
Cellular and Molecular Neurobiology, Vol. 9, No. 2, 1989 

Review 

Desensitization of the Nicotinic 
Acetylcholine Receptor: Molecular 
Mechanisms and Effect of Modulators 

Enrique L. M. Ochoa,  1 Amitabha  Chattopadhyay,  ~ and 
Mark G. M c N a m e e  ~ 

Received September 19, 1988; accepted December 14, 1988 

KEY WORDS: specific desensitization; nicotinic acetylcholine receptor; molecular mechanisms; 
affinity transitions; modulators of desensitization; noncompetitive blockers; calcium; substance P; 
thymic hormones; thymopoietin; thymopentin; calcitonin gene-related peptide; receptor phosphoryla- 
tion; receptor methylation; myasthenia gravis. 

SUMMARY 

1. Loss of response after prolonged or repeated application of stimulus is 
generally termed desensitization. A wide variety of phenomena occurring in living 
organisms falls under this general definition of desensitization. There are two 
main types of desensitization processes: specific and non-specific. 

2. Desensitization of the nicotinic acetylcholine receptor is triggered by 
prolonged or repeated exposure to agonists and results in inactivation of its ion 
channel. It is a case of specific desensitization and is an intrinsic molecular 
property of the receptor. 

3. Desensitization of the nicotinic acetylcholine receptor at the neuromuscu- 
lar junction was first reported by Katz and Thesleff in 1957. Desensitization of the 
receptor has been demonstrated by rapid kinetic techniques and also by the 
characteristic "burst kinetics" obtained from single-channel recordings of recep- 
tor activity in native as well as in reconstituted membranes. In spite of a number 
of studies, the detailed molecular mechanism of the nicotinic acetylcholine 
receptor desensitization is not known with certainty. The progress of desensitiza- 
tion is accompanied by an increase in affinity of the receptor for its agonist. This 
change in affinity is attributed to a conformational change of the receptor, as 
detected by spectroscopic and kinetic studies. A four-state general model is 
consistent with the major experimental observations. 
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4. Desensitization of the nicotinic acetylcholine receptor can be potentially 
modulated by exogenous and endogenous substances and by covalent modifica- 
tions of the receptor structure. Modulators include the noncompetitive blockers, 
calcium, the thymic hormone peptides (thymopoietin and thymopentin), sub- 
stance P, the calcitonin gene-related peptide, and receptor phosphorylation. 
Phosphorylation is an important posttranslational covalent modification that is 
correlated with the regulation and desensitization of the receptor through various 
protein kinases. 

5. Although the physiological significance of desensitization of the nicotinic 
receptor is not yet fully understood, desensitization of receptors probably plays a 
significant role in the operation of the neuronal networks associated in memory 
and learning processes. Desensitization of the nicotinic receptor could also 
possibly be related to the neuromuscular disease, myasthenia gravis. 

INTRODUCTION 

In a global sense, desensitization (also known as tachyphylaxis, tolerance, 
refractoriness, subsensitivity, or down-regulation) refers to the loss of cell or 
tissue response after an appropriate stimulus is applied repeatedly or for a 
prolonged period of time. Cells can adapt to various kinds of stimuli such as light, 
pressure, and mechanical irritation (Miller et al., 1961; Stanford, 1975). In light 
of this general definition, a wide variety of phenomena such as the diminished 
pressor response seen in dogs after administering repeated doses of renin 
(Tigerstedt and Bergman, 1898), the anaphylactic reactions which take place in 
the smooth muscle of the guinea pig (Dale, 1913), the diminished response to 
chemoattractants in bacteria (Koshland, 1981, 1988), and the adaptation of the 
visual system photoreceptors (Kuhn, 1974; Sitaramayya and Liebman, 1983a,b) 
can all be termed desensitization processes (Levitzki, 1986). Desensitization may 
thus represent a general protective mechanism against an overexposure to 
stimulus. The mechanism for this loss of response may be different in nature for 
different cells or tissues and also for different stimuli. The above general 
definition does not take into consideration any specific mechanism for desen- 
sitization. The term "desensitization" is thus used for describing molecular 
processes which have a common overall pattern, irrespective of the specific 
mechanism involved. 

PHARMACOLOGICAL DESENSITIZATION 

In pharmacological terms, the stimulus is the proper agonist (drug) to which 
the system responds (Triggle, 1980; Levitzki, 1984). An essential feature of the 
desensitization phenomenon is that the agonist has to be present during a critical 
period of time for desensitization to take place. Also, the phenomenon is 
reversible, and the system recovers after the agonist is removed (although the 
rate of reversibility may vary, depending on the type of desensitization, as 
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mentioned later). The desensitization process involves the operation of specific 
cell membrane receptor molecules. In the desensitized state the receptor can bind 
the agonist but the agonist cannot induce activation of the receptor. 

All desensitization processes can be broadly classified into two types (Triggle 
and Triggle, 1976; Triggle, 1980; Levitzki, 1984). Specific desensitization (some- 
times referred to as homologous desensitization) implies that the cell or tissue is 
desensitized with respect to only one agonist (or a class of agonists), and not to 
other agonists that induce a similar response through other receptor systems. A 
classic example of specific desensitization was demonstrated by Barsoum and 
Gaddum (1935), who reported that in fowl c e c u m  high concentrations of 
histamine depressed the effects of subsequent concentrations of histamine but not 
of any other stimulant. From a mechanistic viewpoint, specific desensitization 
implies that the receptor molecules themselves are primarily involved in the 
phenomenon by possible conformational or other changes. On the other hand, in 
nonspecific desensitization (also known as heterologous desensitization), the cell 
or tissue becomes desensitized to other agonists that are capable of inducing the 
same effect through other receptor systems. For example, in guinea pig ileum, 
high concentrations of acetylcholine (ACh), 2 which induce muscle contraction 
through the muscarinic acetylcholine receptor (AChR), diminish the response not 
only to subsequently added ACh, but also to histamine, which induces a similar 
effect through the HI histamine receptor (Cantoni and Eastman, 1946; Paton, 
1961). In nonspecific desensitization, therefore, the mechanisms which lead to 
desensitization are not directly related to the receptor molecules and are probably 
exerted at a postreceptor level. There have been only a limited number of studies 
in the area of nonspecific desensitization and the focus of this review is on specific 
desensitization. 

SPECIFIC DESENSI~ZATION 

Specific desensitization can be subdivided into two major categories. (a) The 
receptor affected by the desensitization process may actually disappear from the 
cell surface making the effector cell less responsive to its agonist. Thus, when frog 
erythrocytes are desensitized by treatment with isoproterenol for 1-3 hr, there is 
a significant loss of /6-adrenergic receptor (about 65%), as measured by 
antagonist binding studies (Mukherjee and Lefkowitz, 1977; Kent et  al . ,  1980). 
There is also an accompanying decrease in affinity for agonists. Desensitizations 
of this kind are sometimes referred to as chronic desensitization and are 
characterized by slower rates of both development and reversibility (Triggle, 
1980). (b) The receptor remains in its natural membrane environment but 

2 Abbreviations used: ACh, acetylcholine; AChR, acetylcholine receptor; o~-BuTx, 0~-bungarotoxin; 
cAMP, adenosine 3',5'-cyclic monophosphate; CGRP, calcitonin gene-related peptide; EGTA, 
ethyleneglycol-bis-(~-aminoethyl Ether)N,N,N',N'-tetraacetic acid; GABA, ),-amino butyric acid; 
HTX, histrionicotoxin; mepp, miniature end-plate potential; MG, myasthenia gravis; mRNA, 
messenger ribonucleic acid; nAChR, nicotinic acetylcholine receptor; NCB, noncompetitive blocker; 
PCP, phencyclidine. 
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undergoes some molecular change so that the cell becomes progressively 
unresponsive to any further addition of agonist. This type of desensitization is 
also termed acute desensitization and is characterized by faster rates of both 
development and reversibility (Triggle, 1980). Also, there is no actual loss of 
receptors in acute desensitization; rather, there is a loss of receptor function 
(activity). The best-studied example of this kind of desensitization is provided by 
the nicotinic acetylcholine receptor (nAChR) (Fatt, 1950; Thesleff, 1955; Katz 
and Thesleff, 1957; Kim and Karczmar, 1967). Katz and Thesleff (1957) reported 
that when ACh was applied iontophoretically to frog skeletal muscle, the tissue 
shows a typical response; but when the agonist (ACh) was allowed to act for a 
prolonged period of time, the tissue no longer responded. These authors 
elaborated a cyclic model to account for this phenomenon and this was further 
refined once the molecular nature of the nAChR was established (see Changeux, 
1981). 

There is, however, an important difference between the two classes of 
desensitizations mentioned above in a and b. In the nicotinic receptor system, the 
desensitized state of the receptor has a higher affinity for the agonist compared to 
the active state (see later), while in the fl-adrenergic system, desensitization is 
characterized by a reduction in agonist affinity. 

A number of reviews dealing with the molecular structure and function of the 
nAChR have appeared in recent years (Changeux, 1981; Changeux and Revah, 
1987; Changeux et al., 1984a, 1987; Conti-Tronconi and Raftery, 1982; Hucho, 
1986; Karlin, 1980; McCarthy et al., 1986; McNamee et al., 1986; Spivak and 
Albuquerque, 1982; Stroud and Finer-Moore, 1985). There have also been a few 
reviews on the kinetics and mechanism of the ion channel function (Adams, 1981; 
Hess et al., 1983; Udgaonkar and Hess, 1986, 1987b). In this review, we 
concentrate mainly on the desensitization of the nAChR, with special reference 
to molecular events that may trigger the process. We also discuss the effect of 
"modulators" (agents that regulate desensitization) on the desensitization pro- 
cess. Thus the following discussion is applicable mostly to the nicotinic receptor 
system. 

D E S E N S m Z A T I O N  OF THE NICOTINIC ACETYLCHOLINE 
RECEPTOR 

The nAChR is a transmembrane glycoprotein (MW 270,000) consisting of five 
subunits (a~2~y6). It is found postsynaptically at the vertebrate neuromuscular 
junction and at the electromotor synapses of certain electric fish. The receptor is 
an essential component in cholinergic synaptic transmission and serves a 
recognition, regulatory, and ion channel role at postsynaptic membranes. The 
function of nAChR is to mediate neurotransmission by transducing a chemical 
signal into a large increase in the permeability of postsynaptic membranes to 
cations. The nAChR is also one of the few integral membrane proteins that is 
extensively studied at all levels of cellular organization, ranging from electro- 
physiological measurements at intact synapses to sequence analysis of cloned 
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genes. The nAChR from fish electric organs is the best-characterized neurotrans- 
mitter receptor and one of the best-characterized membrane proteins. The 
relative ease with which nAChR can be isolated and purified from Torpedinidae 
species electroplax in large quantities, coupled with the similarity between 
nAChR from Torpedinidae electroplax and mammalian skeletal muscle nAChR, 
makes the Torpedinidae receptor an excellent model for detailed studies of both 
receptor function and membrane protein structure. 

The detailed molecular structure of the nAChR is not known yet, although 
attempts to crystallize the protein are under way in various laboratories. There 
have been a few models proposed for the receptor and these do not totally agree 
on the arrangement of the transmembrane region in the protein (Claudio et al., 
1983; Criado et al., 1985; Devillers-Thiery et al., 1983; Finer-Moore and Stroud, 
1984; Guy, 1984; McCrea et al., 1987, 1988; Noda et al., 1983; Ratnam et al., 
1986a,b). The five subunits are arranged in a rosette to form a central pore which 
serves as the ion channel. When two molecules of ACh bind to a specific 
sequence of each tr subunit in the nAChR pentamer, a cation-specific channel 
opens for about i msec. A variety of techniques has been employed to identify 
the agonist binding sites in the tr subunit (Lentz et al., 1987; Mulac-Jericevic and 
Atassi, 1986; Neumann et al., 1986a,b; Pedersen et al., 1986; Ralston et al., 1987; 
Wilson et al., 1985). As a consequence of opening of the channel, ions (mostly 
Na ÷ and K ÷) move along their electrochemical gradients. This is the molecular 
basis for membrane depolarization, which eventually leads to signal transmission 
at cholinergic synapses. However, there are other molecular events that are 
triggered by binding of ACh (or other agonists) to the receptor. These are termed 
regulatory actions of the nAChR and include an inactivation of  receptor activity. 
We include all these actions under the term desensitization. 

Besides A C h ,  there are other agonists which are known to activate and 
desensitize the nAChR. Most of these nicotinic agonists are small, organic cations 
such as carbamylcholine and suberyldicholine, and have a relatively flexible 
structure (see Fig. 1). Anatoxin-a is an example of a nicotinic agonist with a 
somewhat rigid structure (Spivak et al., 1980, 1983). It is also one of the most 
potent agonists known. Competitive antagonists, on the other hand, are a group 
of compounds which are known to bind to the receptor and block activation by 
agonists. These compounds act primarily as competitive inhibitors by occupying 
the ACh binding site. Examples of antagonists for the nAChR include d- 
tubocurarine, hexamethonium, and tr-bungarotoxin. 

In addition to agonists and competitive antagonists, there is yet another type of 
cholinergic effectors which have proved to be very useful in structural studies of 
the nicotinic receptor. These are represented by a group of molecules known as 
noncompetitive blockers (NCB) of the nAChR. NCBs are a heterogeneous group 
of compounds and include very chemically dissimilar molecules such as the 
synthetic psycotropic agent phencyclydine (PCP), sedatives such as chlorproma- 
zine, the frog toxin histrionicotoxin (HTX), the antiviral and antiparkinsonian 
agent amantadine, antimalarial drugs such as quinacrine, the amine local 
anesthetics, phospholipases, the lipophilic cation triphenylmethylphosphonium, 
and other amphiphilic compounds such as detergentsi fatty acids, and alcohols. 
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Fig. 1. Chemical structures of various types of cholinergic effectors. Dns-C6-Cho, [1-(5- 
demethylaminonaphthalene)sulfonamido]n-hexanoic acid fl-(N-trimethylammonium bromide) 
ethyl ester; TPMP +, triphenylmethylphosphonium; NBD-5-acylcholine, N-7-(4-nitrobenzo-2- 
oxa-l,3-diazole)-t0-aminohexanoic acid #-(N-trimethylammonium)ethyl ester. 
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These agents inhibit the ion-gating activity of nAChR at synapses and in both 
native and reconstituted membranes (Albuquerque et al., 1988; Changeux, 1981; 
Changeux et al., 1984a; Gage et al., 1975; McNamee et al., 1986; Medrano et al., 
1987). It has been postulated that they may interfere directly or indirectly (or 
both) with the ion channel, although detailed mechanisms for their action are not 
fully understood. NCBs bind to sites different from the ACh binding sites and 
provide a means to investigate the structural aspects of the ion channel. There is 
no evidence for the presence of endogenous NCBs at cholinergic synapses. 

We operationally define desentization for the nicotinic receptor as inactiva- 
tion of the ion channel in the presence of agonist. Desensitization is always 
triggered by agonists, although other agents (e.g., NCBs) can influence the rate 
of desensitization. Depending on the time duration and the agonist concentration, 
there are four types of inactivation (Aoshima, 1984; Changeux, 1981; Feltz and 
Trautmann, 1982; Hess et al., 1979, 1982; McNamee et al., 1984; Sakmann et al., 
1980; Takeyasu et al., 1983, 1986; Udgaonkar and Hess, 1986; Walker et al., 
1981b, 1982). We denote these ultrafast inactivation (those which operate on less 
than a millisecond time scale), fast inactivation (millisecond to second time scale), 
slow inactivation (second to minute time scale), and ultraslow inactivation 
(minute to hour time scale). The fast and slow inactivations involve changes in 
the affinity of the ACh binding site for ACh (and other agonists) and can be 
correlated with conformational changes taking place in the nAChR molecule 
(Barrantes, 1976, 1978; Bonner et al., 1976; Boyd and Cohen, 1980; Covarrubias 
et al., 1984; Heidmann and Changeux, 1979; Lee et al., 1977; Quast et al., 1978a; 
Sine and Taylor, 1979; Walker et al., 1981a; Weber and Changeux, 1974; Weber 
et al., 1975; Weiland et al., 1976, 1977; Weiland and Taylor, 1979). There is no 
direct evidence of such a molecular conformational change taking place in 
ultrafast or ultraslow inactivation. The fast, slow, and ultrafast inactivations are 
discussed here. The ultraslow inactivation probably involves modulatory in- 
fluences on receptor function (see Modulators of Desensitization, below). 

In 1950 Fatt reported that when relatively high concentrations of ACh were 
applied to frog muscles, the end plates became depolarized but were repolarized 
again, even in the presence of residual ACh. Thesleff (1955) later studied this 
phenomenon in more detail using several cholinergic agonists. He concluded that 
the neuromuscular block caused by these agents was not due to a persistent 
depolarization of the end plate but due to a decrease in sensitivity of the 
end-plate regions to the agonists, that is, desensitization. In 1957, Katz and 
Thesleff observed that when ACh was applied to frog motor end plates 
iontophoretically by a micropipette, desensitization occurred rather rapidly, i.e., 
on a time scale of seconds. This is probably due to a reduction in diffusion time in 
iontophoretic application which enables a high agonist concentration to build up 
quickly (Del Castillo and Webb, 1977). 

Desensitization of the nAChR was elegantly demonstrated by single-channel 
recordings of frog denervated extrajunctional membrane (Sakmann et al., 1980) 
and of embryonic rat muscle cells (Hamill and Sakmann, 1981) in the presence of 
desensitizing concentrations of agonist. With the onset of desensitization, the 
number of discrete current fluctuations decreased progressively in a predicted 
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manner. However, after this initial onset, "bursts" of single-channel currents 
were observed at irregular intervals. These bursts were interpreted as repre- 
senting rapid opening and closing of a single nAChR molecule during its transient 
return from a desensitized to an active state. These bursts also occurred in 
clusters, indicating that there were at least two distinct kinetic processes in 
desensitizatign (see below). 

The desensitization phenomena can still be observed in receptor-rich 
membrane ~ragments (Sugiyama et al., 1976), or when the receptor is extracted 
from its native membrane, and purified and  reconstituted into liposomes or 
planar lipid bilayers (Epstein and Racker, 1978; McNamee and Ochoa, 1982; 
McNamee et al., 1986; Montal et al., 1986; Ochoa et al., 1983, 1988). Thus, 
desensitization is an intrinsic molecular property of the nAChR. Single-channel 
currents of the isolated and purified nAChR reconstituted into liposomes (Tank et 
al., 1983) or planar lipid bilayers (Labarca et al., 1984; Montal et al., 1984) have 
also been recorded. These exhibit all the essential characteristics of the recordings 
done with native membranes, thereby indicating that the purified and reconstit- 
u t e d  receptor complex contain all the necessary components for complete 
function. Desensitization has also been observed in eel electroplaque nAChR 
(Del Castillo and\Webb, 1977; Larmie and Webb, 1973; Lester et al., 1975). In 
addition, cells which normally do not contain nAChR, but which can be 
engineered to express functional receptor at the cell surface level by techniques of 
molecular biology, show desensitization. Thus, oocytes injected with purified 
Torpedo receptor subunit mRNAs (Kobayashi and Aoshima, 1986; Mishina et 
al,, 1984), or fibroblast genomes in which Torpedo subunit cDNAs are introduced 
by !ransfection techniques (Claudio et al., 1987), display the phenomenon of 
desensitization. In neuromuscular junctions, desensitization has been shown to 
occur without the addition of exogenous ACh under certain conditions. For this 
to occur, the firing rate of the motor nerves must be sufficiently high, and either 
an acetylcholinesterase blocking agent (such as diisopropylfluorophosphate or 
neostigmine ) has to be present or the interval between stimuli (pulses) has to be 
shorter than 25 msec (Akasu and Karczmar, 1980; Magleby and Pallotta, 1981). 

From a number of observations, it now appears that the desensitization 
process is a common feature of all ligand-gated, ion channel receptors. Thus, it 
has recently been demonstrated that a neuronal AChR isolated from the head 
and thoracic ganglia of the locust can be desensitized by high concentrations of 
agonists when incorporated into planar lipid bilayers (Hanke and Breer, 1987). A 
desensitized form of the neuronal AChR has also been recently detected in 
bovine adrenal chromaffin cells by 3H-nicotine binding studies (Higgins and Berg, 
1988). In addition, desensitization of the phosphatidylinositol response of the 
muscarinic acetylcholine receptor (AChR) has been demonstrated in neuron-like 
cell lines (Cohen et al., 1983; Large et al., 1986). Desensitization of the GABA 
receptor (Cash and Subbarao, 1987, 1988) and the glutamate receptor (Franke et 
al., 1987; Kiskin et al., 1986; Trussell et al., 1988), as studied by rapid kinetics 
and electrophysiological techniques, has also been recently reported. 
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MOLECULAR MECHANISM OF DESENSITIZATION: FAST, SLOW, 
AND ULTRAFAST INACTIVATION 

Katz and Thesleff (1957) considered several models for desensitization of the 
nAChR and found that the cyclic scheme (shown below) fits their data well if the 
affinity of A (agonist) for R (receptor in the resting state) was much lower than its 
affinity for R' (receptor in the desensitized state). Biochemical and biophysical 
studies have provided direct evidence for the two states coexisting in the 
membrane with different affinities for agonists (see later). 

fast 
A + R -  " A R  

 lOWll lls,o  
fast 

A + R ' .  " AR'  

This cyclic model implies that even in the resting state (prior to ligand binding), a 
distribution of receptors between active and desensitized states can exist. It has 
been reported, from radiolabeled and fluorescent agonist binding studies on 
Torpedo membrane vesicles, that in the resting state, about 20% of the receptors 
are desensitized (see Fig. 2). 

Many studies have been directed toward understanding the kinetic mechanism 
by which desensitization of the nAChR occurs (Magazanik and Vyskocil, 1976; 
Rang and Ritter, 1970a). Most of the experimental data dealing with various 
aspects of the nAChR desensitization can be accounted for by a general model 
(Changeux et al., 1984a; Heidmann et al., 1983a; Heidmann and Changeux, 1980; 
Neubig and Cohen, 1980), which is a modified version of the cyclic model 
proposed by Katz and Thesleff (1957). Formally, this model is within the general 
framework of the concerted model for aUosteric transitions in multimeric proteins 
(Monod et al., 1965), as applied to the nAChR (Karlin, 1967). This general 
model consists of four states for the nAChR molecule as shown below. 

R .  " A  

D 
Here R and A refer to the resting and active state, while I and D represent 
rapidly and slowly desensitized states of the receptor, i.e., desensitized states 
corresponding to two different time scales of desensitization. Desensitization thus 
consists of two distinct kinetic processes (Walker et al., 1981b), a fast component 
with a rate constant of 2-7see  -1 (Feltz and Trautmann, 1982; Sakmann et al., 
1980; Walker et al., 1981b, 1982) and a slow component with a rate constant of 
0.1-0.01 sec -1 (Heidmann et al., 1983a; Sakmann et al., 1980; Walker et al., 
1981b, 1982). The fast phase of desensitization decreases the rate of ion flux 
across the memane by a factor of 250, while the slower component reduces ion 
flux to undetectable levels (Walker et al., 1982). Initially only the fast component 
of desensitization was detected in receptors from Electrophorus (Aoshima et al., 
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A 

Fig. 2. Mechanisms of nAChR desensitization (I). This figure represents an idealized nicotinic 
cholinergic synaptic junction with the presynaptic component containing the neurotransmitter ACh 
(black dots) contained within synaptic vesicles (shown as circles) and the postsynaptic membrane 
containing the receptor. (A) The receptor exists in an equilibrium mixture of two conformers, the 
resting (R) and the desensitized (D) state. The numbers below each conformer indicate relative 
amounts of each conformer (Boyd and Cohen, 1980; Heidmann and Changeux, 1979). The 
intermediate state (I), which is a part of the four-state general model (Changeux et al., 1984; 
Heidmann et al., 1983a; Heidmann and Changeux, 1980; Neubig and Cohen, 1980), is not shown 
here. (B) When an action potential reaches the end of the presynaptic cell, a movement of calcium 
(from outside of the cell to the interior of the cell) facilitates the liberation of ACh, probably 
through a fusion mechanism. The result is a sudden increase in ACh concentration at the synaptic 
cleft and the occupation of two ACh binding sites on each receptor molecule. This induces a 
conformational change, which leads to the active state (A), in which the channel opens allowing 
cation movements essential for the development of a postsynaptic action potential. As soon as 
ACh occupies its sites, the affinity of the receptor toward A C h  increases and the D state is 
promoted. Desensitization is one of the mechanisms which terminate the action of ACh, apart 
from the cleaving action of acetylcholinesterase (not shown) and diffusion. 

1980; Hess et al., 1983). However, a much slower phase of desensitization (with a 
rate constant of 0.19h -1) has been recently detected in nAChR from 
Electrophorus electricus (Aoshima, 1984). 

The main difference between the original cyclic model of Katz and Thesleff and 
this general model is the postulated existence of the intermediate desensitized 
state (I). This is based on an "intermediate" relaxation process (in the subsecond 
time range) observed (Changeux, 1981; Heidmann and Changeux, 1979, 1980) 
when nAChR binds a fluorescent agonist (see later). The existence of an 
intermediate state between the R and the D states has also been suggested from 
binding studies with the NCB perhydrohistrionicotoxin (Albuquerque et al., 
1974b; Aronstam et al., 1981; Dolly et al., 1977; Eldefrawi et al., 1980; Krodel et 
al., 1979) and by the presence of multiple conductance states of the receptor in 
embryonic muscle cells as detected by single-channel recordings (Hamill and 
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Sakmann, 1981). These different states of the receptor are discrete and are at 
reversible equilibrium. It should be pointed out here that there is no kinetic 
evidence (Udgaonkar and Hess, 1986) supporting the equilibrium between the 
active ligand-bound open channel state (A) and the desensitized state (D). It has 
recently been shown by patch-clamp techniques that the receptor in cultured 
muscle from rat (Sanchez et al., 1983), mouse (Jackson, 1984), and Xenopus  
(Brehm et al., 1983, 1984) gets spontaneously activated into the open channel 
conformation even in the absence of agonists, probably due to thermodynamic 
fluctuations. Agonist activation of the receptor presumably accelerates this 
spontaneous process (Jackson, 1986). The ion channel is open only in the active 
state (A). These states differ in their affinity for cholinergic ligands (agonists), 
being highest for D and lowest for R (Changeux et al., 1984a). The low-affinity 
state of the nAChR is favored in the absence of agonists and the high-affinity 
state is favored in the presence of agonists (i.e., under conditions of desensitiza- 
tion). The high-affinity state (i.e., the desensitized state) has been detected under 
equilibrium binding conditions, when the receptor is preincubated with the 
agonist. According to the above general model, the low-affinity state of nAChR 
that is detected under ordinary experimental conditions is actually an intermedi- 
ate state of desensitized receptor (I), and the resting state (R) has an ultralow 
affinity for agonists (Changeux et al., 1984a). The affinities of these states for 
agonists (ACh, as well as a fluorescent analogue) are expressed in terms of 
dissociation constants. The dissociation constants for the R, I, and D states have 
been reported to be 50-100 ~tM, -1/~M, and - 3  nM, respectively (Boyd and 
Cohen, 1980; Heidmann and Changeux, 1979, 1980). 

Besides the general model described above, there are more specific models 
for nAChR desensitization which are more restrictive and are based on analysis 
of chemical kinetics data over a wide range of agonist concentrations (Hess et al., 
1982, 1983; Udgaonkar and Hess, 1986; Walker et al., 1982). One such model is 
shown below. 

R + L :  "RL+L------~RL2- "RL2 

R ' L + L -  "R'I-a 

Here, R and R' represent the active and the inactive forms of the receptor 
respectively, and L is the ligand (agonist). 

Rang and Ritter have described a class of antagonists, termed "metaphilic 
antagonists," whose antagonism could be enhanced by prior exposure of the 
receptor to agonists (Rang and Ritter, 1969, 1970a,b). These metaphilic 
antagonists are unique among antagonists, since these (like agonists) can induce 
the conversion of the receptor from the low-affinity to the high-affinity state 
(Weiland and Taylor, 1979). However, like classical antagonists, these metaphilic 
antagonists cannot activate the receptor, i.e., cannot open the ion channel by 
binding to the receptor. The fact that the metaphilic antagonists can bring about 
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the conversion to the high-affinity (desensitized) state but cannot activate the ion 
channel lends further support to the four-state general model for receptor 
activation and desensitization. This implies that desensitization need not proceed 
sequentially through the active state (A), but the conversion from R to D state is 
possible without going through A. The observation that the active state can be 
induced only by the cooperative action of two agonist molecules, while binding of 
only one agonist molecule is sufficient to bring about desensitization (Cash and 
hess, 1980), reemphasizes the links between resting and desensitized states. 

The experimental evidence for the existence of different conformers of the 
nAChR in membranes in reversible equilibrium and differing in their affinities for 
agonists is based on spectroscopic and kinetic experiments. Thus, the slow 
transition (with an apparent rate constant of 0.1-0.01 sec -1) of the nAChR to a 
high-affinity state ( K d -  3 nM), which results in the stabilization of the desen- 
sitized state (D), has been studied in detail by a number of methods. These 
methods are based on (i) changes in intrinsic fluorescence of the receptor 
(Barrantes, 1976, 1978; Bonner et al., 1976; Kaneda et al., 1982); (ii) changes in 
extrinsic fluorescence after covalently labeling the receptor with a fluorescent 
probe (Dunn et al., 1980; Dunn and Raftery, 1982a,b); (iii) changes in 
fluorescence of fluorescent ligands on binding to the receptor (Covarrubias et al., 
1984, 1986; Grunhagen and Changeux, 1976; Grunhagen et al., 1977; Heidmann 
and Changeux, 1979; Heidmann et al., 1980a,b; Jurss et al., 1979; Prinz and 
Maelicke, 1983; Quast et al., 1978b, 1979; Schimerlik et al., 1979; Tan and 
Barrantes, 1980); (iv) changes in the circular dichroism (CD) spectrum of the 
receptor on agonist binding (Mielke et al., 1984); (v) changes in electron spin 
resonance (ESR) spectrum of a spin label (nitroxide) analogue of a cholinergic 
agonist, produced by binding of the label to the receptor (Weiland et al., 1976, 
1977); (vi) changes in thiol-group reactivity (Barrantes, 1980; Damle and Karlin, 
1980; Lukas et al., 1979; Moore and Raftery, 1979; Suarez-Isla and Hucho, 1977; 
Walker et al., 1981a); (vii) binding kinetics of agonists and other ligands to the 
nAChR (Boyd and Cohen, 1980; Eldefrawi et al., 1980); and most commonly, 
(viii) effects of agonists on the kinetics of re-toxin binding to the receptor 
(Blanchard et al., 1979; Briley and Changeux, 1978; Colquhoun and Rang, 1976; 
Lee et al., 1977; Quast et al., 1978a; Sine and Taylor, 1979; Walker et al., 1981a; 
Weber and Changeux, 1974; Weber et al., 1975; Weiland and Taylor, 1979). 

Snake toxins such as a:-bungarotoxin (o:-BuTx) are known to bind to the 
nAChR with a high affinity (almost irreversibly, Kd----" 10-9-10-12M) and to 
compete with agonists (Lee et al., 1967). A major advancement in this area of 
research was achieved by the introduction of toxin binding kinetics to monitor the 
transition from low- to high-affinity states (Weber and Changeux, 1974). The 
general design of these experiments involves measuring the rate of radioactive (or 
otherwise labeled) toxin binding in the presence and in the absence of cholinergic 
ligands. Snake toxins and agonists bind to nAChR in a mutually exclusive 
manner. The binding of agonists to nAChR is a virtually diffusion-controlled 
process, while the toxin binding rate is relatively slow at low concentrations of 
toxin and receptor. Thus, rapid equilibrium for agonist binding can be assumed 
when the rate of toxin binding is measured in the presence of agonists (McNamee 
et al., 1986). If the agonist is coincubated with the receptor, the initial rate of 
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toxin binding will be lowered to different extents depending on the agonist 
concentration. Under conditions in which the nAChR is preincubated with 
agonist first, the equilibrium between low-affinity and high-affinity states of the 
receptor is disturbed and is shifted toward the high-affinity state. This results in a 
decrease in the apparent rate constant for toxin binding for a given agonist 
concentration, as there are more high-affinity conformers than low-affinity ones. 
For a given agonist concentration, the rate of toxin binding decreases with 
increasing preincubation time and then attains a minimal value after a certain 
limit (-minutes) of the preincubation time is reached (Weber et al., 1975). 

An alternate method to study agonist binding to receptor is by rapid mixing 
(stopped-flow) techniques (Heidmann and Changeux, 1979, 1980; Prinz and 
Maelicke, 1983). When a fluorescent agonist analogue [dansyl derivative of ACh 
or 4-nitrobenzo-2-oxa-l,3-diazole (NBD) derivative of ACh] binds to the 
nAChR, its fluorescence intensity may increase or decrease depending on the 
particular intermolecular interaction involved, i.e., depending on the molecular 
nature of the environment where the fluorescent group is located in the 
agonist-receptor complex. Using a dansyl derivative of ACh, Heidmann and 
Changeux (1979, 1980) showed that three major relaxation processes can be 
detected when nAChR binds the fluorescent agonist. A rapid increase in 
fluorescence intensity in the millisecond range is correlated with the receptor 
agonist association ( K a -  3 nM) at preexisting high-affinity sites (D state) for 
agonists, which is about 20% of the total sites. An intermediate relaxation 
process in the subsecond range corresponds to the association ( K d -  1/~M) at 
low-affinity sites (I state). A slow relaxation process in the second range is 
analyzed in terms of isomerization from the low-affinity state to the high-affinity 
state and is thus correlated with desensitization. 

In terms of the four-state general model described above (Changeux et al., 
1984a), the addition of agonists in high concentrations shifts the equilibrium 
between the resting (R) and the active (A) state more toward A. If the agonist is 
applied repeatedly or for a prolonged period of time (conditions for desensitiza- 
tion), the I state rapidly gets populated in a transient manner (within 100 msec to 
i sec), and finally, the D state is stabilized slowly (within seconds). This two-step 
model of desensitization consisting of I and D states is consistent with the 
two-step desensitization processes observed in vivo and in vitro by electrophys- 
iological methods (Anwyl and Narahashi, 1980; Chestnut, 1983; Chestnut and 
Carpenter, 1983; Feltz and Trautmann, 1982; Sakmann et al., 1980; Tank et al., 
1983; Udgaonkar and Hess, 1987a) and by rapid kinetics measurements (Heid- 
mann et al., 1983a; Hess et al., 1982; Neubig and Cohen, 1980; Walker et al., 
1981b, 1982). 

It is generally believed that activation and desensitization involve binding of 
A e h  to the same two ACh sites in each state of the receptor, with an increase in 
affinity for A e h  from R to D through A and I (Changeux, 1981; Neubig et al., 
1982; Sine and Taylor, 1980, 1981). However, a model with multiple (more than 
two) agonist binding sites has been proposed (Conti-Tronconi et al., 1982; 
Conti-Tronconi and Raftery, 1986; Dunn and Raftery, 1982a,b; Dunn et al., 
1983). According to this model, activation and desensitization of the n A e h R  may 
be induced by binding of agonists to separate binding sites. 
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Transmembrane voltage is known to influence the rate at which the receptor 
desensitizes (Magazanik and Vyskocil, 1970; Magleby and Pallotta, 1981). In 
general, hyperpolarization of the membrane accelerates the desensitization rate, 
whereas depolarization has the opposite effect. Hess and co-workers have 
described a new, regulatory ACh binding site ( K d -  800/~M) that is different 
from the sites leading to either channel opening or desensitization by cholinergic 
agonists ((Takeyasu et al., 1983, 1986) or desensitization through noncompetitive 
blockers (Karpen and Hess, 1986; Shino et al., 1984); and this accounts for the 
ultrafast inactivation. It has been termed the "isosteric site" to differentiate it 
from other allosteric sites on the nAChR molecule (Udganonkar and Hess, 
1987b). Binding of ACh to this site is voltage dependent (Takeyasu et al., 1983, 
1986). The inactivation it produces (i.e., closing of the ion channel) is comparable 
in speed to channel opening. Classical receptor desensitization, a slower process 
compared to ultrafast inactivation, is not affected by agonist binding to the 
isosteric site. The isosteric site has not yet been structurally identified and it is not 
known whether ACh binding to this site triggers conformational changes of the 
nAChR molecule. 

Although the detailed molecular structure of nAChR is not fully charac- 
terized, the arrangements of the nAChR subunits in the resting and desensitized 
states have been recently studied at 18-A resolution by cryoelectron microscopy 
of flattened vesicular crystals grown from Torpedo marmorata postsynaptic 
membranes. According to this study, desensitization is accompanied by a 
structural transition in which the subunits are less symmetrically arranged in the 
desensitized state than in the resting state (Unwin et al., 1988). This structural 
change on desensitization is more predominant in the ), and 6 subunits. 

MODULATORS OF DESENSITIZATION 

The rate and extent of desensitization depend on several factors. The 
desensitization rate increases with increasing agonist concentration (Adams, 1975; 
Katz and Thesleff, 1957; Lester et al., 1975; Nastuk and Parsons, 1970; 
Scubon-Mulieri and Parsons, 1977). Desensitization rate is also dependent on 
membrane potential (mentioned earlier). In addition, the rate of desensitization 
decreases with lower temperatures (Magazanik and Vyskocil, 1975). 

Apart from ACh, desensitization could be modulated by exogeneous and 
endogeneous substances associated with the cell and by covalent modifications of 
the receptor structure. 

Exogenous Substances 

The effect of NCBs on desensitization rate has been studied by various 
groups (Carp et al., 1983; Changeux et al., 1987; Heidmann et al., 1983b; Herz et 
al., 1987; Magazanik and Vyskocil, 1976; Terrar, 1974; Oswald et al., 1983). The 
NCBs that have been studied mostly include histrionicotoxin (HTX), phencycl- 
idine (PCP), and the local anesthetics. HTX is a spiropiperidine alkaloid isolated 
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from the skin extracts of a Colombian frog (Daly et al., 1971), and its binding to 
nAChR cannot be inhibited by 0:-bungarotoxin or agonists (Albuquerque et al., 
1974b; Aronstam et al., 1981; Dolly et al., 1977; Elliott and Raftery, 1979). 
Equilibrium binding assays of [3H]H12-HTX indicated that there is one HTX site 
per two ACh binding sites (Eldefrawi et al., 1978). Agonist-induced ion flux is 
also inhibited by HTX. Similar properties were found for PCP (Albuquerque et 
al., 1980a,b; Oswald et al., 1983). Ultraviolet light-induced covalent labeling 
revealed that both PCP and HTX label all four subunits to various extents 
(Oswald and Changeux, 1981), which is consistent with the notion that the 
binding site is located in the ion channel portion at the central part of nAChR. 
Thus, HTX and PCP are considered specific channel blockers. The effects of local 
anesthetics and other compounds on the conformational transitions of the 
nAChR have been studied by fluorescence stopped-flow techniques using a 
fluorescent agonist (Heidmann et al., 1983b; Oswald et al., 1983). All the 
compounds tested were found to stabilize the desensitized state of nAChR 
exhibiting a high affinity for agonists. Two classes of binding sites on nAChR for 
these NCBs were found: (1) a single high-affinity, HTX-sensitive site, which is 
postulated to be located at the ion channel; and (2) a population (10-20) of 
low-affinity, HTX-insensitive sites, which are postulated to be located at the 
lipid-protein interface. The association of NCBs at the high-affinity site is agonist 
dependent, since such rapid association is not observed with competitive 
antagonists (Heidmann and Changeux, 1984, 1986). Ultraviolet light-induced 
labeling of nAChR by [3H]chlorpromazine revealed that the association in the 
presence of agonist takes place at a site common to all four subunits, which is in 
good agreement with the binding behavior of HTX (Heidmann and Changeux, 
1986). The site of labeling was later identified as Ser-262 in the 5 subunit and in a 
homologous region in the fl subunit (Giraudat et al., 1986, 1987). Similar 
photolabeling of nAChR by [3H]triphenylmethylphosphonium in the presence of 
agonist resulted in the labeling of the a~, fi, and 5 subunits of the receptor, 
thereby indicating that it was the ion channel that was labeled (Oberthur et al., 
1986). The site of labeling was again identified as Ser-262 in the 6 subunit. Thus, 
the actions of NCBs can be viewed in two different mechanisms: blocking the ion 
channel directly and accelerating the desensitization process. 

NCBs act directly on the membrane-associated receptor and their effects are 
not mediated through other protein molecules. This is supported by studies in 
which the purified nAChR was incorporated into liposomes. Thus, high- and 
low-affinity binding sites for a spin-labeled local anesthetics have been identified 
in reconstituted membranes containing purified nAChR from Torpedo californica 
(Earnest et al., 1984, 1986). The desensitization promoting effect of the NCB 
amantadine has also been demonstrated in a similar system (Medrano et al., 
1987). 

Endogenous Substances 

Many eukaryotic cells use posttranslational covalent modifications in protein 
structure for regulating their functions. The nAChR is known to have covalently 
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attached sugar (Vandlen et al., 1979), lipid (Olson et al., 1984), and phosphory- 
lated amino acid residues (Vandlen et al., 1979). Phosphorylation of the receptor 
and calcium binding to the receptor have dearly been shown to influence 
desensitization. 

Calcium 

Isolated nAChR has a high binding capacity for calcium ions; up to 30 
calcium ions are bound per ACh binding site (Chang and Neumann, 1976). 
Calcium inhibits ACh binding in the 0.1-1 mM range (Chang and Neumann, 
1976). The sites to which calcium binds are different from the ACh binding sites 
and are also distinct from the sites occupied by PCP (Oswald, 1983). These sites 
appear to be restricted to a 40-kD subunit on the Torpedo ocellata receptor which 
may be identical to the Torpedo marmorata ol subunit (Rubsamen et al., 1978). 

Calcium ion is the classic example of a modulator of desensitization. A 
number o f  electrophysiological and pharmacological studies on the effect of 
calcium on desensitization (Anwyl and Narahashi, 1980; Cochrane and Parsons, 
1972; Devore and Nastuk, 1977; Kuba and Koketsu, 1976; Lambert and Parsons, 
1970; Magazanik and Vyskocil, 1970; Manthey, 1966, 1970, 1972, 1974; Nastuk 
and Parsons, 1970; Parsons, 1969; Parsons et al,, 1971, 1973; Paton and 
Rothschild, 1965) indicate that the desensitization rate increases with increasing 
calcium concentration. It is particularly interesting that calcium ions are effective 
only when applied from the cytoplasmic face of the membrane (Miledi, 1980). 
Bivalent and trivalent cations other than calcium also produce this effect on 
desensitization with varying degrees of effectiveness (Lambert and Parsons, 1970; 
Magazanik and Vyskocil, 1970). 

Cohen et al. (1974) have shown that the presence of calcium ions causes an 
increase of equilibrium binding affinity of the membrane-bound Torpedo mar- 
morata receptor for cholinergic agonists. This was interpreted as a stabilization of 
the desensitized state by calcium (Cohen et al., 1974). Calcium ions also decrease 
the equilibrium binding affinity of the NCB PCP in the presence of a cholinergic 
activator in membrane-bound Torpedo californica receptor (Oswald, 1983). This 
effect does not depend on a calcium-activated enzyme since it is reversed by 
EGTA (a calcium chelator) and persists even after detergent solubilization of the 
receptor, suggesting a direct effect of calcium on the receptor molecule. 
Furthermore, it was shown that calcium appears to accelerate the rate at which 
cholinergic agonists inactivate (desensitize) the receptor (Oswald, 1983). Such a 
direct effect of calcium has been confirmed using purified Torpedo californica 
receptor reconstituted into asolectin vesicles (Ochoa, E. L. M., and McNamee, 
M. G., unpublished observations). 

Peptides 

Peptides are known to be present in nerve terminals and share a very 
important role with neurotransmitters in synaptic transmission. Neurotransmitters 
and peptides coexist in the same neuron (Hokfelt et al., 1980) and even in the 
same synaptic vesicle (Pelletier et al., 1981). In recent years, evidence has 
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accumulated demonstrating that some peptides affect the function of the nAChR. 
Three such peptides are thymopoietin (and the related peptide thymopentin), 
substance P, and the calcitonin gene-related peptide (CGRP). The way these 
peptides affect receptor function could involve either a direct (allosteric?) effect 
or an indirect effect, via second messengers and covalent modifications of the 
receptor (see later). The latter may represent the mechanisms responsible for 
ultra slow inactivation of nAChR function. 

Thymopoietin. Thymopoietins I and II (henceforth thymopoietin) are 
structurally related polypeptides consisting of 49 amino acid residues (Audhya et 
al., 1981; Audhya and Goldstein, 1985), which have been isolated from the 
bovine or human thymus (Goldstein, 1974; Audhya et al., 1987) and are localized 
in the epithelial stroma of the gland (Viamontes et al., 1986). Thymopoietin 
immunoreactive substances have been detected using radioimmunological assays 
in mouse spinal cord and brain homogenates, in mouse primary spinal cord 
cultures, and in supernatants of a mouse neuroblastoma cell line (Brown et al., 
1986). Thymopoietin is one of the putative thymic hormones (Stutman, 1983) and 
the only known thymic-produced substance with a definite effect on skeletal 
muscle. In fact, the polypeptide was first isolated by using a neuromuscular 
preparation (Goldstein, 1974). The complete amino acid sequence of bovine and 
human thymopoietin is known (Audhya et al., 1981, 1987; Schlessinger and 
Goldstein, 1975). The level of biologically active thymopoietin measured by 
immunoassays in bovine serum is in the nanomolar concentration range (Audhya 
and Goldstein, 1985). 

Thymopoietin induces differentiation of prothymocytes into T cells, inhibits 
the differentiation of B cells (Basch and Goldstein, 1975; Komuro et al., 1975; 
Scheid et al., 1975, 1978), and influences mature lymphocyte function (Sunshine 
et al., 1978). Thymopoietin is also active on rat pituitary cells in vitro (Malaise et 
al., 1987). The immunologic effects can be reproduced either by a synthetic 
tridecapeptide corresponding to positions 29-41 of thymopoietin (Schlesinger et 
al., 1975) or by a synthetic pentapeptide corresponding to positions 32-36 of the 
bovine hormone (Goldstein et al., 1979). This finding suggests that the five-amino 
acid fragment, Arg-Lys-Asp-Val-Tyr,  known as "thymopentin," contains the 
active site of the hormone. This has been confirmed from clinical trials in which 
thymopentin has been beneficially employed (Goldstein, 1987). In addition, 
thymopoietin reduces the amplitude of the action potential at vertebrate end 
plates (Goldstein, 1974). This neuromuscular effect is also produced by a 
synthetic peptide corresponding to positions 29-41 of thymopoietin (Goldstein 
and Schlesinger, 1975) or by thymopentin (Audhya et al., 1984). Since the action 
potential depends on the activity of the nAChR, a modulating effect of nAChR 
function was proposed for this thymic hormone (Goldstein, 1974). 

Thymopoietin binds to nAChR-rich Torpedo membranes with a high affinity 
(Venkatasubramanian et al., 1986). Morel et al. (1987) have recently shown by 
radioimmune precipitation techniques that nAChR solubilized from human 
skeletal muscle also binds thymopoietin (but not thymopentin or another thymic 
hormone thymulin). Revah et al. (1987) explored the mechanism of action of 
thymopoietin by patch-clamp technique using the C2 mouse myotube cell line and 
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by binding studies performed on Torpedo marmorata nAChR-rich membrane 
fragments. Their study showed an enhancement of nAChR inactivation (desen- 
sitization) effected by the polypetpide in the presence of Ca 2+. Ochoa et al. 
(1988) used affinity chromatography purified Torpedinidae electric organ nAChR 
incorporated into lipid vesicles and studied the effects of thymopentin on receptor 
function. The pentapeptide at 100/~M concentration neither inhibited 125I-tr- 
BuTx binding at equilibrium nor altered the rate at which the toxin associates 
with nAChR-containing vesicles or the agonist-induced affinity transitions of the 
nAChR. However, thymopentin caused an acceleration of receptor desensitiza- 
tion, as monitored by the first-order decrease in the carbamylcholine-induced 
response in vesicles preincubated with either carbamylcholine or carbamylcholine 
with thymopentin. The effect was enhanced in the presence of 1 mM Ca 2+. This 
change in carbamylcholine-induced desensitization should be accompanied by a 
modification in nAChR affinity transitions. The discrepancy between the toxin 
binding and the ion flux data can be explained if thymopentin affects the fast 
phase of desensitization, a change which the toxin binding assay would not  easily 
detect. It has been very recently reported that thymopentin at a 10-300/~M 
concentration range may modulate neuronal nAChR function by selectively 
inhibiting nicotinic sensitivity in adrenal chromaffin cells (Afar et al., 1988). 

The site(s) to which thymopoietin or thymopentin binds is(are) at present 
unknown. Revah et al. (1987) did not  propose any of the known nAChR ligand 
recognition regions as a thymopoietin binding site. The possibility has to be 
considered that a fragment could be cleaved from the parent 49-amino acid 
hormone thymopoietin by an as yet unidentified peptidase, possibly by one of the 
many protease activities found in the Torpedo electric organ membranes (Altstein 
et al., 1984; Turner and Dowdall, 1984; Verdenhalven et al., 1982). The 
possibility that thymopoietin exerts its effects at mammalian neuromuscular 
synapses by a similar mechanism helps to qualify this thymic hormone as a 
physiological ligand for nAChR desensitization (Changeux et al., 1987; Changeux 
and Revan, 1987; Revah et al., 1987). 

Substance P. The undecapeptide substance P is a neuroactive peptide in 
both the central and the peripheral nervous system (for a review, see Pernow, 
1983). Most of the reports dealing with cholinergic receptor-substance P 
interaction have been made on central nervous system nicotinic receptors. 
Substance P blocks cholinergic function by accelerating receptor desensitization in 
vertebrate as well as invertebrate systems (Boyd and Leeman, 1987; Clapham and 
Neher, 1984; Role, 1984; Simasko et al., 1987; Stallcup and Patrick, 1980; 
Steinacker and Highstein, 1976). There are also reports on the desensitizing 
effects of substance P on a muscle-like cell line (Simasko et al., 1985) and on the 
binding of NCBs and ACh to Torpedo membrane fragments (Weiland et al., 
1987). In the latter study, substance P interacted neither with the ACh binding 
site nor with the high-affinity NCB binding site. The peptide did not induce a shift 
of the equilibrium between the resting and the desensitized states of nAChR but 
modulated binding of NCBs (PCP in this study), probably in an allosteric fashion. 
Substance P has also recently been used to promote desensitization in a neuronal 
nAChR in bovine adrenal chromaffin cells (Higgins and Berg, 1988). 
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The nature of the systems used so far to explore the effect of substance P 
makes the interpretation of its direct effect on nAChR rather difficult. Apart from 
a steric effect on ion permeation exerted by substance P, there exists a possibility 
that the peptide may act by indirect mechanisms (i.e., through second messenger 
systems). 

Calcitonin Gene-Related Peptide (CGRP).  CGRP is a neuropeptide that 
coexists with ACh in motoneurons (Changeux, 1986; Hokfelt et al., 1986). The 
peptide has been located in the spinal cord of several vertebrate species and in 
the motor nerve endings of the rodent neuromuscular junction and in brain stem 
(Fontaine et al., 1986; New and Mudge, 1986; Rosenfeld et al., 1983; Takami et 
al., 1985b). The functional role of CGRP is varied. It may mediate feeding 
behavior, since it is found in olfactory and gustatory pathways (hypoglossal, 
facial, and vagal nuclei) and in the hypothalamus and limbic regions. It has also 
been implicated in cardiovascular control. CGRP is colocalized with ACh, 
substance P, and the enkephalins (Takami et al., 1985a). 

A direct effect of CGRP on nAChR desensitization has not yet been 
demonstrated, at least for the purified receptor. However, this peptide merits 
some attention because of its well-studied effects on nAChR regulation, which, in 
turn, might be operative in regulating desensitization by CGRP itself or other 
peptides which could possibly share a common mechanism of action. The 
calcitonin gene encodes two different mRNAs: one which encodes the precursor 
of the calcium regulating hormone calcitonin (a 17.5-kD protein) in thyroidal C 
cells and another which encodes a 16-kD protein which is posttranslationally 
processed in the brain into three peptides. One of these is a 37-amino acid 
peptide CGRP (Rosenfeld et al., 1983). By the use of recombinant DNA 
technology (and also by peptide isolation and characterization and im- 
munocytochemical studies), it can be shown that the calcitonin gene generates 
alternative RNA and protein products which are expressed in specific tissues. 

CGRP increases the level of surface nAChR in primary chick muscle cells in 
culture (Fontaine et al., 1986; New and Mudge, 1986), enhances the contraction 
of skeletal muscle (Takami et al., 1985b), and increases the levels of nAChR 
o~-subunit (Fontaine et al., 1987; Klarsfeld and Changeux, 1985). Based on this 
evidence, the peptide has been postulated as one of the nerve-derived trophic 
factors that increase the biosynthesis of the receptor. Very recently, enhancement 
of the rate of nAChR desensitization by CGRP has been reported in a mouse 
muscle cell line using the patch-clamp technique (Mulle et al., 1988). This study 
indicated that CGRP by itself did not induce desensitization but modulated 
desensitization triggered by ACh. 

Covalent Modifications 

Covalent modifications of the receptor have potential modulating effect on 
desensitization. The nAChR from Torpedo californica can be methylated by an 
exogenous human red blood-cell methylase or by an endogenous Torpedo electric 
organ cytosolic methylase (Flynn et al., 1982; Kloog et al., 1980). The 
methylation of purified nAChR by purified electric organ methylase was 
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examined by Yee and McNamee (1985) to investigate the functional role of such 
a covalent modification. Although methylation had an effect on the ion 
translocating properties of the nAChR, it had no significant effect on ligand 
binding or affinity transitions induced by agonists. Phosphorylation is the most 
studied posttranslational covalent modifications of the nAChR. Phosphorylation 
results from protein kinase activation, which in turn results from second 
messengers generated inside the cell. From several recent studies there is 
accumulating evidence that this modification is correlated with the regulation and 
desensitization of the receptor (see Fig. 3). 

It was initially postulated that phosphorylation of membrane proteins 
mediates the effects of neurotransmitters at postsynaptic membranes (Greengard, 
1976). Since then, many effects of phosphorylation on membrane receptors have 
been reported (for reviews, see Browning et al., 1985; Huganir and Greengard, 
1987). In the case of the nAChR, it was reported by two different groups around 
the same time that receptor-rich membrane fragments from electric organ were a 
substrate for an endogenous membrane protein kinase (Gordon et al., 1977a,b; 
Teichberg et al., 1977). It was later shown that the purified receptor contains 
O-phosphoserine residues (seven per molecule of the receptor) and that all four 
subunits are phosphorylated (Vandlen et al., 1979). A series of studies performed 
by Huganir and Greengard demonstrated that phosphorylation of the receptor 
occurs by at least three different protein kinases. They first Showed that Torpedo 
californica membranes contain a cyclic AMP (cAMP)-dependent protein kinase 
and a calcium-calmodulin dependent protein kinase. The former phosphorylates 
serine residues at the y and/ i  subunits, and the latter phosphorylates membrane 
proteins which are not associated with the receptor. Interestingly enough, a 
purified catalytic subunit of cAMP-dependent protein kinase from heart was able 
to phosphorylate the purified nAChR (Huganir and Greengard, 1983). Torpedo 
membranes also contain protein kinase C which phosphorylates serine residues at 
the a~ and dt subunits (Huganir et al., 1983) and a tyrosine-specific protein kinase 
which phosphorylates tyrosine residues at the fl, y, and 6 subunits (Huganir et al., 
1984). The three kinases responsible for receptor phosphorylation act on unique 
sites on the receptor subunits, and thus they phosphorylate the nAChR in a total 
of seven distinct sites (Huganir and Greengard, 1987). Such sites are presumably 
located in the major intracellular loop assigned to each subunit in the current 
models for the receptor structure and are very close to each other (Huganir and 
Greengard, 1987). Thus the three phosphorylation sites in the 6 subunit are less 
than 20 amino acids apart from each other. 

From a functional point of view, there are data linking stimulation of the 
cAMP-dependent kinase to a significant change in receptor activity. A mam- 
malian muscle cell line is known to exhibit cAMP-dependent phosphorylation in 
the a~, fl, and y subunits (Smith et al., 1987). When rat (or frog) skeletal muscle is 
exposed to forskolin, an activator of adenylate cyclase activity, its capacity to 
desensitize increases (Albuquerque et al., 1986; Middleton et al., 1986). The 
sequence of events includes activation of the cyclase, generation of cAMP, 
phosphorylation of the nAChR, and desensitization as a consequence of 
phosphorylation. However, in a recent paper it has been reported that forskolin 
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Fig. 3. Mechanisms of nAChR Desensitization (II). Phosphoryta- 
tion (denoted by P) is one of the posttranslational covalent 
modifications which may modulate desensitization of the nAChR. 
The three boxes toward the bottom show three protein kinases 
known to phosphorylate the receptor (also see text): the cyclic 
AMP-dependent protein kinase (cAMP PK) is activated by cAMp 
generated from ATP through the action of the enzyme adenylate 
cyclase (AC). The question-marked pathway suggests that a yet 
unknown receptor is coupled to a G protein, known to be essential 
for AC activation in other systems. The other two question-marked 
arrows indicate unknown activation for tyrosine kinase (TK) and 
phospholipase C (PLC). The latter enzyme catalyzes the breakdown 
of inositol phospholipids, the major products of such hydrolysis 
being diacylglycerol (DG) and triphosphoinositide (IP3). DG dir- 
ectly stimulates PKC and IP3 increases intracellular calcium 
([Ca2+]i) levels, which reinforce PKC stimulation. Apart from 
having a direct effect on nAChR desensitization, putative desen- 
sitization promoting substances such as thymopoietin, substance P, 
and CGRP may act at several levels of this regulatory mechanism. 

m o d u l a t e s  desens i t i za t ion  in ra t  ske le ta l  musc le  by  a m e c h a n i s m  tha t  does  no t  
involve ac t iva t ion  of  a d e n y l a t e  cyclase  or  c A M P - d e p e n d e n t  p h o s p h o r y l a t i o n  
( W a g o n e r  and  Pa l lo t t a ,  1988). Thus ,  a d i rec t  i n t e r ac t ion  of  fo r sko l in  wi th  the  
n A C h R  canno t  be  r u l e d  out .  

T h e r e  has  also b e e n  a r e p o r t  on  an in vitro effect  of  p h o s p h o r y l a t i o n  on  
n A C h R  desens i t i za t ion  ( H u g a n i r  et al., 1986). T h e  y and  6 subuni t s  o f  pur i f ied  
Torpedo r e c e p t o r  were  p h o s p h o r y l a t e d  by  c A M P - d e p e n d e n t  k inase ,  the  m o d i f i e d  
r e c e p t o r  was r e c o n s t i t u t e d  into  l i posomes ,  and  its act iv i ty  m o n i t o r e d  by  r a p i d  
kinet ic  t echn iques .  A seve ra l fo ld  inc rease  in the  ra te  at  which  the  r e c e p t o r  
desens i t izes  in the  p re sence  of  c a r b a m y l c h o l i n e  was d e m o n s t r a t e d .  S imi la r  resul t s  
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were obtained with cultured rat myotubes and using either cAMP or forskolin to 
stimulate the kinase (Grassi et al., 1987; Miles et al., 1987). In systems other than 
Torpedo, activation of protein kinase C has been shown to enhance nAChR 
desensitization. Thus in cultured myotubes phorbol esters reduce ACh sensitivity 
(Eusebi et al., 1985), and similar agents accelerate desensitization of nAChR in 
sympathetic ganglion neurons (Downing and Role, 1987). 

Phosphorylation is known to affect the allosteric transitions of classical 
regulatory enzymes. Phosphorylation has been correlated to regulation and 
desensitization of the fl-adrenergic receptor (Box and Staehelin, 1987; Bouvier et 
aL, 1988), the dihydropyridine-sensitive calcium channel (O'Callahan and Hosey, 
1988), and the GABA receptor (Stelzer et al., 1988). There is still a great deal of 
speculation on the physiological routes by which the phosphorylation activity 
could be modulated (Huganir and Greengard, 1987). Some peptides and 
hormones might be involved in these pathways and CGRP and substance P are 
likely candidates. 

POSSIBLE PHYSIOLOGICAL SIGNIFICANCE OF DESENSITIZATION 

The nAChR is a crucial molecule in neurotransmission at nicotinic choliner- 
gic synapses. It is a potential target for modulatory changes, which in turn might 
modify synaptic efficacy. In this respect, nAChR desensitization serves as a model 
for other receptors in the central nervous system. 

Desensitization is a rather general component of receptor activation pro- 
cesses and appears to be a principal feature of cell recognition processes. It has 
been suggested that desensitization plays an important role in cellular homeo- 
static processes (Triggle, 1980) and possibly also in the operation of the neuronal 
networks associated in memory and learning process (Changeux et al., 1984b; 
Changeux and Heidmann, 1987). 

The role of desensitization in the operation of receptors under normal 
physiological conditions is still unknown. There is some evidence that the 
desensitization process may be operative at the neuromuscular junctional level in 
normal as well as in pathological states. A physiological role for receptor 
desensitization was suggested by Katz and Thesleff (1957) in their original paper 
on desensitization and also by Thesleff in subsequent papers (Axelsson and 
Thesleff, 1958; Thesleff, 1959, 1960). It was later shown that the ACh released in 
response to nerve stimulation was able to reduce the response of the frog end 
plate to spontaneously released ACh (Magleby and Pallotta, 1981). However, 
there is consensus that in normal neuromuscular transmission desensitization does 
not play a major role, due to the well-known physiological concept of the "safety 
factor" of neuromuscular transmission (Vincent, 1980). For example, about 
18,000 binding sites per /zm 2 (i.e., 9000 receptors//~m z) are known to be 
concentrated at the tips of the synaptic folds (Albuquerque et al., 1974a; Barnard 
et al., 1975; Fertuck and Salpeter, 1976). Nevertheless, about 50-400 receptors 
per /~m z have been estimated to be active during normal signal transmission 
(Junge, 1981). This is consistent with the reported 100-200 receptors which were 
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estimated to form channels at a transmembrane voltage of -70  mV (Udgaonkar 
and Hess, 1987b). This phenomenon could account for the above-mentioned 
safety factor of neuromuscular transmission and the pharmacological concept of 
"spare receptors" (Stephenson, 1956) and could be the basis for understanding 
how synaptic efficacy is regulated. However, desensitization may influence the 
overall functioning of individual receptors during their life span (McArdle, 1983). 
In this respect, fast desensitization as well as long-term desensitization processes, 
probably mediated through modulatory changes, may influence the equilibrium 
between desensitized and resting receptor conformers and, in the long run, 
determine the actual efficacy of synapses. 

Synaptic efficacy changes, which ultimately give rise to synaptic plasticity 
within the central nervous system, have been postulated to be operative in neural 
networks engaged in the learning mechanisms and in the acquisition of memories 
(Changeux et al., 1984b; Changeux and Heidmann, 1987; Kandel et al., 1987; 
Morris et al., 1988). Allosteric transitions such as those described for the nAChR 
(Changeux, 1981) may be instrumental in other nerve cell membrane receptors 
within the central nervous system (Changeux and Heidmann, 1987). According to 
this molecular model, electrical signals from one neuron to another could produce 
potentiation or depression of synaptic efficacy depending on the ratio of active to 
desensitized receptors. The duration of these phenomena would be determined 
by the kinetics of the slow allosteric transitions but could be extended to longer 
time scales by covalent modifications (Changeux and Heidmann, 1987; Changeux 
and Revah, 1987). As endogenous substances, thymopoietin or substance P could 
be envisaged as either direct or indirect modulators of such desensitization 
processes. 

There are several clinical conditions where the primary physiopathological 
phenomenon is an increase in the normal turnover of membrane receptors 
because of receptor-directed antibodies (i.e., autoimmune mechanisms). Such 
diseases include diabetes with resistance to insulin, allergic rhinitis, and the 
neuromuscular disorder known as myasthenia gravis (MG). 

MG is the best example of an existing interaction between molecules of the 
nervous system and the immune system (Albuquerque and Eldefrawi, 1983; 
Patrick and Lindstrom, 1973). In this condition, multiple, polyclonal antibodies 
are directed toward several epitopes on the skeletal muscle membrane nAChR 
molecule. This induces loss of receptor sites (Albuquerque et al., 1976; 
Fambrough et al., 1973; Rash et al., 1976) and leads to impairment of muscle 
contraction (Lindstrom, 1985; Vincent, 1980). The phenomenon of im- 
munomodulation, by which the immune complexes produce an increased turn- 
over of receptor, accounts for such a receptor loss (Lindstrom, 1985). However, 
the pathogenesis of MG is far from dear, and regardless of its etiology, the 
disease can also be interpreted as an enhancement of desensitization phenomena. 
The humoral factors responsible for this increased desensitization are (1) 
antibodies directed toward the nAChR which cause an actual loss of receptor 
molecules (chronic desensitization) and (2) circulating peptides, probably re- 
leased from the thymus gland (and other possible sources), modulating fast, slow, 
and perhaps ultraslow desensitizations. Desensitization may be operative in 
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myasthenic muscle (Grob and Namba, 1976; Pagala et al., 1981). There have also 
been reports describing an increased affinity for ac-bungarotoxin in myasthenic 
muscles (Elias and Appel, 1978), an increase in carbamylcholine induced 
desensitization in frog muscle after exposure to antireceptor rabbit antiserum 
(Niemi et al., 1979), and impaired neuromuscular transmission in mice exposed to 
serum globulin from human myasthenic sera (Pagala et al., 1982). Desensitization 
in MG appears to be a process unrelated to either channel conductance or 
kinetics (McArdle, 1984) but certainly could contribute to the muscle deficit 
which is already existent. This may explain the worsening of myasthenic 
symptoms which has been observed sometimes after anticholinesterase therapy 
(Niemi et al., 1979). 

There is evidence that the thymus gland is involved in the pathogenesis of 
MG (Aharonov et al., 1975; Castleman and Norris, 1949; Fuchs et al., 1980; 
Goldstein and Whittingham, 1966; Kao and Drachman, 1977). Repeated paren- 
teral administration of bovine thymic extracts in guinea pigs results in pathologi- 
cal changes in the thymus gland (termed experimental autoimmune thymitis) that 
a r e  associated with impaired neuromuscular transmission of the MG type (a 
decreased amplitude of recorded muscle action potential). The criterion followed 
in these experiments to evaluate neuromuscular block was an electromyogram 
performed after nerve stimulation (Goldstein and Whittingham, 1966). The 
injection of thymic extracts also causes myositis (known to be associated with 
MG) and a reduction in tension of in vitro nerve-diaphragm muscle preparations. 
By pharmacological criteria, these muscles show a myasthenic-like behavior 
(Goldstein and Hofman, 1968). A more detailed study showed decreased 
amplitudes of muscle action potentials after single supramaximal stimuli in rats with 
experimental autoimmune thymitis and a decline of the muscle response to nerve 
stimulations at 50/sec. Intracellu!ar registers showed a decreased amplitude of 
miniature end-plate potentials (mepp). The muscle resting potential and the 
frequency of mepp were normal (Goldstein and Hoftnann, 1968). The latter 
results were confirmed in rats with either ablation of the thymus or grafted thymic 
tissue (Goldstein and Hofmann, 1969). The thymoprive animals showed an 
increased amplitude of mepp, whereas the rats with increased thymic mass 
showed a decrease in amplitude. The substance that impairs neuromuscular 
transmission has been identified as thymopoietin (Audhya et al., 1981; Goldstein, 
1974) and this provides a well-documented interaction between nervous and 
immune system molecules. This subject is relevant to psychoneuroimmunology 
(Ader, 1981), an area of research dealing with the possible cross-talk between the 
immune and the central nervous systems. By studying the interactions between 
immune system-produced substances on the functioning of nAChR, it should be 
possible to determine to what extent these interactions are actually operative in 
the intact subject. 

The effects of either thymopoietin or its derived pentapeptide on the 
nicotinic receptor from electric fish are still at an early stage of development and 
merit further investigation. A detailed knowledge of the mechanisms of action of 
thymopoietin and thymopentin would help to explain the role of the thymus in 
normal as well as in pathological states. 
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CONCLUSIONS 

Desensitization of the nAChR is an example of a general phenomenon found 
at most levels of biological organization. Although its physiological significance is 
not yet very well understood, existing evidence suggests that it may play a 
significant role in controlling the normal functioning of the neuromuscular 
synapse. The nAChR is a representative member of the super family of 
chemically gated ion channel receptors (Schofield et al., 1987). Detailed 
knowledge of the process by which the nicotinic receptor becomes desensitized 
could prove to be instructive for understanding the behavior of other receptor 
systems and ion channels. By analogy with nAChR desensitization it has been 
suggested that a similar mechanism may be operative at the neuronal receptor 
level in the central nervous system, which could account for such important 
processes as learning and memory. 

The most remarkable property of nAChR desensitization is its capacity to be 
modulated. Peptides such as thympoietin, substance P, and CGRP have been 
implicated in the regulation of nAChR function at peripheral and central 
synapses. A detailed knowledge of these processes will undoubtedly contribute to 
our understanding of normal and pathological synaptic functions. The modulation 
of skeletal muscle nAChR by the thymic hormone thymopoietin could be relevant 
to the physiopathology of myasthenia gravis, a disease in which desensitization 
may be envisaged as operating at its maximum level. Future research on 
desensitization could act as the key to a better understanding of many 
physiological and pathological processes taking place within the central and 
peripheral nervous system. 

NOTE A D D E D  IN PROOF 

After submitting this manuscript we became aware of a paper by Hopfield et 
al. that further examined the effects of nAChR phosphorylation on desensitiza- 
tion [Hopfield, J. F., Tank, D. W., Greengard, P., and Huganir, R. L. (1988). 
Functional modulation of the nicotinic acetylcholine receptor by tyrosine phos- 
phorylation. Nature 336:677-680]. 

Torpedo californica nAChR was phosphorylated using a protein tyrosine 
kinase at tyrosine residues on the 13, ~ and 6 subunits, reconstituted into 
liposomes, and single channel properties studied by patch clamp techniques. The 
results showed increases in the rate of rapid desensitization that could be directly 
correlated with the stoichiometry of tyrosine phosphorylation. 
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