(x), dependent on standard surface-layer scaling parameters and based on an
analytical solution of the Eulerian advection-diffusion equation by van Ulden
(1978) for vertical diffusion, to give:

D.(x,2) = - exp] - (I—LZ)} , (10)

Z(x) Z

where A =s-T'(2/5)/T*(1/s) and B =TI'(2/s)/T(1/s) are functions of the shape
parameter, s, I' is the gamma function, and 7 is the mean height of the plume.
An equation to determine the shape parameter s can be found in Gryning et al.
(1987), and a discretized integration of dz/dx (see van Ulden, 1978; his equation
(16)) has been used to compute Z(x).

Diffusion in the lateral direction is commonly assumed to be Gaussian, so that
D,(x, y) can be written:

D,(x, ) = El—; expf - %(;})} . )

Here o is the standard deviation of the lateral spread and can be related to the
plume travel time, x/U, and the standard deviation of lateral wind fluctuations,



SOURCE AREAS FOR SCALARS AND SCALAR FLUXES 301

o, as o,=0,-x/U, if the validity of the short range-limit solution of statistical
turbulence theory is accepted for this purpose (see e.g., Pasquill and Smith, 1983).

The scalar concentration-source area is evaluated by substituting (9) into (6) to
give:

PC: ¢PC:J J’Dy(x’y)-DZ(x’Zm)-dx'dy/
Prote Qp, U(x)

- coDy(xv)J) 'Dz(xa Zm) 3 .
J_w L oo dx - dy . (12)

The subscript C is included in Pc and @ior., t0 indicate the scalar concentration-
source area.

At this point it is convenient to consider the evaluation of ¢p. and ¢ separ-
ately. Since [Z.. D, -dy = 1, the integration of ¢, can be simplified to

Protc = —1‘_f D {(x, zm)/U(x) -dx. (13)
QC,u 0

The integrand of (13) expresses the ratio of vertical diffusion to advection of C.
In stable conditions, this ratio increases with increasing x, whereas it approaches
a limit of zero for x — o in unstable conditions (Horst, 1993; personal communi-
cation). Thus (13) converges to a finite value only in unstable conditions. However,
if lateral diffusion is taken into account, the source weight of C approaches zero for
X — % or y — + (at least within the ranges of stability and cross-wind turbulence
intensities used in this study; see below). Because of this difficulty, an alternative
definition of the total source area for scalar concentration is employed for SAM-
2: @ is interpreted as an effective total source area and is approximated by
integrating the C-source weight function to an isopleth of 1% of the maximum.
This approximation implies that sources outside this 1% limit are insignificant for
determination of the concentration at the reference point.

The integration of ¢p. involves the determination of the y-dependent boundaries
in x(x = gch2(y), where the subscript C indicates the boundary for a scalar
concentration-source area), as described in Figure 2 and Equation (7) and symme-
try relative to the x-axis can be assumed. In practice, the inversion of the functions
gc,1,2 involves a numerical search procedure. The computer implementation of
this update of the scalar-source area model of Schmid and Oke (1990), with an
extension to include stable stratification (SAM-2) follows the procedure outlined
at the end of Section 2. The model is coded in FORTRAN and draws on the
subroutine libraries published by Press er al. (1986) and Beljaars ef al. (1989).

3.2. SAM-2: RESULTS

The form of the relationship between the modelled source area dimensions and
the input variables was evaluated by a large number of SAM-2 runs in a sensitivity
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test for the wide range of input values that can be expected in the atmospheric
surface layer. If the source area dimensions described in Figure 3 are scaled by
20 (z% in the case of the area, Ar.), the sensitivity test shows clearly that all
dimensions are dependent on the non-dimensional variables z,,/z, (indicating the
measurement height above the roughness elements) and z,/L (indicating the
strength of buoyancy at the reference height), but only the crosswind dimension,
d., and the area, Ar., are also dependent on o,/u,, the strength of lateral wind
fluctuations. The resulting normalised dimensions are presented in Figure 4a-h
(stable conditions) and Figure Sa—h (unstable conditions) for the scalar concentra-
tion-source area with P = 0.5 (i.e. the 50% influence source area).

The dependence of Ar,/z% and d./z, on the magnitude of crosswind turbulence
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Fig. 4. Dependence of the normalised characteristic dimensions of the scalar-concentration-source
area (SAM-2) on the non-dimensional input variables, stable conditions: (a) dependence of the area
size on measurement height; (b) dependence of the largest lateral extension on measurement height;
stability dependence of (c) the area size, (d) the largest lateral extension, (e) the near upwind boundary,
(f) the far upwind/boundary, (g) the upwind distance of the largest lateral extension, and (h) the
maximum source location. See Figure 3 for a schematic illustration of these dimensions.

(0,/uy) is linear, in accordance with the linear model of o, used in this application.
The nearly straight lines of the Ar./z3 and d./zq dependence on z,,/z¢ in the log-
log representation of Figures 4a,b and 5a,b suggest a positive power-law relation-
ship between the measurement height and these dimensions. Corresponding plots
for the other isopleth dimensions exhibit a similar relationship and are therefore
not shown here. In comparison to the measurement height, the dependence on
stability (z,,/L) is much weaker, and does not suggest a straightforward power-
law relation (Figures 4c—h and 5¢-h).
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The forms in which the normalised source area dimensions depend on non-
dimensional variables, as suggested in these model runs, are exploited in a non-

linear parameterisation scheme presented in Section 5.

4. The Source Area for a Scalar Flux

4.1. FSAM: THEORY

Before the source area for a scalar flux can be computed, the source weight
function for a scalar flux needs to be considered. An expression for this function

is developed following Horst and Weil (1992a).
Using K-theory, the vertical flux of C, F, is expressed (using (8)) as
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Fig. 5. Same as Figure 4, for SAM-2 in unstable conditions.

aC D, 4D,
F(x,y,2) = = Ke(z) — =~ Kc(2) - Ocpu =2 - —
a9z U az

D,(x.y) F(x,2), (14)

It

where Kc(z) is an eddy diffusivity and F” is the crosswind integrated flux. Equa-
tions (8) and (14) imply that diffusion in the vertical and crosswind directions can
be treated independently also for a scalar flux.

The crosswind integrated flux F” is related to the crosswind integrated concen-
tration C” and the mean wind speed profile i#(z) through the two-dimensional
advection diffusion equation:
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d 0 —
a(z)-—C’=—-—F". (15)
ox 0z

This equation may be integrated and the vertical flux at level z,, is expressed as:

Zm

F(x, 2m) = F7(x, z0) — J a(z) -f;z‘_y(x, z)-dz . (16)

<0

Applying a boundary condition of a crosswind integrated unit point source, F2,,
at ground level such that F”(x, zo) = F7, - 8(x), this equation is reduced for x >0
to:

F(x>0,z,)=— J i(z) éiﬁ(x, z)-dz. 17)

20

With (4), (14), (16) and (17), the two-dimensional flux-source weight function
fr(x,y, Zmzo) becomes:

Fx,y,2m) _
F,

"Dy(x, ). (18)

fEX, Y5 2m =~ 20) = — [Fy(x 20) + F'(x>0,2,)]-

The dependence of the crosswind integrated form of this function on measurement
height, surface roughness and stability is analysed extensively by Horst and Weil
(1992a).

With this definition of the flux-source weight function and with Equation (6),
the flux-source area (p,, of level Pp, is formulated as the area bounded by an
isopleth of F(x, y, 2, — 20) = Fp, such that Pris the fraction of the total integrated
source weight function, ¢o(,, contained in Qp,:

;DPF JQ jF(x Y5 Zm) - dx dy/f J F(x, v, 2,,) - dx - dy ,
o (19)

where ¢p, is the integral of the source weight function over (. This is in analogy
to the definition of the scalar concentration-source area (see Figure 1 for a sche-
matic illustration). Again, it is useful to consider @, and ¢p, separately.

The total integrated source weight function, ¢or,, is evaluated as:

L= Lo
<Ptotf=~'[ J F(x,y,zm)~dx-dy=—-J F'(x,2,)-dx. (20)
F, )_wlo F, Jo

With (16) this equation becomes
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¢=Fi{ J: [ﬁ(x, Z0) — f:a(z)ét’m, z)-dz] -dx}, @1

and can be simplified to

- 2
Groty = 1. {f F7(x, zo) - dx — J' i(z) - CP(x, 2) [1Z5 - dz} . (22)
Fu 0 z0

The term inside the brackets is the areally integrated flux of C through the
horizontal plane z = z,,. Since the only source of C is the surface emission flux,
expressed as F”(x, zo) = F7, - 8(x), mass continuity dictates that the second term
inside the bracket be zero (note that in (21) the integration in x is over the closed
interval [0, ], including x = 0), whereas the first term integrates to F,. Thus,

thOtF = 1 . (23)

This representation of the total flux-source area implies that no sources or sinks
of C exist in the layer below z,, other than the surface emission flux due to a point
source and that the volume of air where diffusion takes place is in a condition of
steady state. In other words: what is injected into the atmosphere at the surface,
must eventually pass through level z,,. This assumption is equivalent to the exis-
tence of a constant flux layer above a surface with uniform emission flux.

With (23), (19) reduces to

PF _ Ppr

1
=~~J jF(x,y,zm)-dx-dy. (24)
F, Qp,

(Ptot F

For any value of Pr, other than Pr= 1, the boundary of Qp, is limited to x >0,
and thus, (24) can be written with (17) and (18):

P LPF [[- J:a@-f;?f(x, - dz-Dyx.y)

<dx - dy; forx>0. 25
y

Again, the integration domain, Qp,, is explained and illustrated in Figure 2. Thus,
it is useful to take advantage of the symmetry with respect to the x axis of the
(Gaussian) D,-distribution, and (25) may be written, using Leibnitz’s rule:

~_2 rerm x=gr5(»
Pr= F, . fo Jzo z) - €.y, 7) Lf=g1?,11(y) ~dz-dy. (26)

Here, x = gz12(y) are the inverted boundary functions for the flux-source area,
which are determined by a numerical root-finder routine for the F-level corre-
sponding to Pr based on Equation (17).

Equation (26) indicates that the value of the flux-source weight function at any
particular point does not have to be evaluated for the integration of the flux-
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source area. However, it needs to be computed for the determination of the
integration limits, i.e., for the values of the inverse functions x = gz 2(y) and of
ypm. Apart from this simplification for the x-integration of the flux-source area,
the steps undertaken in the computer implementation of the source area models
for scalar concentrations (SAM-2) and for scalar fluxes (FSAM) are similar (see
the end of Section 2).

4.2. FSAM: rRESULTS

Since the flux-source area model (FSAM) is based on the same solution of the
advection-diffusion equation as SAM-2, the appropriately normalised flux-source
area dimensions (with subscript f to denote the flux-source area) are also depen-
dent on the non-dimensional variables z,./zo, z,,,/L, and, for d,/z, and Arf/z%,
on o,/u,. A similar sensitivity test as described in Section 3.2 for SAM-2 was
performed for FSAM. Due to numerical constraints in the (vertical) integration
over (horizontal) gradients of concentration in order to evaluate the flux, the
range of input values that led to successful FSAM runs was more limited than in
the sensitivity test of SAM-2. As a result of these limitations, the permissible
stability variable had to be constrained to values of z,,/L < 107"

The results of the FSAM evaluations are presented in Figure 6a—h (stable
stratification) and Figure 7a—h (unstable conditions), using a similar format as in
Figures 4 and 5. The shapes of the relationships between the normalised FSAM
dimensions and the input variables exhibit a considerable similarity to the results
of SAM-2 for the scalar-source areas. In absolute value, however, the FSAM
dimensions are generally found to be smaller than the SAM-2 dimensions by
almost an order of magnitude (except in the case of a/zo, where the SAM-2 value
is slightly smaller than the corresponding FSAM dimension).

The good qualitative agreement between source areas for fluxes and concentra-
tions also suggests the use of similar parameterisation schemes for SAM-2 and
FSAM, as described in the following section.

5. Parameterized Models of Source Areas for Scalars and Scalar Fluxes

Each run of the source area models involves a large number of floating point
operations and thus takes up considerable computing time and costs (for a run of
FSAM on a VAX 9000-420 with two processors approximately five minutes of
CPU time is needed, depending on the choice of input parameters). For this
reason, the normalised dimensions of the P = 0.5 source areas as computed in the
sensitivity tests described in Sections 3.2 and 4.2 were related directly to the non-
dimensional parameters z,,/Z¢, Z»/L, and o,/u, (see Section 2).

For these parameterisations of SAM-2 and FSAM, the non-dimensional input
values were varied over the following ranges of commonly observed surface-layer
conditions:
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for stable conditions (z,,,/L > 0),
2.0-10' < z,,/20<5.0- 10
20-107%*<z,/L<1.0-107"
1.0< o, /u, < 6.0

and for unstable conditions (z,,,/L <0),
4.0-10' < z,,/20<1.0-10°
4.0-107*< —z,/L<1.0

10=<o0,/u,<6.0.
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Fig. 6. Same as Figure 4, for FSAM in stable conditions.

Within these ranges the additional condition 107° < |z,/L| < 107* was observed
(see Figures 4 to 7).

Adequate mathematical relationships between the input variables and the model
output were determined graphically (Figures 4 to 7), and a best fit was found by
a non-linear least squares method, based on a modified Levenberg—Marquardt
algorithm (IMSL Inc., statistics library, see also Press et al., 1986). In reference
to a previously published parameterised (scalar concentration) source area model
(mini-SAM, by Schmid and Oke, 1990) the resulting set of equations is termed
mini-SAM-2 for the scalar concentration-source area model and mini-FSAM for
the scalar flux-source area model. For each of the six normalised mini-SAM-2 and
mini-FSAM dimensions, Dy, the regression was performed separately for stable
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Fig. 7(a-d).

and unstable conditions, resulting in 24 sets of parameters, «; (i = 1, 5), referring
to two types of equation:

Dy = a1 (2m/z0)72 - explas - (2,,/ L)} (0. /ug )™, (27a)

Dn=ai (2m/20)*? (1 — az - 2,,/L)* - (o, /1) . (27b)
The individual parameter values are listed in Tables I and II for mini-SAM-2 and
in Tables V and VI for mini-FSAM.

The mini-SAM-2 (or mini-FSAM) estimate of a particular source area dimension
is readily obtained by first choosing the appropriate table for the given stability
conditions. Each line of the tables refers to the normalised source area dimension
indicated in the first column. The second column gives the equation number to
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Fig. 7. Same as Figure 4, for FSAM in unstable conditions.

TABLE 1

Parameter values for the 50% passive scalar source area model (SAM-2) parameterisation, stable
stratification (to be used in Equation 27a)

Normalised Reference oy s a3 oy as
dimension equation

aclzg 27a 0.773 1.24 0.957 1.25 0
ez 27a 30.4 1.23 2.60 0.452 0
delzo 27a 4.31 1.07 1.69 0.397 1
Xac! 20 27a 15.7 1.25 2.49 0.449 0
Xmel 20 27a 4.30 1.28 1.74 0.688 0
Arglzd 27a 0.203 - 10° 2.28 4.38 0.408 1
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TABLE II

Parameter values for the 50% passive scalar source area model (SAM-2) parameterisation, unstable
stratification (to be used in Equations 27a, b)

Normalised Reference ay ay @3 @y as
dimension equation

a./zo 27a 0.853 1.23 0.441 1 0
e.lz0 27b 40.4 1.22 15.5 —0.548 0
d./z9 27b 5.73 1.05 16.8 —0.458 1
Xael 2o 27b 21.3 1.23 16.9 -0.517 0
Xmel 20 27b 5.37 1.25 5.96 ~0.472 0
Arclzd 27b 0.405 - 10° 2.25 16.0 -1.03 1

TABLE III

Validation statistics* for the parameterisation of the passive scalar source area model (SAM-2), stable
stratification (Equation 27a)

a.lzo e./2o d./zo Xacl 2o Xmel Zo Arclz§
Number of runs (r) 36 36 216 36 36 216
Coeff. of determination (r%) 0.9998 0.9999 0.9998 0.9999 0.9998 1.0000
Index of agreement (d) 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000
rel. RMSE, [%] 1.76 1.95 1.97 2.00 2.15 2.27
rel. RMSE,, [%] 0.44 0.64 0.21 0.65 0.96 0.10
rel. RMSE. ey [%] 1.70 1.84 1.97 1.89 1.92 2.27
* Definition of statistics used (for a detailed description, see Wilmott, 1981):
v coefficient of determination (i.e., the square of Pierson’s product-moment correlation

coefficient); 0 <’ <1

d: index of agreement (i.e., the degree to which the modelled deviations about the

modelled mean correspond both in sign and magnitude to the parameterised deviations,
where the modelled mean is considered error-free); 0 = d =1

rel. RMSE:  standard error or difference, relative to the modelled mean (where RMSE,,.: RMSE
between modelled and parameterised values; RMSE,;: RMSE between regressed and
modelled values, where a linear least squares regression is used; RMSE ;.. RMSE
between regressed and parameterised values; RMSEZ, = RMSEfys + RMSEIZ,“S,,S)

TABLE IV

Validation statistics for the parameterisation of the passive scalar source area model (SAM-2), unstable
stratification (Equations 27a and b). For a description of the statistics used, see Table III

ac/zo e.l2o d.lzo EINED Ymlze  Ardzd
Number of runs (#) 36 36 216 36 36 216
Coeff. of determination (r%) 0.9998 0.9999 1.0000 0.9999 0.9999 1.0000
Index of agreement (d) 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000
rel. RMSE,,; [%] 1.74 1.58 1.89 1.47 1.60 1.27
rel. RMSE,y; [%] 0.62 0.71 0.29 0.73 0.88 0.20

rel. RMSEneys [%] 1.63 1.41 1.84 1.27 1.34 1.25
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TABLE V

Parameter values for the passive scalar flux-source area model (FSAM) parameterisation, stable
stratification (to be used in Equations 27a)

Normalised Reference @ ay a3 s as
dimension equation

aslzo 27a 3.28 1.09 3.53 1.05 0

erlzo 27a 10.1 1.08 3.84 1.07 0

dglzo 27a 4.07 0.790 2.97 0.977 1

XaflZo 27a 4.84 1.13 3.83 1.10 0

XmplZo 27a 1.58 1.25 2.91 1.02 0

Argzd 27a 51.3 1.86 7.29 1.05 1

TABLE VI

Parameter values for the 50% passive scalar flux-source area model (FSAM) parameterisation, unstable
p P
stratification (to be used in Equation 27b)

Normalised Reference o oy o 0y as
dimension equation

arlzo 27b 2.79 1.11 14.1 ~0.399 0
erlzo 27b 8.54 1.11 12.8 —0.390 0
drlzo 27b 3.25 0.832 28.2 -0.272 1
Xl Zo 27b 4.29 1.15 10.3 —0.408 0
Xmgl Zo 27b 1.72 1.24 8.65 —0.746 0
Arlzg 27b 31.4 1.93 17.8 —0.642 1

TABLE VII

Validation statistics for the parameterisation of the passive scalar flux-source area model (FSAM),
stable stratification (Equation 27a). For a description of the statistics used, see Table III

af/ZO Ef/Zo df/Z() de/ZQ xmf/zo AI’f/Z%
Number of runs (n) 32 32 192 32 2 192
Coeff. of determination (r%) 1.0000 0.9999 0.9999 0.9999 0.9996 1.0000
Index of agreement (d) 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000
rel. RMSE,q [%] 0.69 1.36 1.11 1.61 2.50 1.01
rel. RMSE, [%] 0.02 0.56 0.32 0.80 0.84 0.32
rel. RMSE neys [%] 1.69 1.24 1.06 1.40 2.36 0.96

which the five parameters in columns 3 to 7 refer. The form of Equation (27a) is
used for all dimensions of both mini-SAM-2 and mini-FSAM in stable conditions,
whereas (27b) provided good results in unstable conditions for all dimensions
except a./zo of mini-SAM-2. Parameter «s is zero everywhere except for d/z, and
Ar/z3, where it is unity, in accordance with the linear dependence of these dimen-
sions on o,/u,.

Comparisons of the source area dimension parameterizations in mini-SAM-2



SOURCE AREAS FOR SCALARS AND SCALAR FLUXES 315

TABLE VIII

Validation statistics for the parameterisation of the passive scalar flux-source area model (FSAM),
unstable stratification (Equation 27b). For a description of the statistics used, see Table III

aslzo erlzg dlzg Xarlzo Xmpl 20 Arf/Z%
Number of runs (n) 36 36 216 36 36 261
Coeff. of determination (+%) 0.9996 0.9998 0.9990 0.9998 0.9862 0.9997
Index of agreement (d) 0.9999 1.0000 0.9998 0.9999 0.9965 0.9999
rel. RMSE,,, [%] 2.03 1.43 3.14 1.59 14.1 3.21
rel. RMSE; [%] 0.03 0.16 0.33 0.35 1.72 0.05
rel. RMSEneys [%] 2.03 1.42 3.12 1.55 14.0 3.21

and mini-FSAM against the results of the respective full numerical models are
presented in Figure 8a—d in composite scatter plots of all linear dimensions for
stable and unstable conditions. The close agreement between the parameteriza-
tions and the full model results is also apparent in the validation statistics for each
dimension presented in Tables III and IV for the scalar concentration-source area
and in Tables VII and VIII for the flux-source area: the total standard difference
between the two solutions amounts generally to less than 2% and the systematic
portion of it remains typically far below 1% . For an explanation of the statistics
used, see the footnote in Table III.

6. Summary and Conclusions

In this work, the surface source area of a turbulent diffusion measurement is
defined in terms of the three-dimensional source-weight function (or footprint
function). Source-weight functions for scalar concentrations and for scalar fluxes
are presented based on the work of Horst and Weil (1992). The scalar concentra-
tion-source area model (SAM) published by Schmid and Oke (1990) is extended to
include conditions of stable thermal stratification (SAM-2) and the parameterised
statistical model is re-evaluated in normalised and thus more concise form (mini-
SAM-2). In analogy to the scalar concentration-source area model, a scalar flux-
source area model (FSAM) and its parameterized counterpart (mini-FSAM) are
presented.

A comparison of the sensitivities of the source area dimensions for scalar concen-
trations and scalar fluxes showed that the source areas for fluxes tend to be smaller
than the concentration-source areas by approximately an order of magnitude. This
finding is important in applications where scalar fluxes over inhomogeneous areas
are determined by mean profiles, the Bowen-ratio technique or other indirect
methods relying on measurements of mean concentrations: the “field of view” of
a concentration-sensor is much larger than that of a “flux-sensor” (e.g. an eddy-
correlation instrument). This incongruity of the source areas may lead to consider-
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Fig. 8. Comparison of full numerical model results vs. parameterisation results of normalised source

area dimeunsions. Composite scatter plots of all linear dimensions for (a) SAM-2 vs. mini-SAM-2 in

stable conditions; (b) SAM-2 vs. mini-SAM-2 in unstable conditions; (¢) FSAM vs. mini-FSAM in

stable conditions; (d) FSAM vs. mini-FSAM in unstable conditions. The detailed validation statistics
are presented in Tables IIT, IV, VII, and VIII.

able discrepancies between parameterized and actual fluxes in heterogeneous re-
gions.

The qualitative response of the source area to changes in measurement height,
thermal stability or crosswind turbulence, however, is very similar for fluxes and
for concentration measurements. In summary, the effects of increasing stability
and of increasing height are to elongate the source area and to move it farther
upwind of the reference point, whereas the effect of increasing crosswind turbu-
lence intensity is to enlarge the source area laterally. Thus, the implicit spatial
representativeness of a scalar-concentration measurement (i.e., the degree to
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which it reflects spatially averaged surface conditions; indicated by Ar/zg) is
strongly enhanced by increasing measurement height, and to a lesser extent by
increasing stability and crosswind turbulence. The localness of the measurement
(i.e., the degree to which it reflects local surface conditions; indicated by x,,/z0),
on the other hand, is decreased as a consequence of the same relationships.

This finding of a good qualitative agreement between SAM and FSAM confirms
the conclusions of Schmid er al. (1991) about the (qualitative) stability dependence
of the apparent spatial variability of turbulent flux measurements, although they
used a scalar-source area model to approximate the flux-source areas.

With mini-SAM-2 and mini-FSAM, readily applicable tools are provided to
estimate the surface area of influence of operational measurements. They combine
the advantages of having nearly the same accuracy as the full numerical models
that are based on boundary-layer diffusion theory with the convenience of a quick
evaluation on a hand calculator.
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